Current Path : /usr/src/contrib/llvm/lib/DebugInfo/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/lib/DebugInfo/DWARFCompileUnit.cpp |
//===-- DWARFCompileUnit.cpp ----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DWARFCompileUnit.h" #include "DWARFContext.h" #include "DWARFFormValue.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace dwarf; DataExtractor DWARFCompileUnit::getDebugInfoExtractor() const { return DataExtractor(Context.getInfoSection(), Context.isLittleEndian(), getAddressByteSize()); } bool DWARFCompileUnit::extract(DataExtractor debug_info, uint32_t *offset_ptr) { clear(); Offset = *offset_ptr; if (debug_info.isValidOffset(*offset_ptr)) { uint64_t abbrOffset; const DWARFDebugAbbrev *abbr = Context.getDebugAbbrev(); Length = debug_info.getU32(offset_ptr); Version = debug_info.getU16(offset_ptr); abbrOffset = debug_info.getU32(offset_ptr); AddrSize = debug_info.getU8(offset_ptr); bool lengthOK = debug_info.isValidOffset(getNextCompileUnitOffset()-1); bool versionOK = DWARFContext::isSupportedVersion(Version); bool abbrOffsetOK = Context.getAbbrevSection().size() > abbrOffset; bool addrSizeOK = AddrSize == 4 || AddrSize == 8; if (lengthOK && versionOK && addrSizeOK && abbrOffsetOK && abbr != NULL) { Abbrevs = abbr->getAbbreviationDeclarationSet(abbrOffset); return true; } // reset the offset to where we tried to parse from if anything went wrong *offset_ptr = Offset; } return false; } uint32_t DWARFCompileUnit::extract(uint32_t offset, DataExtractor debug_info_data, const DWARFAbbreviationDeclarationSet *abbrevs) { clear(); Offset = offset; if (debug_info_data.isValidOffset(offset)) { Length = debug_info_data.getU32(&offset); Version = debug_info_data.getU16(&offset); bool abbrevsOK = debug_info_data.getU32(&offset) == abbrevs->getOffset(); Abbrevs = abbrevs; AddrSize = debug_info_data.getU8 (&offset); bool versionOK = DWARFContext::isSupportedVersion(Version); bool addrSizeOK = AddrSize == 4 || AddrSize == 8; if (versionOK && addrSizeOK && abbrevsOK && debug_info_data.isValidOffset(offset)) return offset; } return 0; } void DWARFCompileUnit::clear() { Offset = 0; Length = 0; Version = 0; Abbrevs = 0; AddrSize = 0; BaseAddr = 0; DieArray.clear(); } void DWARFCompileUnit::dump(raw_ostream &OS) { OS << format("0x%08x", Offset) << ": Compile Unit:" << " length = " << format("0x%08x", Length) << " version = " << format("0x%04x", Version) << " abbr_offset = " << format("0x%04x", Abbrevs->getOffset()) << " addr_size = " << format("0x%02x", AddrSize) << " (next CU at " << format("0x%08x", getNextCompileUnitOffset()) << ")\n"; getCompileUnitDIE(false)->dump(OS, this, -1U); } void DWARFCompileUnit::setDIERelations() { if (DieArray.empty()) return; DWARFDebugInfoEntryMinimal *die_array_begin = &DieArray.front(); DWARFDebugInfoEntryMinimal *die_array_end = &DieArray.back(); DWARFDebugInfoEntryMinimal *curr_die; // We purposely are skipping the last element in the array in the loop below // so that we can always have a valid next item for (curr_die = die_array_begin; curr_die < die_array_end; ++curr_die) { // Since our loop doesn't include the last element, we can always // safely access the next die in the array. DWARFDebugInfoEntryMinimal *next_die = curr_die + 1; const DWARFAbbreviationDeclaration *curr_die_abbrev = curr_die->getAbbreviationDeclarationPtr(); if (curr_die_abbrev) { // Normal DIE if (curr_die_abbrev->hasChildren()) next_die->setParent(curr_die); else curr_die->setSibling(next_die); } else { // NULL DIE that terminates a sibling chain DWARFDebugInfoEntryMinimal *parent = curr_die->getParent(); if (parent) parent->setSibling(next_die); } } // Since we skipped the last element, we need to fix it up! if (die_array_begin < die_array_end) curr_die->setParent(die_array_begin); } size_t DWARFCompileUnit::extractDIEsIfNeeded(bool cu_die_only) { const size_t initial_die_array_size = DieArray.size(); if ((cu_die_only && initial_die_array_size > 0) || initial_die_array_size > 1) return 0; // Already parsed // Set the offset to that of the first DIE and calculate the start of the // next compilation unit header. uint32_t offset = getFirstDIEOffset(); uint32_t next_cu_offset = getNextCompileUnitOffset(); DWARFDebugInfoEntryMinimal die; // Keep a flat array of the DIE for binary lookup by DIE offset uint32_t depth = 0; // We are in our compile unit, parse starting at the offset // we were told to parse const uint8_t *fixed_form_sizes = DWARFFormValue::getFixedFormSizesForAddressSize(getAddressByteSize()); while (offset < next_cu_offset && die.extractFast(this, fixed_form_sizes, &offset)) { if (depth == 0) { uint64_t base_addr = die.getAttributeValueAsUnsigned(this, DW_AT_low_pc, -1U); if (base_addr == -1U) base_addr = die.getAttributeValueAsUnsigned(this, DW_AT_entry_pc, 0); setBaseAddress(base_addr); } if (cu_die_only) { addDIE(die); return 1; } else if (depth == 0 && initial_die_array_size == 1) { // Don't append the CU die as we already did that } else { addDIE (die); } const DWARFAbbreviationDeclaration *abbrDecl = die.getAbbreviationDeclarationPtr(); if (abbrDecl) { // Normal DIE if (abbrDecl->hasChildren()) ++depth; } else { // NULL DIE. if (depth > 0) --depth; if (depth == 0) break; // We are done with this compile unit! } } // Give a little bit of info if we encounter corrupt DWARF (our offset // should always terminate at or before the start of the next compilation // unit header). if (offset > next_cu_offset) { fprintf (stderr, "warning: DWARF compile unit extends beyond its bounds cu 0x%8.8x at 0x%8.8x'\n", getOffset(), offset); } setDIERelations(); return DieArray.size(); } void DWARFCompileUnit::clearDIEs(bool keep_compile_unit_die) { if (DieArray.size() > 1) { // std::vectors never get any smaller when resized to a smaller size, // or when clear() or erase() are called, the size will report that it // is smaller, but the memory allocated remains intact (call capacity() // to see this). So we need to create a temporary vector and swap the // contents which will cause just the internal pointers to be swapped // so that when "tmp_array" goes out of scope, it will destroy the // contents. // Save at least the compile unit DIE std::vector<DWARFDebugInfoEntryMinimal> tmpArray; DieArray.swap(tmpArray); if (keep_compile_unit_die) DieArray.push_back(tmpArray.front()); } } void DWARFCompileUnit::buildAddressRangeTable(DWARFDebugAranges *debug_aranges, bool clear_dies_if_already_not_parsed){ // This function is usually called if there in no .debug_aranges section // in order to produce a compile unit level set of address ranges that // is accurate. If the DIEs weren't parsed, then we don't want all dies for // all compile units to stay loaded when they weren't needed. So we can end // up parsing the DWARF and then throwing them all away to keep memory usage // down. const bool clear_dies = extractDIEsIfNeeded(false) > 1; DieArray[0].buildAddressRangeTable(this, debug_aranges); // Keep memory down by clearing DIEs if this generate function // caused them to be parsed. if (clear_dies) clearDIEs(true); }