Current Path : /usr/src/contrib/llvm/lib/Support/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/lib/Support/Host.cpp |
//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header file implements the operating system Host concept. // //===----------------------------------------------------------------------===// #include "llvm/Support/Host.h" #include "llvm/Config/config.h" #include <string.h> // Include the platform-specific parts of this class. #ifdef LLVM_ON_UNIX #include "Unix/Host.inc" #endif #ifdef LLVM_ON_WIN32 #include "Windows/Host.inc" #endif #ifdef _MSC_VER #include <intrin.h> #endif //===----------------------------------------------------------------------===// // // Implementations of the CPU detection routines // //===----------------------------------------------------------------------===// using namespace llvm; #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\ || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) /// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the /// specified arguments. If we can't run cpuid on the host, return true. static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) #if defined(__GNUC__) // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. asm ("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) int registers[4]; __cpuid(registers, value); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; return false; #else return true; #endif #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) #if defined(__GNUC__) asm ("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) __asm { mov eax,value cpuid mov esi,rEAX mov dword ptr [esi],eax mov esi,rEBX mov dword ptr [esi],ebx mov esi,rECX mov dword ptr [esi],ecx mov esi,rEDX mov dword ptr [esi],edx } return false; // pedantic #else returns to appease -Wunreachable-code (so we don't generate // postprocessed code that looks like "return true; return false;") #else return true; #endif #else return true; #endif } static void DetectX86FamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) { Family = (EAX >> 8) & 0xf; // Bits 8 - 11 Model = (EAX >> 4) & 0xf; // Bits 4 - 7 if (Family == 6 || Family == 0xf) { if (Family == 0xf) // Examine extended family ID if family ID is F. Family += (EAX >> 20) & 0xff; // Bits 20 - 27 // Examine extended model ID if family ID is 6 or F. Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 } } std::string sys::getHostCPUName() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) return "generic"; unsigned Family = 0; unsigned Model = 0; DetectX86FamilyModel(EAX, Family, Model); bool HasSSE3 = (ECX & 0x1); GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); bool Em64T = (EDX >> 29) & 0x1; union { unsigned u[3]; char c[12]; } text; GetX86CpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1); if (memcmp(text.c, "GenuineIntel", 12) == 0) { switch (Family) { case 3: return "i386"; case 4: switch (Model) { case 0: // Intel486 DX processors case 1: // Intel486 DX processors case 2: // Intel486 SX processors case 3: // Intel487 processors, IntelDX2 OverDrive processors, // IntelDX2 processors case 4: // Intel486 SL processor case 5: // IntelSX2 processors case 7: // Write-Back Enhanced IntelDX2 processors case 8: // IntelDX4 OverDrive processors, IntelDX4 processors default: return "i486"; } case 5: switch (Model) { case 1: // Pentium OverDrive processor for Pentium processor (60, 66), // Pentium processors (60, 66) case 2: // Pentium OverDrive processor for Pentium processor (75, 90, // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133, // 150, 166, 200) case 3: // Pentium OverDrive processors for Intel486 processor-based // systems return "pentium"; case 4: // Pentium OverDrive processor with MMX technology for Pentium // processor (75, 90, 100, 120, 133), Pentium processor with // MMX technology (166, 200) return "pentium-mmx"; default: return "pentium"; } case 6: switch (Model) { case 1: // Pentium Pro processor return "pentiumpro"; case 3: // Intel Pentium II OverDrive processor, Pentium II processor, // model 03 case 5: // Pentium II processor, model 05, Pentium II Xeon processor, // model 05, and Intel Celeron processor, model 05 case 6: // Celeron processor, model 06 return "pentium2"; case 7: // Pentium III processor, model 07, and Pentium III Xeon // processor, model 07 case 8: // Pentium III processor, model 08, Pentium III Xeon processor, // model 08, and Celeron processor, model 08 case 10: // Pentium III Xeon processor, model 0Ah case 11: // Pentium III processor, model 0Bh return "pentium3"; case 9: // Intel Pentium M processor, Intel Celeron M processor model 09. case 13: // Intel Pentium M processor, Intel Celeron M processor, model // 0Dh. All processors are manufactured using the 90 nm process. return "pentium-m"; case 14: // Intel Core Duo processor, Intel Core Solo processor, model // 0Eh. All processors are manufactured using the 65 nm process. return "yonah"; case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile // processor, Intel Core 2 Quad processor, Intel Core 2 Quad // mobile processor, Intel Core 2 Extreme processor, Intel // Pentium Dual-Core processor, Intel Xeon processor, model // 0Fh. All processors are manufactured using the 65 nm process. case 22: // Intel Celeron processor model 16h. All processors are // manufactured using the 65 nm process return "core2"; case 21: // Intel EP80579 Integrated Processor and Intel EP80579 // Integrated Processor with Intel QuickAssist Technology return "i686"; // FIXME: ??? case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model // 17h. All processors are manufactured using the 45 nm process. // // 45nm: Penryn , Wolfdale, Yorkfield (XE) return "penryn"; case 26: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 45 nm process. case 29: // Intel Xeon processor MP. All processors are manufactured using // the 45 nm process. case 30: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. // As found in a Summer 2010 model iMac. case 37: // Intel Core i7, laptop version. case 44: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 32 nm process. return "corei7"; // SandyBridge: case 42: // Intel Core i7 processor. All processors are manufactured // using the 32 nm process. case 45: return "corei7-avx"; case 28: // Intel Atom processor. All processors are manufactured using // the 45 nm process return "atom"; default: return "i686"; } case 15: { switch (Model) { case 0: // Pentium 4 processor, Intel Xeon processor. All processors are // model 00h and manufactured using the 0.18 micron process. case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon // processor MP, and Intel Celeron processor. All processors are // model 01h and manufactured using the 0.18 micron process. case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M, // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron // processor, and Mobile Intel Celeron processor. All processors // are model 02h and manufactured using the 0.13 micron process. return (Em64T) ? "x86-64" : "pentium4"; case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D // processor. All processors are model 03h and manufactured using // the 90 nm process. case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition, // Pentium D processor, Intel Xeon processor, Intel Xeon // processor MP, Intel Celeron D processor. All processors are // model 04h and manufactured using the 90 nm process. case 6: // Pentium 4 processor, Pentium D processor, Pentium processor // Extreme Edition, Intel Xeon processor, Intel Xeon processor // MP, Intel Celeron D processor. All processors are model 06h // and manufactured using the 65 nm process. return (Em64T) ? "nocona" : "prescott"; default: return (Em64T) ? "x86-64" : "pentium4"; } } default: return "generic"; } } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) { // FIXME: this poorly matches the generated SubtargetFeatureKV table. There // appears to be no way to generate the wide variety of AMD-specific targets // from the information returned from CPUID. switch (Family) { case 4: return "i486"; case 5: switch (Model) { case 6: case 7: return "k6"; case 8: return "k6-2"; case 9: case 13: return "k6-3"; default: return "pentium"; } case 6: switch (Model) { case 4: return "athlon-tbird"; case 6: case 7: case 8: return "athlon-mp"; case 10: return "athlon-xp"; default: return "athlon"; } case 15: if (HasSSE3) return "k8-sse3"; switch (Model) { case 1: return "opteron"; case 5: return "athlon-fx"; // also opteron default: return "athlon64"; } case 16: return "amdfam10"; case 20: return "btver1"; case 21: return "bdver1"; default: return "generic"; } } return "generic"; } #else std::string sys::getHostCPUName() { return "generic"; } #endif bool sys::getHostCPUFeatures(StringMap<bool> &Features){ return false; }