Current Path : /usr/src/contrib/llvm/lib/Target/PowerPC/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.td |
//===-- PPCInstrInfo.td - The PowerPC Instruction Set ------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the subset of the 32-bit PowerPC instruction set, as used // by the PowerPC instruction selector. // //===----------------------------------------------------------------------===// include "PPCInstrFormats.td" //===----------------------------------------------------------------------===// // PowerPC specific type constraints. // def SDT_PPCstfiwx : SDTypeProfile<0, 2, [ // stfiwx SDTCisVT<0, f64>, SDTCisPtrTy<1> ]>; def SDT_PPCCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; def SDT_PPCCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def SDT_PPCvperm : SDTypeProfile<1, 3, [ SDTCisVT<3, v16i8>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2> ]>; def SDT_PPCvcmp : SDTypeProfile<1, 3, [ SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32> ]>; def SDT_PPCcondbr : SDTypeProfile<0, 3, [ SDTCisVT<0, i32>, SDTCisVT<2, OtherVT> ]>; def SDT_PPClbrx : SDTypeProfile<1, 2, [ SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT> ]>; def SDT_PPCstbrx : SDTypeProfile<0, 3, [ SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT> ]>; def SDT_PPClarx : SDTypeProfile<1, 1, [ SDTCisInt<0>, SDTCisPtrTy<1> ]>; def SDT_PPCstcx : SDTypeProfile<0, 2, [ SDTCisInt<0>, SDTCisPtrTy<1> ]>; def SDT_PPCTC_ret : SDTypeProfile<0, 2, [ SDTCisPtrTy<0>, SDTCisVT<1, i32> ]>; def SDT_PPCnop : SDTypeProfile<0, 0, []>; //===----------------------------------------------------------------------===// // PowerPC specific DAG Nodes. // def PPCfcfid : SDNode<"PPCISD::FCFID" , SDTFPUnaryOp, []>; def PPCfctidz : SDNode<"PPCISD::FCTIDZ", SDTFPUnaryOp, []>; def PPCfctiwz : SDNode<"PPCISD::FCTIWZ", SDTFPUnaryOp, []>; def PPCstfiwx : SDNode<"PPCISD::STFIWX", SDT_PPCstfiwx, [SDNPHasChain, SDNPMayStore]>; // This sequence is used for long double->int conversions. It changes the // bits in the FPSCR which is not modelled. def PPCmffs : SDNode<"PPCISD::MFFS", SDTypeProfile<1, 0, [SDTCisVT<0, f64>]>, [SDNPOutGlue]>; def PPCmtfsb0 : SDNode<"PPCISD::MTFSB0", SDTypeProfile<0, 1, [SDTCisInt<0>]>, [SDNPInGlue, SDNPOutGlue]>; def PPCmtfsb1 : SDNode<"PPCISD::MTFSB1", SDTypeProfile<0, 1, [SDTCisInt<0>]>, [SDNPInGlue, SDNPOutGlue]>; def PPCfaddrtz: SDNode<"PPCISD::FADDRTZ", SDTFPBinOp, [SDNPInGlue, SDNPOutGlue]>; def PPCmtfsf : SDNode<"PPCISD::MTFSF", SDTypeProfile<1, 3, [SDTCisVT<0, f64>, SDTCisInt<1>, SDTCisVT<2, f64>, SDTCisVT<3, f64>]>, [SDNPInGlue]>; def PPCfsel : SDNode<"PPCISD::FSEL", // Type constraint for fsel. SDTypeProfile<1, 3, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0>, SDTCisVT<1, f64>]>, []>; def PPChi : SDNode<"PPCISD::Hi", SDTIntBinOp, []>; def PPClo : SDNode<"PPCISD::Lo", SDTIntBinOp, []>; def PPCtoc_entry: SDNode<"PPCISD::TOC_ENTRY", SDTIntBinOp, [SDNPMayLoad]>; def PPCvmaddfp : SDNode<"PPCISD::VMADDFP", SDTFPTernaryOp, []>; def PPCvnmsubfp : SDNode<"PPCISD::VNMSUBFP", SDTFPTernaryOp, []>; def PPCvperm : SDNode<"PPCISD::VPERM", SDT_PPCvperm, []>; // These nodes represent the 32-bit PPC shifts that operate on 6-bit shift // amounts. These nodes are generated by the multi-precision shift code. def PPCsrl : SDNode<"PPCISD::SRL" , SDTIntShiftOp>; def PPCsra : SDNode<"PPCISD::SRA" , SDTIntShiftOp>; def PPCshl : SDNode<"PPCISD::SHL" , SDTIntShiftOp>; def PPCextsw_32 : SDNode<"PPCISD::EXTSW_32" , SDTIntUnaryOp>; def PPCstd_32 : SDNode<"PPCISD::STD_32" , SDTStore, [SDNPHasChain, SDNPMayStore]>; // These are target-independent nodes, but have target-specific formats. def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_PPCCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_PPCCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def SDT_PPCCall : SDTypeProfile<0, -1, [SDTCisInt<0>]>; def PPCcall_Darwin : SDNode<"PPCISD::CALL_Darwin", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCcall_SVR4 : SDNode<"PPCISD::CALL_SVR4", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCcall_nop_SVR4 : SDNode<"PPCISD::CALL_NOP_SVR4", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCnop : SDNode<"PPCISD::NOP", SDT_PPCnop, [SDNPInGlue, SDNPOutGlue]>; def PPCload : SDNode<"PPCISD::LOAD", SDTypeProfile<1, 1, []>, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def PPCload_toc : SDNode<"PPCISD::LOAD_TOC", SDTypeProfile<0, 1, []>, [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>; def PPCtoc_restore : SDNode<"PPCISD::TOC_RESTORE", SDTypeProfile<0, 0, []>, [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>; def PPCmtctr : SDNode<"PPCISD::MTCTR", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def PPCbctrl_Darwin : SDNode<"PPCISD::BCTRL_Darwin", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCbctrl_SVR4 : SDNode<"PPCISD::BCTRL_SVR4", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def retflag : SDNode<"PPCISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def PPCtc_return : SDNode<"PPCISD::TC_RETURN", SDT_PPCTC_ret, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def PPCvcmp : SDNode<"PPCISD::VCMP" , SDT_PPCvcmp, []>; def PPCvcmp_o : SDNode<"PPCISD::VCMPo", SDT_PPCvcmp, [SDNPOutGlue]>; def PPCcondbranch : SDNode<"PPCISD::COND_BRANCH", SDT_PPCcondbr, [SDNPHasChain, SDNPOptInGlue]>; def PPClbrx : SDNode<"PPCISD::LBRX", SDT_PPClbrx, [SDNPHasChain, SDNPMayLoad]>; def PPCstbrx : SDNode<"PPCISD::STBRX", SDT_PPCstbrx, [SDNPHasChain, SDNPMayStore]>; // Instructions to support atomic operations def PPClarx : SDNode<"PPCISD::LARX", SDT_PPClarx, [SDNPHasChain, SDNPMayLoad]>; def PPCstcx : SDNode<"PPCISD::STCX", SDT_PPCstcx, [SDNPHasChain, SDNPMayStore]>; // Instructions to support dynamic alloca. def SDTDynOp : SDTypeProfile<1, 2, []>; def PPCdynalloc : SDNode<"PPCISD::DYNALLOC", SDTDynOp, [SDNPHasChain]>; //===----------------------------------------------------------------------===// // PowerPC specific transformation functions and pattern fragments. // def SHL32 : SDNodeXForm<imm, [{ // Transformation function: 31 - imm return getI32Imm(31 - N->getZExtValue()); }]>; def SRL32 : SDNodeXForm<imm, [{ // Transformation function: 32 - imm return N->getZExtValue() ? getI32Imm(32 - N->getZExtValue()) : getI32Imm(0); }]>; def LO16 : SDNodeXForm<imm, [{ // Transformation function: get the low 16 bits. return getI32Imm((unsigned short)N->getZExtValue()); }]>; def HI16 : SDNodeXForm<imm, [{ // Transformation function: shift the immediate value down into the low bits. return getI32Imm((unsigned)N->getZExtValue() >> 16); }]>; def HA16 : SDNodeXForm<imm, [{ // Transformation function: shift the immediate value down into the low bits. signed int Val = N->getZExtValue(); return getI32Imm((Val - (signed short)Val) >> 16); }]>; def MB : SDNodeXForm<imm, [{ // Transformation function: get the start bit of a mask unsigned mb = 0, me; (void)isRunOfOnes((unsigned)N->getZExtValue(), mb, me); return getI32Imm(mb); }]>; def ME : SDNodeXForm<imm, [{ // Transformation function: get the end bit of a mask unsigned mb, me = 0; (void)isRunOfOnes((unsigned)N->getZExtValue(), mb, me); return getI32Imm(me); }]>; def maskimm32 : PatLeaf<(imm), [{ // maskImm predicate - True if immediate is a run of ones. unsigned mb, me; if (N->getValueType(0) == MVT::i32) return isRunOfOnes((unsigned)N->getZExtValue(), mb, me); else return false; }]>; def immSExt16 : PatLeaf<(imm), [{ // immSExt16 predicate - True if the immediate fits in a 16-bit sign extended // field. Used by instructions like 'addi'. if (N->getValueType(0) == MVT::i32) return (int32_t)N->getZExtValue() == (short)N->getZExtValue(); else return (int64_t)N->getZExtValue() == (short)N->getZExtValue(); }]>; def immZExt16 : PatLeaf<(imm), [{ // immZExt16 predicate - True if the immediate fits in a 16-bit zero extended // field. Used by instructions like 'ori'. return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); }], LO16>; // imm16Shifted* - These match immediates where the low 16-bits are zero. There // are two forms: imm16ShiftedSExt and imm16ShiftedZExt. These two forms are // identical in 32-bit mode, but in 64-bit mode, they return true if the // immediate fits into a sign/zero extended 32-bit immediate (with the low bits // clear). def imm16ShiftedZExt : PatLeaf<(imm), [{ // imm16ShiftedZExt predicate - True if only bits in the top 16-bits of the // immediate are set. Used by instructions like 'xoris'. return (N->getZExtValue() & ~uint64_t(0xFFFF0000)) == 0; }], HI16>; def imm16ShiftedSExt : PatLeaf<(imm), [{ // imm16ShiftedSExt predicate - True if only bits in the top 16-bits of the // immediate are set. Used by instructions like 'addis'. Identical to // imm16ShiftedZExt in 32-bit mode. if (N->getZExtValue() & 0xFFFF) return false; if (N->getValueType(0) == MVT::i32) return true; // For 64-bit, make sure it is sext right. return N->getZExtValue() == (uint64_t)(int)N->getZExtValue(); }], HI16>; //===----------------------------------------------------------------------===// // PowerPC Flag Definitions. class isPPC64 { bit PPC64 = 1; } class isDOT { list<Register> Defs = [CR0]; bit RC = 1; } class RegConstraint<string C> { string Constraints = C; } class NoEncode<string E> { string DisableEncoding = E; } //===----------------------------------------------------------------------===// // PowerPC Operand Definitions. def s5imm : Operand<i32> { let PrintMethod = "printS5ImmOperand"; } def u5imm : Operand<i32> { let PrintMethod = "printU5ImmOperand"; } def u6imm : Operand<i32> { let PrintMethod = "printU6ImmOperand"; } def s16imm : Operand<i32> { let PrintMethod = "printS16ImmOperand"; } def u16imm : Operand<i32> { let PrintMethod = "printU16ImmOperand"; } def s16immX4 : Operand<i32> { // Multiply imm by 4 before printing. let PrintMethod = "printS16X4ImmOperand"; } def directbrtarget : Operand<OtherVT> { let PrintMethod = "printBranchOperand"; let EncoderMethod = "getDirectBrEncoding"; } def condbrtarget : Operand<OtherVT> { let PrintMethod = "printBranchOperand"; let EncoderMethod = "getCondBrEncoding"; } def calltarget : Operand<iPTR> { let EncoderMethod = "getDirectBrEncoding"; } def aaddr : Operand<iPTR> { let PrintMethod = "printAbsAddrOperand"; } def symbolHi: Operand<i32> { let PrintMethod = "printSymbolHi"; let EncoderMethod = "getHA16Encoding"; } def symbolLo: Operand<i32> { let PrintMethod = "printSymbolLo"; let EncoderMethod = "getLO16Encoding"; } def crbitm: Operand<i8> { let PrintMethod = "printcrbitm"; let EncoderMethod = "get_crbitm_encoding"; } // Address operands def memri : Operand<iPTR> { let PrintMethod = "printMemRegImm"; let MIOperandInfo = (ops i32imm:$imm, ptr_rc:$reg); let EncoderMethod = "getMemRIEncoding"; } def memrr : Operand<iPTR> { let PrintMethod = "printMemRegReg"; let MIOperandInfo = (ops ptr_rc, ptr_rc); } def memrix : Operand<iPTR> { // memri where the imm is shifted 2 bits. let PrintMethod = "printMemRegImmShifted"; let MIOperandInfo = (ops i32imm:$imm, ptr_rc:$reg); let EncoderMethod = "getMemRIXEncoding"; } def tocentry : Operand<iPTR> { let MIOperandInfo = (ops i32imm:$imm); } // PowerPC Predicate operand. 20 = (0<<5)|20 = always, CR0 is a dummy reg // that doesn't matter. def pred : PredicateOperand<OtherVT, (ops imm, CRRC), (ops (i32 20), (i32 zero_reg))> { let PrintMethod = "printPredicateOperand"; } // Define PowerPC specific addressing mode. def iaddr : ComplexPattern<iPTR, 2, "SelectAddrImm", [], []>; def xaddr : ComplexPattern<iPTR, 2, "SelectAddrIdx", [], []>; def xoaddr : ComplexPattern<iPTR, 2, "SelectAddrIdxOnly",[], []>; def ixaddr : ComplexPattern<iPTR, 2, "SelectAddrImmShift", [], []>; // "std" /// This is just the offset part of iaddr, used for preinc. def iaddroff : ComplexPattern<iPTR, 1, "SelectAddrImmOffs", [], []>; //===----------------------------------------------------------------------===// // PowerPC Instruction Predicate Definitions. def FPContractions : Predicate<"!TM.Options.NoExcessFPPrecision">; def In32BitMode : Predicate<"!PPCSubTarget.isPPC64()">; def In64BitMode : Predicate<"PPCSubTarget.isPPC64()">; def IsBookE : Predicate<"PPCSubTarget.isBookE()">; //===----------------------------------------------------------------------===// // PowerPC Instruction Definitions. // Pseudo-instructions: let hasCtrlDep = 1 in { let Defs = [R1], Uses = [R1] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm:$amt), "", [(callseq_start timm:$amt)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm:$amt1, u16imm:$amt2), "", [(callseq_end timm:$amt1, timm:$amt2)]>; } def UPDATE_VRSAVE : Pseudo<(outs GPRC:$rD), (ins GPRC:$rS), "UPDATE_VRSAVE $rD, $rS", []>; } let Defs = [R1], Uses = [R1] in def DYNALLOC : Pseudo<(outs GPRC:$result), (ins GPRC:$negsize, memri:$fpsi), "", [(set GPRC:$result, (PPCdynalloc GPRC:$negsize, iaddr:$fpsi))]>; // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after // instruction selection into a branch sequence. let usesCustomInserter = 1, // Expanded after instruction selection. PPC970_Single = 1 in { def SELECT_CC_I4 : Pseudo<(outs GPRC:$dst), (ins CRRC:$cond, GPRC:$T, GPRC:$F, i32imm:$BROPC), "", []>; def SELECT_CC_I8 : Pseudo<(outs G8RC:$dst), (ins CRRC:$cond, G8RC:$T, G8RC:$F, i32imm:$BROPC), "", []>; def SELECT_CC_F4 : Pseudo<(outs F4RC:$dst), (ins CRRC:$cond, F4RC:$T, F4RC:$F, i32imm:$BROPC), "", []>; def SELECT_CC_F8 : Pseudo<(outs F8RC:$dst), (ins CRRC:$cond, F8RC:$T, F8RC:$F, i32imm:$BROPC), "", []>; def SELECT_CC_VRRC: Pseudo<(outs VRRC:$dst), (ins CRRC:$cond, VRRC:$T, VRRC:$F, i32imm:$BROPC), "", []>; } // SPILL_CR - Indicate that we're dumping the CR register, so we'll need to // scavenge a register for it. let mayStore = 1 in def SPILL_CR : Pseudo<(outs), (ins CRRC:$cond, memri:$F), "", []>; // RESTORE_CR - Indicate that we're restoring the CR register (previously // spilled), so we'll need to scavenge a register for it. let mayLoad = 1 in def RESTORE_CR : Pseudo<(outs CRRC:$cond), (ins memri:$F), "", []>; let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7 in { let isReturn = 1, Uses = [LR, RM] in def BLR : XLForm_2_br<19, 16, 0, (outs), (ins pred:$p), "b${p:cc}lr ${p:reg}", BrB, [(retflag)]>; let isBranch = 1, isIndirectBranch = 1, Uses = [CTR] in def BCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", BrB, []>; } let Defs = [LR] in def MovePCtoLR : Pseudo<(outs), (ins), "", []>, PPC970_Unit_BRU; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7 in { let isBarrier = 1 in { def B : IForm<18, 0, 0, (outs), (ins directbrtarget:$dst), "b $dst", BrB, [(br bb:$dst)]>; } // BCC represents an arbitrary conditional branch on a predicate. // FIXME: should be able to write a pattern for PPCcondbranch, but can't use // a two-value operand where a dag node expects two operands. :( def BCC : BForm<16, 0, 0, (outs), (ins pred:$cond, condbrtarget:$dst), "b${cond:cc} ${cond:reg}, $dst" /*[(PPCcondbranch CRRC:$crS, imm:$opc, bb:$dst)]*/>; } // Darwin ABI Calls. let isCall = 1, PPC970_Unit = 7, Defs = [LR] in { // Convenient aliases for call instructions let Uses = [RM] in { def BL_Darwin : IForm<18, 0, 1, (outs), (ins calltarget:$func, variable_ops), "bl $func", BrB, []>; // See Pat patterns below. def BLA_Darwin : IForm<18, 1, 1, (outs), (ins aaddr:$func, variable_ops), "bla $func", BrB, [(PPCcall_Darwin (i32 imm:$func))]>; } let Uses = [CTR, RM] in { def BCTRL_Darwin : XLForm_2_ext<19, 528, 20, 0, 1, (outs), (ins variable_ops), "bctrl", BrB, [(PPCbctrl_Darwin)]>, Requires<[In32BitMode]>; } } // SVR4 ABI Calls. let isCall = 1, PPC970_Unit = 7, Defs = [LR] in { // Convenient aliases for call instructions let Uses = [RM] in { def BL_SVR4 : IForm<18, 0, 1, (outs), (ins calltarget:$func, variable_ops), "bl $func", BrB, []>; // See Pat patterns below. def BLA_SVR4 : IForm<18, 1, 1, (outs), (ins aaddr:$func, variable_ops), "bla $func", BrB, [(PPCcall_SVR4 (i32 imm:$func))]>; } let Uses = [CTR, RM] in { def BCTRL_SVR4 : XLForm_2_ext<19, 528, 20, 0, 1, (outs), (ins variable_ops), "bctrl", BrB, [(PPCbctrl_SVR4)]>, Requires<[In32BitMode]>; } } let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNdi :Pseudo< (outs), (ins calltarget:$dst, i32imm:$offset, variable_ops), "#TC_RETURNd $dst $offset", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNai :Pseudo<(outs), (ins aaddr:$func, i32imm:$offset, variable_ops), "#TC_RETURNa $func $offset", [(PPCtc_return (i32 imm:$func), imm:$offset)]>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNri : Pseudo<(outs), (ins CTRRC:$dst, i32imm:$offset, variable_ops), "#TC_RETURNr $dst $offset", []>; let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7, isBranch = 1, isIndirectBranch = 1, isCall = 1, isReturn = 1, Uses = [CTR, RM] in def TAILBCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", BrB, []>, Requires<[In32BitMode]>; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7, isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in def TAILB : IForm<18, 0, 0, (outs), (ins calltarget:$dst), "b $dst", BrB, []>; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7, isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in def TAILBA : IForm<18, 0, 0, (outs), (ins aaddr:$dst), "ba $dst", BrB, []>; // DCB* instructions. def DCBA : DCB_Form<758, 0, (outs), (ins memrr:$dst), "dcba $dst", LdStDCBF, [(int_ppc_dcba xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBF : DCB_Form<86, 0, (outs), (ins memrr:$dst), "dcbf $dst", LdStDCBF, [(int_ppc_dcbf xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBI : DCB_Form<470, 0, (outs), (ins memrr:$dst), "dcbi $dst", LdStDCBF, [(int_ppc_dcbi xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBST : DCB_Form<54, 0, (outs), (ins memrr:$dst), "dcbst $dst", LdStDCBF, [(int_ppc_dcbst xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBT : DCB_Form<278, 0, (outs), (ins memrr:$dst), "dcbt $dst", LdStDCBF, [(int_ppc_dcbt xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBTST : DCB_Form<246, 0, (outs), (ins memrr:$dst), "dcbtst $dst", LdStDCBF, [(int_ppc_dcbtst xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBZ : DCB_Form<1014, 0, (outs), (ins memrr:$dst), "dcbz $dst", LdStDCBF, [(int_ppc_dcbz xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBZL : DCB_Form<1014, 1, (outs), (ins memrr:$dst), "dcbzl $dst", LdStDCBF, [(int_ppc_dcbzl xoaddr:$dst)]>, PPC970_DGroup_Single; def : Pat<(prefetch xoaddr:$dst, (i32 0), imm, (i32 1)), (DCBT xoaddr:$dst)>; // Atomic operations let usesCustomInserter = 1 in { let Defs = [CR0] in { def ATOMIC_LOAD_ADD_I8 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_add_8 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_SUB_I8 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_sub_8 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_AND_I8 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_and_8 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_OR_I8 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_or_8 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_XOR_I8 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_xor_8 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_NAND_I8 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_nand_8 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_ADD_I16 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_add_16 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_SUB_I16 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_sub_16 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_AND_I16 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_and_16 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_OR_I16 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_or_16 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_XOR_I16 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_xor_16 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_NAND_I16 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_nand_16 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_ADD_I32 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_add_32 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_SUB_I32 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_sub_32 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_AND_I32 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_and_32 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_OR_I32 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_or_32 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_XOR_I32 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_xor_32 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_LOAD_NAND_I32 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "", [(set GPRC:$dst, (atomic_load_nand_32 xoaddr:$ptr, GPRC:$incr))]>; def ATOMIC_CMP_SWAP_I8 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$old, GPRC:$new), "", [(set GPRC:$dst, (atomic_cmp_swap_8 xoaddr:$ptr, GPRC:$old, GPRC:$new))]>; def ATOMIC_CMP_SWAP_I16 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$old, GPRC:$new), "", [(set GPRC:$dst, (atomic_cmp_swap_16 xoaddr:$ptr, GPRC:$old, GPRC:$new))]>; def ATOMIC_CMP_SWAP_I32 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$old, GPRC:$new), "", [(set GPRC:$dst, (atomic_cmp_swap_32 xoaddr:$ptr, GPRC:$old, GPRC:$new))]>; def ATOMIC_SWAP_I8 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$new), "", [(set GPRC:$dst, (atomic_swap_8 xoaddr:$ptr, GPRC:$new))]>; def ATOMIC_SWAP_I16 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$new), "", [(set GPRC:$dst, (atomic_swap_16 xoaddr:$ptr, GPRC:$new))]>; def ATOMIC_SWAP_I32 : Pseudo< (outs GPRC:$dst), (ins memrr:$ptr, GPRC:$new), "", [(set GPRC:$dst, (atomic_swap_32 xoaddr:$ptr, GPRC:$new))]>; } } // Instructions to support atomic operations def LWARX : XForm_1<31, 20, (outs GPRC:$rD), (ins memrr:$src), "lwarx $rD, $src", LdStLWARX, [(set GPRC:$rD, (PPClarx xoaddr:$src))]>; let Defs = [CR0] in def STWCX : XForm_1<31, 150, (outs), (ins GPRC:$rS, memrr:$dst), "stwcx. $rS, $dst", LdStSTWCX, [(PPCstcx GPRC:$rS, xoaddr:$dst)]>, isDOT; let isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in def TRAP : XForm_24<31, 4, (outs), (ins), "trap", LdStLoad, [(trap)]>; //===----------------------------------------------------------------------===// // PPC32 Load Instructions. // // Unindexed (r+i) Loads. let canFoldAsLoad = 1, PPC970_Unit = 2 in { def LBZ : DForm_1<34, (outs GPRC:$rD), (ins memri:$src), "lbz $rD, $src", LdStLoad, [(set GPRC:$rD, (zextloadi8 iaddr:$src))]>; def LHA : DForm_1<42, (outs GPRC:$rD), (ins memri:$src), "lha $rD, $src", LdStLHA, [(set GPRC:$rD, (sextloadi16 iaddr:$src))]>, PPC970_DGroup_Cracked; def LHZ : DForm_1<40, (outs GPRC:$rD), (ins memri:$src), "lhz $rD, $src", LdStLoad, [(set GPRC:$rD, (zextloadi16 iaddr:$src))]>; def LWZ : DForm_1<32, (outs GPRC:$rD), (ins memri:$src), "lwz $rD, $src", LdStLoad, [(set GPRC:$rD, (load iaddr:$src))]>; def LFS : DForm_1<48, (outs F4RC:$rD), (ins memri:$src), "lfs $rD, $src", LdStLFDU, [(set F4RC:$rD, (load iaddr:$src))]>; def LFD : DForm_1<50, (outs F8RC:$rD), (ins memri:$src), "lfd $rD, $src", LdStLFD, [(set F8RC:$rD, (load iaddr:$src))]>; // Unindexed (r+i) Loads with Update (preinc). let mayLoad = 1 in { def LBZU : DForm_1<35, (outs GPRC:$rD, ptr_rc:$ea_result), (ins memri:$addr), "lbzu $rD, $addr", LdStLoad, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LHAU : DForm_1<43, (outs GPRC:$rD, ptr_rc:$ea_result), (ins memri:$addr), "lhau $rD, $addr", LdStLoad, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LHZU : DForm_1<41, (outs GPRC:$rD, ptr_rc:$ea_result), (ins memri:$addr), "lhzu $rD, $addr", LdStLoad, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LWZU : DForm_1<33, (outs GPRC:$rD, ptr_rc:$ea_result), (ins memri:$addr), "lwzu $rD, $addr", LdStLoad, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LFSU : DForm_1<49, (outs F4RC:$rD, ptr_rc:$ea_result), (ins memri:$addr), "lfs $rD, $addr", LdStLFDU, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LFDU : DForm_1<51, (outs F8RC:$rD, ptr_rc:$ea_result), (ins memri:$addr), "lfd $rD, $addr", LdStLFD, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; } } // Indexed (r+r) Loads. // let canFoldAsLoad = 1, PPC970_Unit = 2 in { def LBZX : XForm_1<31, 87, (outs GPRC:$rD), (ins memrr:$src), "lbzx $rD, $src", LdStLoad, [(set GPRC:$rD, (zextloadi8 xaddr:$src))]>; def LHAX : XForm_1<31, 343, (outs GPRC:$rD), (ins memrr:$src), "lhax $rD, $src", LdStLHA, [(set GPRC:$rD, (sextloadi16 xaddr:$src))]>, PPC970_DGroup_Cracked; def LHZX : XForm_1<31, 279, (outs GPRC:$rD), (ins memrr:$src), "lhzx $rD, $src", LdStLoad, [(set GPRC:$rD, (zextloadi16 xaddr:$src))]>; def LWZX : XForm_1<31, 23, (outs GPRC:$rD), (ins memrr:$src), "lwzx $rD, $src", LdStLoad, [(set GPRC:$rD, (load xaddr:$src))]>; def LHBRX : XForm_1<31, 790, (outs GPRC:$rD), (ins memrr:$src), "lhbrx $rD, $src", LdStLoad, [(set GPRC:$rD, (PPClbrx xoaddr:$src, i16))]>; def LWBRX : XForm_1<31, 534, (outs GPRC:$rD), (ins memrr:$src), "lwbrx $rD, $src", LdStLoad, [(set GPRC:$rD, (PPClbrx xoaddr:$src, i32))]>; def LFSX : XForm_25<31, 535, (outs F4RC:$frD), (ins memrr:$src), "lfsx $frD, $src", LdStLFDU, [(set F4RC:$frD, (load xaddr:$src))]>; def LFDX : XForm_25<31, 599, (outs F8RC:$frD), (ins memrr:$src), "lfdx $frD, $src", LdStLFDU, [(set F8RC:$frD, (load xaddr:$src))]>; } //===----------------------------------------------------------------------===// // PPC32 Store Instructions. // // Unindexed (r+i) Stores. let PPC970_Unit = 2 in { def STB : DForm_1<38, (outs), (ins GPRC:$rS, memri:$src), "stb $rS, $src", LdStStore, [(truncstorei8 GPRC:$rS, iaddr:$src)]>; def STH : DForm_1<44, (outs), (ins GPRC:$rS, memri:$src), "sth $rS, $src", LdStStore, [(truncstorei16 GPRC:$rS, iaddr:$src)]>; def STW : DForm_1<36, (outs), (ins GPRC:$rS, memri:$src), "stw $rS, $src", LdStStore, [(store GPRC:$rS, iaddr:$src)]>; def STFS : DForm_1<52, (outs), (ins F4RC:$rS, memri:$dst), "stfs $rS, $dst", LdStUX, [(store F4RC:$rS, iaddr:$dst)]>; def STFD : DForm_1<54, (outs), (ins F8RC:$rS, memri:$dst), "stfd $rS, $dst", LdStUX, [(store F8RC:$rS, iaddr:$dst)]>; } // Unindexed (r+i) Stores with Update (preinc). let PPC970_Unit = 2 in { def STBU : DForm_1a<39, (outs ptr_rc:$ea_res), (ins GPRC:$rS, symbolLo:$ptroff, ptr_rc:$ptrreg), "stbu $rS, $ptroff($ptrreg)", LdStStore, [(set ptr_rc:$ea_res, (pre_truncsti8 GPRC:$rS, ptr_rc:$ptrreg, iaddroff:$ptroff))]>, RegConstraint<"$ptrreg = $ea_res">, NoEncode<"$ea_res">; def STHU : DForm_1a<45, (outs ptr_rc:$ea_res), (ins GPRC:$rS, symbolLo:$ptroff, ptr_rc:$ptrreg), "sthu $rS, $ptroff($ptrreg)", LdStStore, [(set ptr_rc:$ea_res, (pre_truncsti16 GPRC:$rS, ptr_rc:$ptrreg, iaddroff:$ptroff))]>, RegConstraint<"$ptrreg = $ea_res">, NoEncode<"$ea_res">; def STWU : DForm_1a<37, (outs ptr_rc:$ea_res), (ins GPRC:$rS, symbolLo:$ptroff, ptr_rc:$ptrreg), "stwu $rS, $ptroff($ptrreg)", LdStStore, [(set ptr_rc:$ea_res, (pre_store GPRC:$rS, ptr_rc:$ptrreg, iaddroff:$ptroff))]>, RegConstraint<"$ptrreg = $ea_res">, NoEncode<"$ea_res">; def STFSU : DForm_1a<37, (outs ptr_rc:$ea_res), (ins F4RC:$rS, symbolLo:$ptroff, ptr_rc:$ptrreg), "stfsu $rS, $ptroff($ptrreg)", LdStStore, [(set ptr_rc:$ea_res, (pre_store F4RC:$rS, ptr_rc:$ptrreg, iaddroff:$ptroff))]>, RegConstraint<"$ptrreg = $ea_res">, NoEncode<"$ea_res">; def STFDU : DForm_1a<37, (outs ptr_rc:$ea_res), (ins F8RC:$rS, symbolLo:$ptroff, ptr_rc:$ptrreg), "stfdu $rS, $ptroff($ptrreg)", LdStStore, [(set ptr_rc:$ea_res, (pre_store F8RC:$rS, ptr_rc:$ptrreg, iaddroff:$ptroff))]>, RegConstraint<"$ptrreg = $ea_res">, NoEncode<"$ea_res">; } // Indexed (r+r) Stores. // let PPC970_Unit = 2 in { def STBX : XForm_8<31, 215, (outs), (ins GPRC:$rS, memrr:$dst), "stbx $rS, $dst", LdStStore, [(truncstorei8 GPRC:$rS, xaddr:$dst)]>, PPC970_DGroup_Cracked; def STHX : XForm_8<31, 407, (outs), (ins GPRC:$rS, memrr:$dst), "sthx $rS, $dst", LdStStore, [(truncstorei16 GPRC:$rS, xaddr:$dst)]>, PPC970_DGroup_Cracked; def STWX : XForm_8<31, 151, (outs), (ins GPRC:$rS, memrr:$dst), "stwx $rS, $dst", LdStStore, [(store GPRC:$rS, xaddr:$dst)]>, PPC970_DGroup_Cracked; let mayStore = 1 in { def STWUX : XForm_8<31, 183, (outs), (ins GPRC:$rS, GPRC:$rA, GPRC:$rB), "stwux $rS, $rA, $rB", LdStStore, []>; } def STHBRX: XForm_8<31, 918, (outs), (ins GPRC:$rS, memrr:$dst), "sthbrx $rS, $dst", LdStStore, [(PPCstbrx GPRC:$rS, xoaddr:$dst, i16)]>, PPC970_DGroup_Cracked; def STWBRX: XForm_8<31, 662, (outs), (ins GPRC:$rS, memrr:$dst), "stwbrx $rS, $dst", LdStStore, [(PPCstbrx GPRC:$rS, xoaddr:$dst, i32)]>, PPC970_DGroup_Cracked; def STFIWX: XForm_28<31, 983, (outs), (ins F8RC:$frS, memrr:$dst), "stfiwx $frS, $dst", LdStUX, [(PPCstfiwx F8RC:$frS, xoaddr:$dst)]>; def STFSX : XForm_28<31, 663, (outs), (ins F4RC:$frS, memrr:$dst), "stfsx $frS, $dst", LdStUX, [(store F4RC:$frS, xaddr:$dst)]>; def STFDX : XForm_28<31, 727, (outs), (ins F8RC:$frS, memrr:$dst), "stfdx $frS, $dst", LdStUX, [(store F8RC:$frS, xaddr:$dst)]>; } def SYNC : XForm_24_sync<31, 598, (outs), (ins), "sync", LdStSync, [(int_ppc_sync)]>; //===----------------------------------------------------------------------===// // PPC32 Arithmetic Instructions. // let PPC970_Unit = 1 in { // FXU Operations. def ADDI : DForm_2<14, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm), "addi $rD, $rA, $imm", IntGeneral, [(set GPRC:$rD, (add GPRC:$rA, immSExt16:$imm))]>; let Defs = [CARRY] in { def ADDIC : DForm_2<12, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm), "addic $rD, $rA, $imm", IntGeneral, [(set GPRC:$rD, (addc GPRC:$rA, immSExt16:$imm))]>, PPC970_DGroup_Cracked; def ADDICo : DForm_2<13, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm), "addic. $rD, $rA, $imm", IntGeneral, []>; } def ADDIS : DForm_2<15, (outs GPRC:$rD), (ins GPRC:$rA, symbolHi:$imm), "addis $rD, $rA, $imm", IntGeneral, [(set GPRC:$rD, (add GPRC:$rA, imm16ShiftedSExt:$imm))]>; def LA : DForm_2<14, (outs GPRC:$rD), (ins GPRC:$rA, symbolLo:$sym), "la $rD, $sym($rA)", IntGeneral, [(set GPRC:$rD, (add GPRC:$rA, (PPClo tglobaladdr:$sym, 0)))]>; def MULLI : DForm_2< 7, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm), "mulli $rD, $rA, $imm", IntMulLI, [(set GPRC:$rD, (mul GPRC:$rA, immSExt16:$imm))]>; let Defs = [CARRY] in { def SUBFIC : DForm_2< 8, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm), "subfic $rD, $rA, $imm", IntGeneral, [(set GPRC:$rD, (subc immSExt16:$imm, GPRC:$rA))]>; } let isReMaterializable = 1 in { def LI : DForm_2_r0<14, (outs GPRC:$rD), (ins symbolLo:$imm), "li $rD, $imm", IntGeneral, [(set GPRC:$rD, immSExt16:$imm)]>; def LIS : DForm_2_r0<15, (outs GPRC:$rD), (ins symbolHi:$imm), "lis $rD, $imm", IntGeneral, [(set GPRC:$rD, imm16ShiftedSExt:$imm)]>; } } let PPC970_Unit = 1 in { // FXU Operations. def ANDIo : DForm_4<28, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2), "andi. $dst, $src1, $src2", IntGeneral, [(set GPRC:$dst, (and GPRC:$src1, immZExt16:$src2))]>, isDOT; def ANDISo : DForm_4<29, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2), "andis. $dst, $src1, $src2", IntGeneral, [(set GPRC:$dst, (and GPRC:$src1,imm16ShiftedZExt:$src2))]>, isDOT; def ORI : DForm_4<24, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2), "ori $dst, $src1, $src2", IntGeneral, [(set GPRC:$dst, (or GPRC:$src1, immZExt16:$src2))]>; def ORIS : DForm_4<25, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2), "oris $dst, $src1, $src2", IntGeneral, [(set GPRC:$dst, (or GPRC:$src1, imm16ShiftedZExt:$src2))]>; def XORI : DForm_4<26, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2), "xori $dst, $src1, $src2", IntGeneral, [(set GPRC:$dst, (xor GPRC:$src1, immZExt16:$src2))]>; def XORIS : DForm_4<27, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2), "xoris $dst, $src1, $src2", IntGeneral, [(set GPRC:$dst, (xor GPRC:$src1,imm16ShiftedZExt:$src2))]>; def NOP : DForm_4_zero<24, (outs), (ins), "nop", IntGeneral, []>; def CMPWI : DForm_5_ext<11, (outs CRRC:$crD), (ins GPRC:$rA, s16imm:$imm), "cmpwi $crD, $rA, $imm", IntCompare>; def CMPLWI : DForm_6_ext<10, (outs CRRC:$dst), (ins GPRC:$src1, u16imm:$src2), "cmplwi $dst, $src1, $src2", IntCompare>; } let PPC970_Unit = 1 in { // FXU Operations. def NAND : XForm_6<31, 476, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB), "nand $rA, $rS, $rB", IntGeneral, [(set GPRC:$rA, (not (and GPRC:$rS, GPRC:$rB)))]>; def AND : XForm_6<31, 28, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB), "and $rA, $rS, $rB", IntGeneral, [(set GPRC:$rA, (and GPRC:$rS, GPRC:$rB))]>; def ANDC : XForm_6<31, 60, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB), "andc $rA, $rS, $rB", IntGeneral, [(set GPRC:$rA, (and GPRC:$rS, (not GPRC:$rB)))]>; def OR : XForm_6<31, 444, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB), "or $rA, $rS, $rB", IntGeneral, [(set GPRC:$rA, (or GPRC:$rS, GPRC:$rB))]>; def NOR : XForm_6<31, 124, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB), "nor $rA, $rS, $rB", IntGeneral, [(set GPRC:$rA, (not (or GPRC:$rS, GPRC:$rB)))]>; def ORC : XForm_6<31, 412, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB), "orc $rA, $rS, $rB", IntGeneral, [(set GPRC:$rA, (or GPRC:$rS, (not GPRC:$rB)))]>; def EQV : XForm_6<31, 284, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB), "eqv $rA, $rS, $rB", IntGeneral, [(set GPRC:$rA, (not (xor GPRC:$rS, GPRC:$rB)))]>; def XOR : XForm_6<31, 316, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB), "xor $rA, $rS, $rB", IntGeneral, [(set GPRC:$rA, (xor GPRC:$rS, GPRC:$rB))]>; def SLW : XForm_6<31, 24, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB), "slw $rA, $rS, $rB", IntGeneral, [(set GPRC:$rA, (PPCshl GPRC:$rS, GPRC:$rB))]>; def SRW : XForm_6<31, 536, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB), "srw $rA, $rS, $rB", IntGeneral, [(set GPRC:$rA, (PPCsrl GPRC:$rS, GPRC:$rB))]>; let Defs = [CARRY] in { def SRAW : XForm_6<31, 792, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB), "sraw $rA, $rS, $rB", IntShift, [(set GPRC:$rA, (PPCsra GPRC:$rS, GPRC:$rB))]>; } } let PPC970_Unit = 1 in { // FXU Operations. let Defs = [CARRY] in { def SRAWI : XForm_10<31, 824, (outs GPRC:$rA), (ins GPRC:$rS, u5imm:$SH), "srawi $rA, $rS, $SH", IntShift, [(set GPRC:$rA, (sra GPRC:$rS, (i32 imm:$SH)))]>; } def CNTLZW : XForm_11<31, 26, (outs GPRC:$rA), (ins GPRC:$rS), "cntlzw $rA, $rS", IntGeneral, [(set GPRC:$rA, (ctlz GPRC:$rS))]>; def EXTSB : XForm_11<31, 954, (outs GPRC:$rA), (ins GPRC:$rS), "extsb $rA, $rS", IntGeneral, [(set GPRC:$rA, (sext_inreg GPRC:$rS, i8))]>; def EXTSH : XForm_11<31, 922, (outs GPRC:$rA), (ins GPRC:$rS), "extsh $rA, $rS", IntGeneral, [(set GPRC:$rA, (sext_inreg GPRC:$rS, i16))]>; def CMPW : XForm_16_ext<31, 0, (outs CRRC:$crD), (ins GPRC:$rA, GPRC:$rB), "cmpw $crD, $rA, $rB", IntCompare>; def CMPLW : XForm_16_ext<31, 32, (outs CRRC:$crD), (ins GPRC:$rA, GPRC:$rB), "cmplw $crD, $rA, $rB", IntCompare>; } let PPC970_Unit = 3 in { // FPU Operations. //def FCMPO : XForm_17<63, 32, (outs CRRC:$crD), (ins FPRC:$fA, FPRC:$fB), // "fcmpo $crD, $fA, $fB", FPCompare>; def FCMPUS : XForm_17<63, 0, (outs CRRC:$crD), (ins F4RC:$fA, F4RC:$fB), "fcmpu $crD, $fA, $fB", FPCompare>; def FCMPUD : XForm_17<63, 0, (outs CRRC:$crD), (ins F8RC:$fA, F8RC:$fB), "fcmpu $crD, $fA, $fB", FPCompare>; let Uses = [RM] in { def FCTIWZ : XForm_26<63, 15, (outs F8RC:$frD), (ins F8RC:$frB), "fctiwz $frD, $frB", FPGeneral, [(set F8RC:$frD, (PPCfctiwz F8RC:$frB))]>; def FRSP : XForm_26<63, 12, (outs F4RC:$frD), (ins F8RC:$frB), "frsp $frD, $frB", FPGeneral, [(set F4RC:$frD, (fround F8RC:$frB))]>; def FSQRT : XForm_26<63, 22, (outs F8RC:$frD), (ins F8RC:$frB), "fsqrt $frD, $frB", FPSqrt, [(set F8RC:$frD, (fsqrt F8RC:$frB))]>; def FSQRTS : XForm_26<59, 22, (outs F4RC:$frD), (ins F4RC:$frB), "fsqrts $frD, $frB", FPSqrt, [(set F4RC:$frD, (fsqrt F4RC:$frB))]>; } } /// Note that FMR is defined as pseudo-ops on the PPC970 because they are /// often coalesced away and we don't want the dispatch group builder to think /// that they will fill slots (which could cause the load of a LSU reject to /// sneak into a d-group with a store). def FMR : XForm_26<63, 72, (outs F4RC:$frD), (ins F4RC:$frB), "fmr $frD, $frB", FPGeneral, []>, // (set F4RC:$frD, F4RC:$frB) PPC970_Unit_Pseudo; let PPC970_Unit = 3 in { // FPU Operations. // These are artificially split into two different forms, for 4/8 byte FP. def FABSS : XForm_26<63, 264, (outs F4RC:$frD), (ins F4RC:$frB), "fabs $frD, $frB", FPGeneral, [(set F4RC:$frD, (fabs F4RC:$frB))]>; def FABSD : XForm_26<63, 264, (outs F8RC:$frD), (ins F8RC:$frB), "fabs $frD, $frB", FPGeneral, [(set F8RC:$frD, (fabs F8RC:$frB))]>; def FNABSS : XForm_26<63, 136, (outs F4RC:$frD), (ins F4RC:$frB), "fnabs $frD, $frB", FPGeneral, [(set F4RC:$frD, (fneg (fabs F4RC:$frB)))]>; def FNABSD : XForm_26<63, 136, (outs F8RC:$frD), (ins F8RC:$frB), "fnabs $frD, $frB", FPGeneral, [(set F8RC:$frD, (fneg (fabs F8RC:$frB)))]>; def FNEGS : XForm_26<63, 40, (outs F4RC:$frD), (ins F4RC:$frB), "fneg $frD, $frB", FPGeneral, [(set F4RC:$frD, (fneg F4RC:$frB))]>; def FNEGD : XForm_26<63, 40, (outs F8RC:$frD), (ins F8RC:$frB), "fneg $frD, $frB", FPGeneral, [(set F8RC:$frD, (fneg F8RC:$frB))]>; } // XL-Form instructions. condition register logical ops. // def MCRF : XLForm_3<19, 0, (outs CRRC:$BF), (ins CRRC:$BFA), "mcrf $BF, $BFA", BrMCR>, PPC970_DGroup_First, PPC970_Unit_CRU; def CREQV : XLForm_1<19, 289, (outs CRBITRC:$CRD), (ins CRBITRC:$CRA, CRBITRC:$CRB), "creqv $CRD, $CRA, $CRB", BrCR, []>; def CROR : XLForm_1<19, 449, (outs CRBITRC:$CRD), (ins CRBITRC:$CRA, CRBITRC:$CRB), "cror $CRD, $CRA, $CRB", BrCR, []>; def CRSET : XLForm_1_ext<19, 289, (outs CRBITRC:$dst), (ins), "creqv $dst, $dst, $dst", BrCR, []>; def CRUNSET: XLForm_1_ext<19, 193, (outs CRBITRC:$dst), (ins), "crxor $dst, $dst, $dst", BrCR, []>; // XFX-Form instructions. Instructions that deal with SPRs. // let Uses = [CTR] in { def MFCTR : XFXForm_1_ext<31, 339, 9, (outs GPRC:$rT), (ins), "mfctr $rT", SprMFSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let Defs = [CTR], Pattern = [(PPCmtctr GPRC:$rS)] in { def MTCTR : XFXForm_7_ext<31, 467, 9, (outs), (ins GPRC:$rS), "mtctr $rS", SprMTSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let Defs = [LR] in { def MTLR : XFXForm_7_ext<31, 467, 8, (outs), (ins GPRC:$rS), "mtlr $rS", SprMTSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let Uses = [LR] in { def MFLR : XFXForm_1_ext<31, 339, 8, (outs GPRC:$rT), (ins), "mflr $rT", SprMFSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } // Move to/from VRSAVE: despite being a SPR, the VRSAVE register is renamed like // a GPR on the PPC970. As such, copies in and out have the same performance // characteristics as an OR instruction. def MTVRSAVE : XFXForm_7_ext<31, 467, 256, (outs), (ins GPRC:$rS), "mtspr 256, $rS", IntGeneral>, PPC970_DGroup_Single, PPC970_Unit_FXU; def MFVRSAVE : XFXForm_1_ext<31, 339, 256, (outs GPRC:$rT), (ins), "mfspr $rT, 256", IntGeneral>, PPC970_DGroup_First, PPC970_Unit_FXU; def MTCRF : XFXForm_5<31, 144, (outs crbitm:$FXM), (ins GPRC:$rS), "mtcrf $FXM, $rS", BrMCRX>, PPC970_MicroCode, PPC970_Unit_CRU; // This is a pseudo for MFCR, which implicitly uses all 8 of its subregisters; // declaring that here gives the local register allocator problems with this: // vreg = MCRF CR0 // MFCR <kill of whatever preg got assigned to vreg> // while not declaring it breaks DeadMachineInstructionElimination. // As it turns out, in all cases where we currently use this, // we're only interested in one subregister of it. Represent this in the // instruction to keep the register allocator from becoming confused. // // FIXME: Make this a real Pseudo instruction when the JIT switches to MC. def MFCRpseud: XFXForm_3<31, 19, (outs GPRC:$rT), (ins crbitm:$FXM), "", SprMFCR>, PPC970_MicroCode, PPC970_Unit_CRU; def MFCR : XFXForm_3<31, 19, (outs GPRC:$rT), (ins), "mfcr $rT", SprMFCR>, PPC970_MicroCode, PPC970_Unit_CRU; def MFOCRF: XFXForm_5a<31, 19, (outs GPRC:$rT), (ins crbitm:$FXM), "mfcr $rT, $FXM", SprMFCR>, PPC970_DGroup_First, PPC970_Unit_CRU; // Instructions to manipulate FPSCR. Only long double handling uses these. // FPSCR is not modelled; we use the SDNode Flag to keep things in order. let Uses = [RM], Defs = [RM] in { def MTFSB0 : XForm_43<63, 70, (outs), (ins u5imm:$FM), "mtfsb0 $FM", IntMTFSB0, [(PPCmtfsb0 (i32 imm:$FM))]>, PPC970_DGroup_Single, PPC970_Unit_FPU; def MTFSB1 : XForm_43<63, 38, (outs), (ins u5imm:$FM), "mtfsb1 $FM", IntMTFSB0, [(PPCmtfsb1 (i32 imm:$FM))]>, PPC970_DGroup_Single, PPC970_Unit_FPU; // MTFSF does not actually produce an FP result. We pretend it copies // input reg B to the output. If we didn't do this it would look like the // instruction had no outputs (because we aren't modelling the FPSCR) and // it would be deleted. def MTFSF : XFLForm<63, 711, (outs F8RC:$FRA), (ins i32imm:$FM, F8RC:$rT, F8RC:$FRB), "mtfsf $FM, $rT", "$FRB = $FRA", IntMTFSB0, [(set F8RC:$FRA, (PPCmtfsf (i32 imm:$FM), F8RC:$rT, F8RC:$FRB))]>, PPC970_DGroup_Single, PPC970_Unit_FPU; } let Uses = [RM] in { def MFFS : XForm_42<63, 583, (outs F8RC:$rT), (ins), "mffs $rT", IntMFFS, [(set F8RC:$rT, (PPCmffs))]>, PPC970_DGroup_Single, PPC970_Unit_FPU; def FADDrtz: AForm_2<63, 21, (outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB), "fadd $FRT, $FRA, $FRB", FPGeneral, [(set F8RC:$FRT, (PPCfaddrtz F8RC:$FRA, F8RC:$FRB))]>, PPC970_DGroup_Single, PPC970_Unit_FPU; } let PPC970_Unit = 1 in { // FXU Operations. // XO-Form instructions. Arithmetic instructions that can set overflow bit // def ADD4 : XOForm_1<31, 266, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "add $rT, $rA, $rB", IntGeneral, [(set GPRC:$rT, (add GPRC:$rA, GPRC:$rB))]>; let Defs = [CARRY] in { def ADDC : XOForm_1<31, 10, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "addc $rT, $rA, $rB", IntGeneral, [(set GPRC:$rT, (addc GPRC:$rA, GPRC:$rB))]>, PPC970_DGroup_Cracked; } def DIVW : XOForm_1<31, 491, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "divw $rT, $rA, $rB", IntDivW, [(set GPRC:$rT, (sdiv GPRC:$rA, GPRC:$rB))]>, PPC970_DGroup_First, PPC970_DGroup_Cracked; def DIVWU : XOForm_1<31, 459, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "divwu $rT, $rA, $rB", IntDivW, [(set GPRC:$rT, (udiv GPRC:$rA, GPRC:$rB))]>, PPC970_DGroup_First, PPC970_DGroup_Cracked; def MULHW : XOForm_1<31, 75, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "mulhw $rT, $rA, $rB", IntMulHW, [(set GPRC:$rT, (mulhs GPRC:$rA, GPRC:$rB))]>; def MULHWU : XOForm_1<31, 11, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "mulhwu $rT, $rA, $rB", IntMulHWU, [(set GPRC:$rT, (mulhu GPRC:$rA, GPRC:$rB))]>; def MULLW : XOForm_1<31, 235, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "mullw $rT, $rA, $rB", IntMulHW, [(set GPRC:$rT, (mul GPRC:$rA, GPRC:$rB))]>; def SUBF : XOForm_1<31, 40, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "subf $rT, $rA, $rB", IntGeneral, [(set GPRC:$rT, (sub GPRC:$rB, GPRC:$rA))]>; let Defs = [CARRY] in { def SUBFC : XOForm_1<31, 8, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "subfc $rT, $rA, $rB", IntGeneral, [(set GPRC:$rT, (subc GPRC:$rB, GPRC:$rA))]>, PPC970_DGroup_Cracked; } def NEG : XOForm_3<31, 104, 0, (outs GPRC:$rT), (ins GPRC:$rA), "neg $rT, $rA", IntGeneral, [(set GPRC:$rT, (ineg GPRC:$rA))]>; let Uses = [CARRY], Defs = [CARRY] in { def ADDE : XOForm_1<31, 138, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "adde $rT, $rA, $rB", IntGeneral, [(set GPRC:$rT, (adde GPRC:$rA, GPRC:$rB))]>; def ADDME : XOForm_3<31, 234, 0, (outs GPRC:$rT), (ins GPRC:$rA), "addme $rT, $rA", IntGeneral, [(set GPRC:$rT, (adde GPRC:$rA, -1))]>; def ADDZE : XOForm_3<31, 202, 0, (outs GPRC:$rT), (ins GPRC:$rA), "addze $rT, $rA", IntGeneral, [(set GPRC:$rT, (adde GPRC:$rA, 0))]>; def SUBFE : XOForm_1<31, 136, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "subfe $rT, $rA, $rB", IntGeneral, [(set GPRC:$rT, (sube GPRC:$rB, GPRC:$rA))]>; def SUBFME : XOForm_3<31, 232, 0, (outs GPRC:$rT), (ins GPRC:$rA), "subfme $rT, $rA", IntGeneral, [(set GPRC:$rT, (sube -1, GPRC:$rA))]>; def SUBFZE : XOForm_3<31, 200, 0, (outs GPRC:$rT), (ins GPRC:$rA), "subfze $rT, $rA", IntGeneral, [(set GPRC:$rT, (sube 0, GPRC:$rA))]>; } } // A-Form instructions. Most of the instructions executed in the FPU are of // this type. // let PPC970_Unit = 3 in { // FPU Operations. let Uses = [RM] in { def FMADD : AForm_1<63, 29, (outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB), "fmadd $FRT, $FRA, $FRC, $FRB", FPFused, [(set F8RC:$FRT, (fadd (fmul F8RC:$FRA, F8RC:$FRC), F8RC:$FRB))]>, Requires<[FPContractions]>; def FMADDS : AForm_1<59, 29, (outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB), "fmadds $FRT, $FRA, $FRC, $FRB", FPGeneral, [(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC), F4RC:$FRB))]>, Requires<[FPContractions]>; def FMSUB : AForm_1<63, 28, (outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB), "fmsub $FRT, $FRA, $FRC, $FRB", FPFused, [(set F8RC:$FRT, (fsub (fmul F8RC:$FRA, F8RC:$FRC), F8RC:$FRB))]>, Requires<[FPContractions]>; def FMSUBS : AForm_1<59, 28, (outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB), "fmsubs $FRT, $FRA, $FRC, $FRB", FPGeneral, [(set F4RC:$FRT, (fsub (fmul F4RC:$FRA, F4RC:$FRC), F4RC:$FRB))]>, Requires<[FPContractions]>; def FNMADD : AForm_1<63, 31, (outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB), "fnmadd $FRT, $FRA, $FRC, $FRB", FPFused, [(set F8RC:$FRT, (fneg (fadd (fmul F8RC:$FRA, F8RC:$FRC), F8RC:$FRB)))]>, Requires<[FPContractions]>; def FNMADDS : AForm_1<59, 31, (outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB), "fnmadds $FRT, $FRA, $FRC, $FRB", FPGeneral, [(set F4RC:$FRT, (fneg (fadd (fmul F4RC:$FRA, F4RC:$FRC), F4RC:$FRB)))]>, Requires<[FPContractions]>; def FNMSUB : AForm_1<63, 30, (outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB), "fnmsub $FRT, $FRA, $FRC, $FRB", FPFused, [(set F8RC:$FRT, (fneg (fsub (fmul F8RC:$FRA, F8RC:$FRC), F8RC:$FRB)))]>, Requires<[FPContractions]>; def FNMSUBS : AForm_1<59, 30, (outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB), "fnmsubs $FRT, $FRA, $FRC, $FRB", FPGeneral, [(set F4RC:$FRT, (fneg (fsub (fmul F4RC:$FRA, F4RC:$FRC), F4RC:$FRB)))]>, Requires<[FPContractions]>; } // FSEL is artificially split into 4 and 8-byte forms for the result. To avoid // having 4 of these, force the comparison to always be an 8-byte double (code // should use an FMRSD if the input comparison value really wants to be a float) // and 4/8 byte forms for the result and operand type.. def FSELD : AForm_1<63, 23, (outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB), "fsel $FRT, $FRA, $FRC, $FRB", FPGeneral, [(set F8RC:$FRT, (PPCfsel F8RC:$FRA,F8RC:$FRC,F8RC:$FRB))]>; def FSELS : AForm_1<63, 23, (outs F4RC:$FRT), (ins F8RC:$FRA, F4RC:$FRC, F4RC:$FRB), "fsel $FRT, $FRA, $FRC, $FRB", FPGeneral, [(set F4RC:$FRT, (PPCfsel F8RC:$FRA,F4RC:$FRC,F4RC:$FRB))]>; let Uses = [RM] in { def FADD : AForm_2<63, 21, (outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB), "fadd $FRT, $FRA, $FRB", FPGeneral, [(set F8RC:$FRT, (fadd F8RC:$FRA, F8RC:$FRB))]>; def FADDS : AForm_2<59, 21, (outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRB), "fadds $FRT, $FRA, $FRB", FPGeneral, [(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))]>; def FDIV : AForm_2<63, 18, (outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB), "fdiv $FRT, $FRA, $FRB", FPDivD, [(set F8RC:$FRT, (fdiv F8RC:$FRA, F8RC:$FRB))]>; def FDIVS : AForm_2<59, 18, (outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRB), "fdivs $FRT, $FRA, $FRB", FPDivS, [(set F4RC:$FRT, (fdiv F4RC:$FRA, F4RC:$FRB))]>; def FMUL : AForm_3<63, 25, (outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB), "fmul $FRT, $FRA, $FRB", FPFused, [(set F8RC:$FRT, (fmul F8RC:$FRA, F8RC:$FRB))]>; def FMULS : AForm_3<59, 25, (outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRB), "fmuls $FRT, $FRA, $FRB", FPGeneral, [(set F4RC:$FRT, (fmul F4RC:$FRA, F4RC:$FRB))]>; def FSUB : AForm_2<63, 20, (outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB), "fsub $FRT, $FRA, $FRB", FPGeneral, [(set F8RC:$FRT, (fsub F8RC:$FRA, F8RC:$FRB))]>; def FSUBS : AForm_2<59, 20, (outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRB), "fsubs $FRT, $FRA, $FRB", FPGeneral, [(set F4RC:$FRT, (fsub F4RC:$FRA, F4RC:$FRB))]>; } } let PPC970_Unit = 1 in { // FXU Operations. // M-Form instructions. rotate and mask instructions. // let isCommutable = 1 in { // RLWIMI can be commuted if the rotate amount is zero. def RLWIMI : MForm_2<20, (outs GPRC:$rA), (ins GPRC:$rSi, GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwimi $rA, $rS, $SH, $MB, $ME", IntRotate, []>, PPC970_DGroup_Cracked, RegConstraint<"$rSi = $rA">, NoEncode<"$rSi">; } def RLWINM : MForm_2<21, (outs GPRC:$rA), (ins GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwinm $rA, $rS, $SH, $MB, $ME", IntGeneral, []>; def RLWINMo : MForm_2<21, (outs GPRC:$rA), (ins GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwinm. $rA, $rS, $SH, $MB, $ME", IntGeneral, []>, isDOT, PPC970_DGroup_Cracked; def RLWNM : MForm_2<23, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB, u5imm:$MB, u5imm:$ME), "rlwnm $rA, $rS, $rB, $MB, $ME", IntGeneral, []>; } //===----------------------------------------------------------------------===// // PowerPC Instruction Patterns // // Arbitrary immediate support. Implement in terms of LIS/ORI. def : Pat<(i32 imm:$imm), (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>; // Implement the 'not' operation with the NOR instruction. def NOT : Pat<(not GPRC:$in), (NOR GPRC:$in, GPRC:$in)>; // ADD an arbitrary immediate. def : Pat<(add GPRC:$in, imm:$imm), (ADDIS (ADDI GPRC:$in, (LO16 imm:$imm)), (HA16 imm:$imm))>; // OR an arbitrary immediate. def : Pat<(or GPRC:$in, imm:$imm), (ORIS (ORI GPRC:$in, (LO16 imm:$imm)), (HI16 imm:$imm))>; // XOR an arbitrary immediate. def : Pat<(xor GPRC:$in, imm:$imm), (XORIS (XORI GPRC:$in, (LO16 imm:$imm)), (HI16 imm:$imm))>; // SUBFIC def : Pat<(sub immSExt16:$imm, GPRC:$in), (SUBFIC GPRC:$in, imm:$imm)>; // SHL/SRL def : Pat<(shl GPRC:$in, (i32 imm:$imm)), (RLWINM GPRC:$in, imm:$imm, 0, (SHL32 imm:$imm))>; def : Pat<(srl GPRC:$in, (i32 imm:$imm)), (RLWINM GPRC:$in, (SRL32 imm:$imm), imm:$imm, 31)>; // ROTL def : Pat<(rotl GPRC:$in, GPRC:$sh), (RLWNM GPRC:$in, GPRC:$sh, 0, 31)>; def : Pat<(rotl GPRC:$in, (i32 imm:$imm)), (RLWINM GPRC:$in, imm:$imm, 0, 31)>; // RLWNM def : Pat<(and (rotl GPRC:$in, GPRC:$sh), maskimm32:$imm), (RLWNM GPRC:$in, GPRC:$sh, (MB maskimm32:$imm), (ME maskimm32:$imm))>; // Calls def : Pat<(PPCcall_Darwin (i32 tglobaladdr:$dst)), (BL_Darwin tglobaladdr:$dst)>; def : Pat<(PPCcall_Darwin (i32 texternalsym:$dst)), (BL_Darwin texternalsym:$dst)>; def : Pat<(PPCcall_SVR4 (i32 tglobaladdr:$dst)), (BL_SVR4 tglobaladdr:$dst)>; def : Pat<(PPCcall_SVR4 (i32 texternalsym:$dst)), (BL_SVR4 texternalsym:$dst)>; def : Pat<(PPCtc_return (i32 tglobaladdr:$dst), imm:$imm), (TCRETURNdi tglobaladdr:$dst, imm:$imm)>; def : Pat<(PPCtc_return (i32 texternalsym:$dst), imm:$imm), (TCRETURNdi texternalsym:$dst, imm:$imm)>; def : Pat<(PPCtc_return CTRRC:$dst, imm:$imm), (TCRETURNri CTRRC:$dst, imm:$imm)>; // Hi and Lo for Darwin Global Addresses. def : Pat<(PPChi tglobaladdr:$in, 0), (LIS tglobaladdr:$in)>; def : Pat<(PPClo tglobaladdr:$in, 0), (LI tglobaladdr:$in)>; def : Pat<(PPChi tconstpool:$in, 0), (LIS tconstpool:$in)>; def : Pat<(PPClo tconstpool:$in, 0), (LI tconstpool:$in)>; def : Pat<(PPChi tjumptable:$in, 0), (LIS tjumptable:$in)>; def : Pat<(PPClo tjumptable:$in, 0), (LI tjumptable:$in)>; def : Pat<(PPChi tblockaddress:$in, 0), (LIS tblockaddress:$in)>; def : Pat<(PPClo tblockaddress:$in, 0), (LI tblockaddress:$in)>; def : Pat<(add GPRC:$in, (PPChi tglobaladdr:$g, 0)), (ADDIS GPRC:$in, tglobaladdr:$g)>; def : Pat<(add GPRC:$in, (PPChi tconstpool:$g, 0)), (ADDIS GPRC:$in, tconstpool:$g)>; def : Pat<(add GPRC:$in, (PPChi tjumptable:$g, 0)), (ADDIS GPRC:$in, tjumptable:$g)>; def : Pat<(add GPRC:$in, (PPChi tblockaddress:$g, 0)), (ADDIS GPRC:$in, tblockaddress:$g)>; // Fused negative multiply subtract, alternate pattern def : Pat<(fsub F8RC:$B, (fmul F8RC:$A, F8RC:$C)), (FNMSUB F8RC:$A, F8RC:$C, F8RC:$B)>, Requires<[FPContractions]>; def : Pat<(fsub F4RC:$B, (fmul F4RC:$A, F4RC:$C)), (FNMSUBS F4RC:$A, F4RC:$C, F4RC:$B)>, Requires<[FPContractions]>; // Standard shifts. These are represented separately from the real shifts above // so that we can distinguish between shifts that allow 5-bit and 6-bit shift // amounts. def : Pat<(sra GPRC:$rS, GPRC:$rB), (SRAW GPRC:$rS, GPRC:$rB)>; def : Pat<(srl GPRC:$rS, GPRC:$rB), (SRW GPRC:$rS, GPRC:$rB)>; def : Pat<(shl GPRC:$rS, GPRC:$rB), (SLW GPRC:$rS, GPRC:$rB)>; def : Pat<(zextloadi1 iaddr:$src), (LBZ iaddr:$src)>; def : Pat<(zextloadi1 xaddr:$src), (LBZX xaddr:$src)>; def : Pat<(extloadi1 iaddr:$src), (LBZ iaddr:$src)>; def : Pat<(extloadi1 xaddr:$src), (LBZX xaddr:$src)>; def : Pat<(extloadi8 iaddr:$src), (LBZ iaddr:$src)>; def : Pat<(extloadi8 xaddr:$src), (LBZX xaddr:$src)>; def : Pat<(extloadi16 iaddr:$src), (LHZ iaddr:$src)>; def : Pat<(extloadi16 xaddr:$src), (LHZX xaddr:$src)>; def : Pat<(f64 (extloadf32 iaddr:$src)), (COPY_TO_REGCLASS (LFS iaddr:$src), F8RC)>; def : Pat<(f64 (extloadf32 xaddr:$src)), (COPY_TO_REGCLASS (LFSX xaddr:$src), F8RC)>; def : Pat<(f64 (fextend F4RC:$src)), (COPY_TO_REGCLASS F4RC:$src, F8RC)>; // Memory barriers def : Pat<(membarrier (i32 imm /*ll*/), (i32 imm /*ls*/), (i32 imm /*sl*/), (i32 imm /*ss*/), (i32 imm /*device*/)), (SYNC)>; def : Pat<(atomic_fence (imm), (imm)), (SYNC)>; include "PPCInstrAltivec.td" include "PPCInstr64Bit.td"