Current Path : /usr/src/contrib/llvm/lib/Transforms/Scalar/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/lib/Transforms/Scalar/Sink.cpp |
//===-- Sink.cpp - Code Sinking -------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass moves instructions into successor blocks, when possible, so that // they aren't executed on paths where their results aren't needed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sink" #include "llvm/Transforms/Scalar.h" #include "llvm/IntrinsicInst.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Assembly/Writer.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(NumSunk, "Number of instructions sunk"); namespace { class Sinking : public FunctionPass { DominatorTree *DT; LoopInfo *LI; AliasAnalysis *AA; public: static char ID; // Pass identification Sinking() : FunctionPass(ID) { initializeSinkingPass(*PassRegistry::getPassRegistry()); } virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); FunctionPass::getAnalysisUsage(AU); AU.addRequired<AliasAnalysis>(); AU.addRequired<DominatorTree>(); AU.addRequired<LoopInfo>(); AU.addPreserved<DominatorTree>(); AU.addPreserved<LoopInfo>(); } private: bool ProcessBlock(BasicBlock &BB); bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores); bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const; }; } // end anonymous namespace char Sinking::ID = 0; INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false) FunctionPass *llvm::createSinkingPass() { return new Sinking(); } /// AllUsesDominatedByBlock - Return true if all uses of the specified value /// occur in blocks dominated by the specified block. bool Sinking::AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const { // Ignoring debug uses is necessary so debug info doesn't affect the code. // This may leave a referencing dbg_value in the original block, before // the definition of the vreg. Dwarf generator handles this although the // user might not get the right info at runtime. for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end(); I != E; ++I) { // Determine the block of the use. Instruction *UseInst = cast<Instruction>(*I); BasicBlock *UseBlock = UseInst->getParent(); if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { // PHI nodes use the operand in the predecessor block, not the block with // the PHI. unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo()); UseBlock = PN->getIncomingBlock(Num); } // Check that it dominates. if (!DT->dominates(BB, UseBlock)) return false; } return true; } bool Sinking::runOnFunction(Function &F) { DT = &getAnalysis<DominatorTree>(); LI = &getAnalysis<LoopInfo>(); AA = &getAnalysis<AliasAnalysis>(); bool EverMadeChange = false; while (1) { bool MadeChange = false; // Process all basic blocks. for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) MadeChange |= ProcessBlock(*I); // If this iteration over the code changed anything, keep iterating. if (!MadeChange) break; EverMadeChange = true; } return EverMadeChange; } bool Sinking::ProcessBlock(BasicBlock &BB) { // Can't sink anything out of a block that has less than two successors. if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false; // Don't bother sinking code out of unreachable blocks. In addition to being // unprofitable, it can also lead to infinite looping, because in an unreachable // loop there may be nowhere to stop. if (!DT->isReachableFromEntry(&BB)) return false; bool MadeChange = false; // Walk the basic block bottom-up. Remember if we saw a store. BasicBlock::iterator I = BB.end(); --I; bool ProcessedBegin = false; SmallPtrSet<Instruction *, 8> Stores; do { Instruction *Inst = I; // The instruction to sink. // Predecrement I (if it's not begin) so that it isn't invalidated by // sinking. ProcessedBegin = I == BB.begin(); if (!ProcessedBegin) --I; if (isa<DbgInfoIntrinsic>(Inst)) continue; if (SinkInstruction(Inst, Stores)) ++NumSunk, MadeChange = true; // If we just processed the first instruction in the block, we're done. } while (!ProcessedBegin); return MadeChange; } static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA, SmallPtrSet<Instruction *, 8> &Stores) { if (Inst->mayWriteToMemory()) { Stores.insert(Inst); return false; } if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { AliasAnalysis::Location Loc = AA->getLocation(L); for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(), E = Stores.end(); I != E; ++I) if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod) return false; } if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst)) return false; return true; } /// SinkInstruction - Determine whether it is safe to sink the specified machine /// instruction out of its current block into a successor. bool Sinking::SinkInstruction(Instruction *Inst, SmallPtrSet<Instruction *, 8> &Stores) { // Check if it's safe to move the instruction. if (!isSafeToMove(Inst, AA, Stores)) return false; // FIXME: This should include support for sinking instructions within the // block they are currently in to shorten the live ranges. We often get // instructions sunk into the top of a large block, but it would be better to // also sink them down before their first use in the block. This xform has to // be careful not to *increase* register pressure though, e.g. sinking // "x = y + z" down if it kills y and z would increase the live ranges of y // and z and only shrink the live range of x. // Loop over all the operands of the specified instruction. If there is // anything we can't handle, bail out. BasicBlock *ParentBlock = Inst->getParent(); // SuccToSinkTo - This is the successor to sink this instruction to, once we // decide. BasicBlock *SuccToSinkTo = 0; // FIXME: This picks a successor to sink into based on having one // successor that dominates all the uses. However, there are cases where // sinking can happen but where the sink point isn't a successor. For // example: // x = computation // if () {} else {} // use x // the instruction could be sunk over the whole diamond for the // if/then/else (or loop, etc), allowing it to be sunk into other blocks // after that. // Instructions can only be sunk if all their uses are in blocks // dominated by one of the successors. // Look at all the successors and decide which one // we should sink to. for (succ_iterator SI = succ_begin(ParentBlock), E = succ_end(ParentBlock); SI != E; ++SI) { if (AllUsesDominatedByBlock(Inst, *SI)) { SuccToSinkTo = *SI; break; } } // If we couldn't find a block to sink to, ignore this instruction. if (SuccToSinkTo == 0) return false; // It is not possible to sink an instruction into its own block. This can // happen with loops. if (Inst->getParent() == SuccToSinkTo) return false; DEBUG(dbgs() << "Sink instr " << *Inst); DEBUG(dbgs() << "to block "; WriteAsOperand(dbgs(), SuccToSinkTo, false)); // If the block has multiple predecessors, this would introduce computation on // a path that it doesn't already exist. We could split the critical edge, // but for now we just punt. // FIXME: Split critical edges if not backedges. if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) { // We cannot sink a load across a critical edge - there may be stores in // other code paths. if (!isSafeToSpeculativelyExecute(Inst)) { DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n"); return false; } // We don't want to sink across a critical edge if we don't dominate the // successor. We could be introducing calculations to new code paths. if (!DT->dominates(ParentBlock, SuccToSinkTo)) { DEBUG(dbgs() << " *** PUNTING: Critical edge found\n"); return false; } // Don't sink instructions into a loop. if (LI->isLoopHeader(SuccToSinkTo)) { DEBUG(dbgs() << " *** PUNTING: Loop header found\n"); return false; } // Otherwise we are OK with sinking along a critical edge. DEBUG(dbgs() << "Sinking along critical edge.\n"); } // Determine where to insert into. Skip phi nodes. BasicBlock::iterator InsertPos = SuccToSinkTo->begin(); while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos)) ++InsertPos; // Move the instruction. Inst->moveBefore(InsertPos); return true; }