Current Path : /usr/src/contrib/llvm/lib/Transforms/Utils/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp |
//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements some loop unrolling utilities for loops with run-time // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time // trip counts. // // The functions in this file are used to generate extra code when the // run-time trip count modulo the unroll factor is not 0. When this is the // case, we need to generate code to execute these 'left over' iterations. // // The current strategy generates an if-then-else sequence prior to the // unrolled loop to execute the 'left over' iterations. Other strategies // include generate a loop before or after the unrolled loop. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-unroll" #include "llvm/Transforms/Utils/UnrollLoop.h" #include "llvm/BasicBlock.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include <algorithm> using namespace llvm; STATISTIC(NumRuntimeUnrolled, "Number of loops unrolled with run-time trip counts"); /// Connect the unrolling prolog code to the original loop. /// The unrolling prolog code contains code to execute the /// 'extra' iterations if the run-time trip count modulo the /// unroll count is non-zero. /// /// This function performs the following: /// - Create PHI nodes at prolog end block to combine values /// that exit the prolog code and jump around the prolog. /// - Add a PHI operand to a PHI node at the loop exit block /// for values that exit the prolog and go around the loop. /// - Branch around the original loop if the trip count is less /// than the unroll factor. /// static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count, BasicBlock *LastPrologBB, BasicBlock *PrologEnd, BasicBlock *OrigPH, BasicBlock *NewPH, ValueToValueMapTy &LVMap, Pass *P) { BasicBlock *Latch = L->getLoopLatch(); assert(Latch != 0 && "Loop must have a latch"); // Create a PHI node for each outgoing value from the original loop // (which means it is an outgoing value from the prolog code too). // The new PHI node is inserted in the prolog end basic block. // The new PHI name is added as an operand of a PHI node in either // the loop header or the loop exit block. for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch); SBI != SBE; ++SBI) { for (BasicBlock::iterator BBI = (*SBI)->begin(); PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) { // Add a new PHI node to the prolog end block and add the // appropriate incoming values. PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr", PrologEnd->getTerminator()); // Adding a value to the new PHI node from the original loop preheader. // This is the value that skips all the prolog code. if (L->contains(PN)) { NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH); } else { NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH); } Value *V = PN->getIncomingValueForBlock(Latch); if (Instruction *I = dyn_cast<Instruction>(V)) { if (L->contains(I)) { V = LVMap[I]; } } // Adding a value to the new PHI node from the last prolog block // that was created. NewPN->addIncoming(V, LastPrologBB); // Update the existing PHI node operand with the value from the // new PHI node. How this is done depends on if the existing // PHI node is in the original loop block, or the exit block. if (L->contains(PN)) { PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN); } else { PN->addIncoming(NewPN, PrologEnd); } } } // Create a branch around the orignal loop, which is taken if the // trip count is less than the unroll factor. Instruction *InsertPt = PrologEnd->getTerminator(); Instruction *BrLoopExit = new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount, ConstantInt::get(TripCount->getType(), Count)); BasicBlock *Exit = L->getUniqueExitBlock(); assert(Exit != 0 && "Loop must have a single exit block only"); // Split the exit to maintain loop canonicalization guarantees SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit)); if (!Exit->isLandingPad()) { SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P); } else { SmallVector<BasicBlock*, 2> NewBBs; SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa", P, NewBBs); } // Add the branch to the exit block (around the unrolled loop) BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt); InsertPt->eraseFromParent(); } /// Create a clone of the blocks in a loop and connect them together. /// This function doesn't create a clone of the loop structure. /// /// There are two value maps that are defined and used. VMap is /// for the values in the current loop instance. LVMap contains /// the values from the last loop instance. We need the LVMap values /// to update the inital values for the current loop instance. /// static void CloneLoopBlocks(Loop *L, bool FirstCopy, BasicBlock *InsertTop, BasicBlock *InsertBot, std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, LoopInfo *LI) { BasicBlock *Preheader = L->getLoopPreheader(); BasicBlock *Header = L->getHeader(); BasicBlock *Latch = L->getLoopLatch(); Function *F = Header->getParent(); LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); // For each block in the original loop, create a new copy, // and update the value map with the newly created values. for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F); NewBlocks.push_back(NewBB); if (Loop *ParentLoop = L->getParentLoop()) ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase()); VMap[*BB] = NewBB; if (Header == *BB) { // For the first block, add a CFG connection to this newly // created block InsertTop->getTerminator()->setSuccessor(0, NewBB); // Change the incoming values to the ones defined in the // previously cloned loop. for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { PHINode *NewPHI = cast<PHINode>(VMap[I]); if (FirstCopy) { // We replace the first phi node with the value from the preheader VMap[I] = NewPHI->getIncomingValueForBlock(Preheader); NewBB->getInstList().erase(NewPHI); } else { // Update VMap with values from the previous block unsigned idx = NewPHI->getBasicBlockIndex(Latch); Value *InVal = NewPHI->getIncomingValue(idx); if (Instruction *I = dyn_cast<Instruction>(InVal)) if (L->contains(I)) InVal = LVMap[InVal]; NewPHI->setIncomingValue(idx, InVal); NewPHI->setIncomingBlock(idx, InsertTop); } } } if (Latch == *BB) { VMap.erase((*BB)->getTerminator()); NewBB->getTerminator()->eraseFromParent(); BranchInst::Create(InsertBot, NewBB); } } // LastValueMap is updated with the values for the current loop // which are used the next time this function is called. for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); VI != VE; ++VI) { LVMap[VI->first] = VI->second; } } /// Insert code in the prolog code when unrolling a loop with a /// run-time trip-count. /// /// This method assumes that the loop unroll factor is total number /// of loop bodes in the loop after unrolling. (Some folks refer /// to the unroll factor as the number of *extra* copies added). /// We assume also that the loop unroll factor is a power-of-two. So, after /// unrolling the loop, the number of loop bodies executed is 2, /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for /// the switch instruction is generated. /// /// extraiters = tripcount % loopfactor /// if (extraiters == 0) jump Loop: /// if (extraiters == loopfactor) jump L1 /// if (extraiters == loopfactor-1) jump L2 /// ... /// L1: LoopBody; /// L2: LoopBody; /// ... /// if tripcount < loopfactor jump End /// Loop: /// ... /// End: /// bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI, LPPassManager *LPM) { // for now, only unroll loops that contain a single exit if (!L->getExitingBlock()) return false; // Make sure the loop is in canonical form, and there is a single // exit block only. if (!L->isLoopSimplifyForm() || L->getUniqueExitBlock() == 0) return false; // Use Scalar Evolution to compute the trip count. This allows more // loops to be unrolled than relying on induction var simplification ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>(); if (SE == 0) return false; // Only unroll loops with a computable trip count and the trip count needs // to be an int value (allowing a pointer type is a TODO item) const SCEV *BECount = SE->getBackedgeTakenCount(L); if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy()) return false; // Add 1 since the backedge count doesn't include the first loop iteration const SCEV *TripCountSC = SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1)); if (isa<SCEVCouldNotCompute>(TripCountSC)) return false; // We only handle cases when the unroll factor is a power of 2. // Count is the loop unroll factor, the number of extra copies added + 1. if ((Count & (Count-1)) != 0) return false; // If this loop is nested, then the loop unroller changes the code in // parent loop, so the Scalar Evolution pass needs to be run again if (Loop *ParentLoop = L->getParentLoop()) SE->forgetLoop(ParentLoop); BasicBlock *PH = L->getLoopPreheader(); BasicBlock *Header = L->getHeader(); BasicBlock *Latch = L->getLoopLatch(); // It helps to splits the original preheader twice, one for the end of the // prolog code and one for a new loop preheader BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass()); BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass()); BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator()); // Compute the number of extra iterations required, which is: // extra iterations = run-time trip count % (loop unroll factor + 1) SCEVExpander Expander(*SE, "loop-unroll"); Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), PreHeaderBR); Type *CountTy = TripCount->getType(); BinaryOperator *ModVal = BinaryOperator::CreateURem(TripCount, ConstantInt::get(CountTy, Count), "xtraiter"); ModVal->insertBefore(PreHeaderBR); // Check if for no extra iterations, then jump to unrolled loop Value *BranchVal = new ICmpInst(PreHeaderBR, ICmpInst::ICMP_NE, ModVal, ConstantInt::get(CountTy, 0), "lcmp"); // Branch to either the extra iterations or the unrolled loop // We will fix up the true branch label when adding loop body copies BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR); assert(PreHeaderBR->isUnconditional() && PreHeaderBR->getSuccessor(0) == PEnd && "CFG edges in Preheader are not correct"); PreHeaderBR->eraseFromParent(); ValueToValueMapTy LVMap; Function *F = Header->getParent(); // These variables are used to update the CFG links in each iteration BasicBlock *CompareBB = 0; BasicBlock *LastLoopBB = PH; // Get an ordered list of blocks in the loop to help with the ordering of the // cloned blocks in the prolog code LoopBlocksDFS LoopBlocks(L); LoopBlocks.perform(LI); // // For each extra loop iteration, create a copy of the loop's basic blocks // and generate a condition that branches to the copy depending on the // number of 'left over' iterations. // for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) { std::vector<BasicBlock*> NewBlocks; ValueToValueMapTy VMap; // Clone all the basic blocks in the loop, but we don't clone the loop // This function adds the appropriate CFG connections. CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks, LoopBlocks, VMap, LVMap, LI); LastLoopBB = cast<BasicBlock>(VMap[Latch]); // Insert the cloned blocks into function just before the original loop F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0], F->end()); // Generate the code for the comparison which determines if the loop // prolog code needs to be executed. if (leftOverIters == Count-1) { // There is no compare block for the fall-thru case when for the last // left over iteration CompareBB = NewBlocks[0]; } else { // Create a new block for the comparison BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp", F, CompareBB); if (Loop *ParentLoop = L->getParentLoop()) { // Add the new block to the parent loop, if needed ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase()); } // The comparison w/ the extra iteration value and branch Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal, ConstantInt::get(CountTy, leftOverIters), "un.tmp"); // Branch to either the extra iterations or the unrolled loop BranchInst::Create(NewBlocks[0], CompareBB, BranchVal, NewBB); CompareBB = NewBB; PH->getTerminator()->setSuccessor(0, NewBB); VMap[NewPH] = CompareBB; } // Rewrite the cloned instruction operands to use the values // created when the clone is created. for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) { for (BasicBlock::iterator I = NewBlocks[i]->begin(), E = NewBlocks[i]->end(); I != E; ++I) { RemapInstruction(I, VMap, RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); } } } // Connect the prolog code to the original loop and update the // PHI functions. ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap, LPM->getAsPass()); NumRuntimeUnrolled++; return true; }