Current Path : /usr/src/contrib/llvm/lib/VMCore/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/lib/VMCore/LLVMContextImpl.h |
//===-- LLVMContextImpl.h - The LLVMContextImpl opaque class ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares LLVMContextImpl, the opaque implementation // of LLVMContext. // //===----------------------------------------------------------------------===// #ifndef LLVM_LLVMCONTEXT_IMPL_H #define LLVM_LLVMCONTEXT_IMPL_H #include "llvm/LLVMContext.h" #include "ConstantsContext.h" #include "LeaksContext.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Metadata.h" #include "llvm/Support/ValueHandle.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Hashing.h" #include <vector> namespace llvm { class ConstantInt; class ConstantFP; class LLVMContext; class Type; class Value; struct DenseMapAPIntKeyInfo { struct KeyTy { APInt val; Type* type; KeyTy(const APInt& V, Type* Ty) : val(V), type(Ty) {} KeyTy(const KeyTy& that) : val(that.val), type(that.type) {} bool operator==(const KeyTy& that) const { return type == that.type && this->val == that.val; } bool operator!=(const KeyTy& that) const { return !this->operator==(that); } friend hash_code hash_value(const KeyTy &Key) { return hash_combine(Key.type, Key.val); } }; static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); } static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); } static unsigned getHashValue(const KeyTy &Key) { return static_cast<unsigned>(hash_value(Key)); } static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { return LHS == RHS; } }; struct DenseMapAPFloatKeyInfo { struct KeyTy { APFloat val; KeyTy(const APFloat& V) : val(V){} KeyTy(const KeyTy& that) : val(that.val) {} bool operator==(const KeyTy& that) const { return this->val.bitwiseIsEqual(that.val); } bool operator!=(const KeyTy& that) const { return !this->operator==(that); } friend hash_code hash_value(const KeyTy &Key) { return hash_combine(Key.val); } }; static inline KeyTy getEmptyKey() { return KeyTy(APFloat(APFloat::Bogus,1)); } static inline KeyTy getTombstoneKey() { return KeyTy(APFloat(APFloat::Bogus,2)); } static unsigned getHashValue(const KeyTy &Key) { return static_cast<unsigned>(hash_value(Key)); } static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { return LHS == RHS; } }; struct AnonStructTypeKeyInfo { struct KeyTy { ArrayRef<Type*> ETypes; bool isPacked; KeyTy(const ArrayRef<Type*>& E, bool P) : ETypes(E), isPacked(P) {} KeyTy(const KeyTy& that) : ETypes(that.ETypes), isPacked(that.isPacked) {} KeyTy(const StructType* ST) : ETypes(ArrayRef<Type*>(ST->element_begin(), ST->element_end())), isPacked(ST->isPacked()) {} bool operator==(const KeyTy& that) const { if (isPacked != that.isPacked) return false; if (ETypes != that.ETypes) return false; return true; } bool operator!=(const KeyTy& that) const { return !this->operator==(that); } }; static inline StructType* getEmptyKey() { return DenseMapInfo<StructType*>::getEmptyKey(); } static inline StructType* getTombstoneKey() { return DenseMapInfo<StructType*>::getTombstoneKey(); } static unsigned getHashValue(const KeyTy& Key) { return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), Key.isPacked); } static unsigned getHashValue(const StructType *ST) { return getHashValue(KeyTy(ST)); } static bool isEqual(const KeyTy& LHS, const StructType *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return LHS == KeyTy(RHS); } static bool isEqual(const StructType *LHS, const StructType *RHS) { return LHS == RHS; } }; struct FunctionTypeKeyInfo { struct KeyTy { const Type *ReturnType; ArrayRef<Type*> Params; bool isVarArg; KeyTy(const Type* R, const ArrayRef<Type*>& P, bool V) : ReturnType(R), Params(P), isVarArg(V) {} KeyTy(const KeyTy& that) : ReturnType(that.ReturnType), Params(that.Params), isVarArg(that.isVarArg) {} KeyTy(const FunctionType* FT) : ReturnType(FT->getReturnType()), Params(ArrayRef<Type*>(FT->param_begin(), FT->param_end())), isVarArg(FT->isVarArg()) {} bool operator==(const KeyTy& that) const { if (ReturnType != that.ReturnType) return false; if (isVarArg != that.isVarArg) return false; if (Params != that.Params) return false; return true; } bool operator!=(const KeyTy& that) const { return !this->operator==(that); } }; static inline FunctionType* getEmptyKey() { return DenseMapInfo<FunctionType*>::getEmptyKey(); } static inline FunctionType* getTombstoneKey() { return DenseMapInfo<FunctionType*>::getTombstoneKey(); } static unsigned getHashValue(const KeyTy& Key) { return hash_combine(Key.ReturnType, hash_combine_range(Key.Params.begin(), Key.Params.end()), Key.isVarArg); } static unsigned getHashValue(const FunctionType *FT) { return getHashValue(KeyTy(FT)); } static bool isEqual(const KeyTy& LHS, const FunctionType *RHS) { if (RHS == getEmptyKey() || RHS == getTombstoneKey()) return false; return LHS == KeyTy(RHS); } static bool isEqual(const FunctionType *LHS, const FunctionType *RHS) { return LHS == RHS; } }; // Provide a FoldingSetTrait::Equals specialization for MDNode that can use a // shortcut to avoid comparing all operands. template<> struct FoldingSetTrait<MDNode> : DefaultFoldingSetTrait<MDNode> { static bool Equals(const MDNode &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID) { assert(!X.isNotUniqued() && "Non-uniqued MDNode in FoldingSet?"); // First, check if the cached hashes match. If they don't we can skip the // expensive operand walk. if (X.Hash != IDHash) return false; // If they match we have to compare the operands. X.Profile(TempID); return TempID == ID; } static unsigned ComputeHash(const MDNode &X, FoldingSetNodeID &) { return X.Hash; // Return cached hash. } }; /// DebugRecVH - This is a CallbackVH used to keep the Scope -> index maps /// up to date as MDNodes mutate. This class is implemented in DebugLoc.cpp. class DebugRecVH : public CallbackVH { /// Ctx - This is the LLVM Context being referenced. LLVMContextImpl *Ctx; /// Idx - The index into either ScopeRecordIdx or ScopeInlinedAtRecords that /// this reference lives in. If this is zero, then it represents a /// non-canonical entry that has no DenseMap value. This can happen due to /// RAUW. int Idx; public: DebugRecVH(MDNode *n, LLVMContextImpl *ctx, int idx) : CallbackVH(n), Ctx(ctx), Idx(idx) {} MDNode *get() const { return cast_or_null<MDNode>(getValPtr()); } virtual void deleted(); virtual void allUsesReplacedWith(Value *VNew); }; class LLVMContextImpl { public: /// OwnedModules - The set of modules instantiated in this context, and which /// will be automatically deleted if this context is deleted. SmallPtrSet<Module*, 4> OwnedModules; LLVMContext::InlineAsmDiagHandlerTy InlineAsmDiagHandler; void *InlineAsmDiagContext; typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*, DenseMapAPIntKeyInfo> IntMapTy; IntMapTy IntConstants; typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*, DenseMapAPFloatKeyInfo> FPMapTy; FPMapTy FPConstants; StringMap<Value*> MDStringCache; FoldingSet<MDNode> MDNodeSet; // MDNodes may be uniqued or not uniqued. When they're not uniqued, they // aren't in the MDNodeSet, but they're still shared between objects, so no // one object can destroy them. This set allows us to at least destroy them // on Context destruction. SmallPtrSet<MDNode*, 1> NonUniquedMDNodes; DenseMap<Type*, ConstantAggregateZero*> CAZConstants; typedef ConstantAggrUniqueMap<ArrayType, ConstantArray> ArrayConstantsTy; ArrayConstantsTy ArrayConstants; typedef ConstantAggrUniqueMap<StructType, ConstantStruct> StructConstantsTy; StructConstantsTy StructConstants; typedef ConstantAggrUniqueMap<VectorType, ConstantVector> VectorConstantsTy; VectorConstantsTy VectorConstants; DenseMap<PointerType*, ConstantPointerNull*> CPNConstants; DenseMap<Type*, UndefValue*> UVConstants; StringMap<ConstantDataSequential*> CDSConstants; DenseMap<std::pair<Function*, BasicBlock*> , BlockAddress*> BlockAddresses; ConstantUniqueMap<ExprMapKeyType, const ExprMapKeyType&, Type, ConstantExpr> ExprConstants; ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&, PointerType, InlineAsm> InlineAsms; ConstantInt *TheTrueVal; ConstantInt *TheFalseVal; LeakDetectorImpl<Value> LLVMObjects; // Basic type instances. Type VoidTy, LabelTy, HalfTy, FloatTy, DoubleTy, MetadataTy; Type X86_FP80Ty, FP128Ty, PPC_FP128Ty, X86_MMXTy; IntegerType Int1Ty, Int8Ty, Int16Ty, Int32Ty, Int64Ty; /// TypeAllocator - All dynamically allocated types are allocated from this. /// They live forever until the context is torn down. BumpPtrAllocator TypeAllocator; DenseMap<unsigned, IntegerType*> IntegerTypes; typedef DenseMap<FunctionType*, bool, FunctionTypeKeyInfo> FunctionTypeMap; FunctionTypeMap FunctionTypes; typedef DenseMap<StructType*, bool, AnonStructTypeKeyInfo> StructTypeMap; StructTypeMap AnonStructTypes; StringMap<StructType*> NamedStructTypes; unsigned NamedStructTypesUniqueID; DenseMap<std::pair<Type *, uint64_t>, ArrayType*> ArrayTypes; DenseMap<std::pair<Type *, unsigned>, VectorType*> VectorTypes; DenseMap<Type*, PointerType*> PointerTypes; // Pointers in AddrSpace = 0 DenseMap<std::pair<Type*, unsigned>, PointerType*> ASPointerTypes; /// ValueHandles - This map keeps track of all of the value handles that are /// watching a Value*. The Value::HasValueHandle bit is used to know // whether or not a value has an entry in this map. typedef DenseMap<Value*, ValueHandleBase*> ValueHandlesTy; ValueHandlesTy ValueHandles; /// CustomMDKindNames - Map to hold the metadata string to ID mapping. StringMap<unsigned> CustomMDKindNames; typedef std::pair<unsigned, TrackingVH<MDNode> > MDPairTy; typedef SmallVector<MDPairTy, 2> MDMapTy; /// MetadataStore - Collection of per-instruction metadata used in this /// context. DenseMap<const Instruction *, MDMapTy> MetadataStore; /// ScopeRecordIdx - This is the index in ScopeRecords for an MDNode scope /// entry with no "inlined at" element. DenseMap<MDNode*, int> ScopeRecordIdx; /// ScopeRecords - These are the actual mdnodes (in a value handle) for an /// index. The ValueHandle ensures that ScopeRecordIdx stays up to date if /// the MDNode is RAUW'd. std::vector<DebugRecVH> ScopeRecords; /// ScopeInlinedAtIdx - This is the index in ScopeInlinedAtRecords for an /// scope/inlined-at pair. DenseMap<std::pair<MDNode*, MDNode*>, int> ScopeInlinedAtIdx; /// ScopeInlinedAtRecords - These are the actual mdnodes (in value handles) /// for an index. The ValueHandle ensures that ScopeINlinedAtIdx stays up /// to date. std::vector<std::pair<DebugRecVH, DebugRecVH> > ScopeInlinedAtRecords; int getOrAddScopeRecordIdxEntry(MDNode *N, int ExistingIdx); int getOrAddScopeInlinedAtIdxEntry(MDNode *Scope, MDNode *IA,int ExistingIdx); LLVMContextImpl(LLVMContext &C); ~LLVMContextImpl(); }; } #endif