Current Path : /usr/src/contrib/ntp/ntpd/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/ntp/ntpd/ntp_crypto.c.orig |
/* * ntp_crypto.c - NTP version 4 public key routines */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #ifdef OPENSSL #include <stdio.h> #include <sys/types.h> #include <sys/param.h> #include <unistd.h> #include <fcntl.h> #include "ntpd.h" #include "ntp_stdlib.h" #include "ntp_unixtime.h" #include "ntp_string.h" #include <ntp_random.h> #include "openssl/asn1_mac.h" #include "openssl/bn.h" #include "openssl/err.h" #include "openssl/evp.h" #include "openssl/pem.h" #include "openssl/rand.h" #include "openssl/x509v3.h" #ifdef KERNEL_PLL #include "ntp_syscall.h" #endif /* KERNEL_PLL */ /* * Extension field message format * * These are always signed and saved before sending in network byte * order. They must be converted to and from host byte order for * processing. * * +-------+-------+ * | op | len | <- extension pointer * +-------+-------+ * | assocID | * +---------------+ * | timestamp | <- value pointer * +---------------+ * | filestamp | * +---------------+ * | value len | * +---------------+ * | | * = value = * | | * +---------------+ * | signature len | * +---------------+ * | | * = signature = * | | * +---------------+ * * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses. * Requests carry the association ID of the receiver; responses carry * the association ID of the sender. Some messages include only the * operation/length and association ID words and so have length 8 * octets. Ohers include the value structure and associated value and * signature fields. These messages include the timestamp, filestamp, * value and signature words and so have length at least 24 octets. The * signature and/or value fields can be empty, in which case the * respective length words are zero. An empty value with nonempty * signature is syntactically valid, but semantically questionable. * * The filestamp represents the time when a cryptographic data file such * as a public/private key pair is created. It follows every reference * depending on that file and serves as a means to obsolete earlier data * of the same type. The timestamp represents the time when the * cryptographic data of the message were last signed. Creation of a * cryptographic data file or signing a message can occur only when the * creator or signor is synchronized to an authoritative source and * proventicated to a trusted authority. * * Note there are four conditions required for server trust. First, the * public key on the certificate must be verified, which involves a * number of format, content and consistency checks. Next, the server * identity must be confirmed by one of four schemes: private * certificate, IFF scheme, GQ scheme or certificate trail hike to a * self signed trusted certificate. Finally, the server signature must * be verified. */ /* * Cryptodefines */ #define TAI_1972 10 /* initial TAI offset (s) */ #define MAX_LEAP 100 /* max UTC leapseconds (s) */ #define VALUE_LEN (6 * 4) /* min response field length */ #define YEAR (60 * 60 * 24 * 365) /* seconds in year */ /* * Global cryptodata in host byte order */ u_int32 crypto_flags = 0x0; /* status word */ /* * Global cryptodata in network byte order */ struct cert_info *cinfo = NULL; /* certificate info/value */ struct value hostval; /* host value */ struct value pubkey; /* public key */ struct value tai_leap; /* leapseconds table */ EVP_PKEY *iffpar_pkey = NULL; /* IFF parameters */ EVP_PKEY *gqpar_pkey = NULL; /* GQ parameters */ EVP_PKEY *mvpar_pkey = NULL; /* MV parameters */ char *iffpar_file = NULL; /* IFF parameters file */ char *gqpar_file = NULL; /* GQ parameters file */ char *mvpar_file = NULL; /* MV parameters file */ /* * Private cryptodata in host byte order */ static char *passwd = NULL; /* private key password */ static EVP_PKEY *host_pkey = NULL; /* host key */ static EVP_PKEY *sign_pkey = NULL; /* sign key */ static const EVP_MD *sign_digest = NULL; /* sign digest */ static u_int sign_siglen; /* sign key length */ static char *rand_file = NULL; /* random seed file */ static char *host_file = NULL; /* host key file */ static char *sign_file = NULL; /* sign key file */ static char *cert_file = NULL; /* certificate file */ static char *leap_file = NULL; /* leapseconds file */ static tstamp_t if_fstamp = 0; /* IFF filestamp */ static tstamp_t gq_fstamp = 0; /* GQ file stamp */ static tstamp_t mv_fstamp = 0; /* MV filestamp */ static u_int ident_scheme = 0; /* server identity scheme */ /* * Cryptotypes */ static int crypto_verify P((struct exten *, struct value *, struct peer *)); static int crypto_encrypt P((struct exten *, struct value *, keyid_t *)); static int crypto_alice P((struct peer *, struct value *)); static int crypto_alice2 P((struct peer *, struct value *)); static int crypto_alice3 P((struct peer *, struct value *)); static int crypto_bob P((struct exten *, struct value *)); static int crypto_bob2 P((struct exten *, struct value *)); static int crypto_bob3 P((struct exten *, struct value *)); static int crypto_iff P((struct exten *, struct peer *)); static int crypto_gq P((struct exten *, struct peer *)); static int crypto_mv P((struct exten *, struct peer *)); static u_int crypto_send P((struct exten *, struct value *)); static tstamp_t crypto_time P((void)); static u_long asn2ntp P((ASN1_TIME *)); static struct cert_info *cert_parse P((u_char *, u_int, tstamp_t)); static int cert_sign P((struct exten *, struct value *)); static int cert_valid P((struct cert_info *, EVP_PKEY *)); static int cert_install P((struct exten *, struct peer *)); static void cert_free P((struct cert_info *)); static EVP_PKEY *crypto_key P((char *, tstamp_t *)); static int bighash P((BIGNUM *, BIGNUM *)); static struct cert_info *crypto_cert P((char *)); static void crypto_tai P((char *)); #ifdef SYS_WINNT int readlink(char * link, char * file, int len) { return (-1); } #endif /* * session_key - generate session key * * This routine generates a session key from the source address, * destination address, key ID and private value. The value of the * session key is the MD5 hash of these values, while the next key ID is * the first four octets of the hash. * * Returns the next key ID */ keyid_t session_key( struct sockaddr_storage *srcadr, /* source address */ struct sockaddr_storage *dstadr, /* destination address */ keyid_t keyno, /* key ID */ keyid_t private, /* private value */ u_long lifetime /* key lifetime */ ) { EVP_MD_CTX ctx; /* message digest context */ u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ keyid_t keyid; /* key identifer */ u_int32 header[10]; /* data in network byte order */ u_int hdlen, len; if (!dstadr) return 0; /* * Generate the session key and key ID. If the lifetime is * greater than zero, install the key and call it trusted. */ hdlen = 0; switch(srcadr->ss_family) { case AF_INET: header[0] = ((struct sockaddr_in *)srcadr)->sin_addr.s_addr; header[1] = ((struct sockaddr_in *)dstadr)->sin_addr.s_addr; header[2] = htonl(keyno); header[3] = htonl(private); hdlen = 4 * sizeof(u_int32); break; case AF_INET6: memcpy(&header[0], &GET_INADDR6(*srcadr), sizeof(struct in6_addr)); memcpy(&header[4], &GET_INADDR6(*dstadr), sizeof(struct in6_addr)); header[8] = htonl(keyno); header[9] = htonl(private); hdlen = 10 * sizeof(u_int32); break; } EVP_DigestInit(&ctx, EVP_md5()); EVP_DigestUpdate(&ctx, (u_char *)header, hdlen); EVP_DigestFinal(&ctx, dgst, &len); memcpy(&keyid, dgst, 4); keyid = ntohl(keyid); if (lifetime != 0) { MD5auth_setkey(keyno, dgst, len); authtrust(keyno, lifetime); } #ifdef DEBUG if (debug > 1) printf( "session_key: %s > %s %08x %08x hash %08x life %lu\n", stoa(srcadr), stoa(dstadr), keyno, private, keyid, lifetime); #endif return (keyid); } /* * make_keylist - generate key list * * Returns * XEVNT_OK success * XEVNT_PER host certificate expired * * This routine constructs a pseudo-random sequence by repeatedly * hashing the session key starting from a given source address, * destination address, private value and the next key ID of the * preceeding session key. The last entry on the list is saved along * with its sequence number and public signature. */ int make_keylist( struct peer *peer, /* peer structure pointer */ struct interface *dstadr /* interface */ ) { EVP_MD_CTX ctx; /* signature context */ tstamp_t tstamp; /* NTP timestamp */ struct autokey *ap; /* autokey pointer */ struct value *vp; /* value pointer */ keyid_t keyid = 0; /* next key ID */ keyid_t cookie; /* private value */ u_long lifetime; u_int len, mpoll; int i; if (!dstadr) return XEVNT_OK; /* * Allocate the key list if necessary. */ tstamp = crypto_time(); if (peer->keylist == NULL) peer->keylist = emalloc(sizeof(keyid_t) * NTP_MAXSESSION); /* * Generate an initial key ID which is unique and greater than * NTP_MAXKEY. */ while (1) { keyid = (ntp_random() + NTP_MAXKEY + 1) & ((1 << sizeof(keyid_t)) - 1); if (authhavekey(keyid)) continue; break; } /* * Generate up to NTP_MAXSESSION session keys. Stop if the * next one would not be unique or not a session key ID or if * it would expire before the next poll. The private value * included in the hash is zero if broadcast mode, the peer * cookie if client mode or the host cookie if symmetric modes. */ mpoll = 1 << min(peer->ppoll, peer->hpoll); lifetime = min(sys_automax, NTP_MAXSESSION * mpoll); if (peer->hmode == MODE_BROADCAST) cookie = 0; else cookie = peer->pcookie; for (i = 0; i < NTP_MAXSESSION; i++) { peer->keylist[i] = keyid; peer->keynumber = i; keyid = session_key(&dstadr->sin, &peer->srcadr, keyid, cookie, lifetime); lifetime -= mpoll; if (auth_havekey(keyid) || keyid <= NTP_MAXKEY || lifetime <= mpoll) break; } /* * Save the last session key ID, sequence number and timestamp, * then sign these values for later retrieval by the clients. Be * careful not to use invalid key media. Use the public values * timestamp as filestamp. */ vp = &peer->sndval; if (vp->ptr == NULL) vp->ptr = emalloc(sizeof(struct autokey)); ap = (struct autokey *)vp->ptr; ap->seq = htonl(peer->keynumber); ap->key = htonl(keyid); vp->tstamp = htonl(tstamp); vp->fstamp = hostval.tstamp; vp->vallen = htonl(sizeof(struct autokey)); vp->siglen = 0; if (tstamp != 0) { if (tstamp < cinfo->first || tstamp > cinfo->last) return (XEVNT_PER); if (vp->sig == NULL) vp->sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)vp, 12); EVP_SignUpdate(&ctx, vp->ptr, sizeof(struct autokey)); if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) vp->siglen = htonl(len); else msyslog(LOG_ERR, "make_keys %s\n", ERR_error_string(ERR_get_error(), NULL)); peer->flags |= FLAG_ASSOC; } #ifdef DEBUG if (debug) printf("make_keys: %d %08x %08x ts %u fs %u poll %d\n", ntohl(ap->seq), ntohl(ap->key), cookie, ntohl(vp->tstamp), ntohl(vp->fstamp), peer->hpoll); #endif return (XEVNT_OK); } /* * crypto_recv - parse extension fields * * This routine is called when the packet has been matched to an * association and passed sanity, format and MAC checks. We believe the * extension field values only if the field has proper format and * length, the timestamp and filestamp are valid and the signature has * valid length and is verified. There are a few cases where some values * are believed even if the signature fails, but only if the proventic * bit is not set. */ int crypto_recv( struct peer *peer, /* peer structure pointer */ struct recvbuf *rbufp /* packet buffer pointer */ ) { const EVP_MD *dp; /* message digest algorithm */ u_int32 *pkt; /* receive packet pointer */ struct autokey *ap, *bp; /* autokey pointer */ struct exten *ep, *fp; /* extension pointers */ int has_mac; /* length of MAC field */ int authlen; /* offset of MAC field */ associd_t associd; /* association ID */ tstamp_t tstamp = 0; /* timestamp */ tstamp_t fstamp = 0; /* filestamp */ u_int len; /* extension field length */ u_int code; /* extension field opcode */ u_int vallen = 0; /* value length */ X509 *cert; /* X509 certificate */ char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ keyid_t cookie; /* crumbles */ int hismode; /* packet mode */ int rval = XEVNT_OK; u_char *ptr; u_int32 temp32; /* * Initialize. Note that the packet has already been checked for * valid format and extension field lengths. First extract the * field length, command code and association ID in host byte * order. These are used with all commands and modes. Then check * the version number, which must be 2, and length, which must * be at least 8 for requests and VALUE_LEN (24) for responses. * Packets that fail either test sink without a trace. The * association ID is saved only if nonzero. */ authlen = LEN_PKT_NOMAC; hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode); while ((has_mac = rbufp->recv_length - authlen) > MAX_MAC_LEN) { pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4; ep = (struct exten *)pkt; code = ntohl(ep->opcode) & 0xffff0000; len = ntohl(ep->opcode) & 0x0000ffff; associd = (associd_t) ntohl(pkt[1]); rval = XEVNT_OK; #ifdef DEBUG if (debug) printf( "crypto_recv: flags 0x%x ext offset %d len %u code 0x%x assocID %d\n", peer->crypto, authlen, len, code >> 16, associd); #endif /* * Check version number and field length. If bad, * quietly ignore the packet. */ if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) { sys_unknownversion++; code |= CRYPTO_ERROR; } /* * Little vulnerability bandage here. If a perp tosses a * fake association ID over the fence, we better toss it * out. Only the first one counts. */ if (code & CRYPTO_RESP) { if (peer->assoc == 0) peer->assoc = associd; else if (peer->assoc != associd) code |= CRYPTO_ERROR; } if (len >= VALUE_LEN) { tstamp = ntohl(ep->tstamp); fstamp = ntohl(ep->fstamp); vallen = ntohl(ep->vallen); } switch (code) { /* * Install status word, host name, signature scheme and * association ID. In OpenSSL the signature algorithm is * bound to the digest algorithm, so the NID completely * defines the signature scheme. Note the request and * response are identical, but neither is validated by * signature. The request is processed here only in * symmetric modes. The server name field might be * useful to implement access controls in future. */ case CRYPTO_ASSOC: /* * If the machine is running when this message * arrives, the other fellow has reset and so * must we. Otherwise, pass the extension field * to the transmit side. */ if (peer->crypto) { rval = XEVNT_ERR; break; } fp = emalloc(len); memcpy(fp, ep, len); temp32 = CRYPTO_RESP; fp->opcode |= htonl(temp32); peer->cmmd = fp; /* fall through */ case CRYPTO_ASSOC | CRYPTO_RESP: /* * Discard the message if it has already been * stored or the message has been amputated. */ if (peer->crypto) break; if (vallen == 0 || vallen > MAXHOSTNAME || len < VALUE_LEN + vallen) { rval = XEVNT_LEN; break; } /* * Check the identity schemes are compatible. If * the client has PC, the server must have PC, * in which case the server public key and * identity are presumed valid, so we skip the * certificate and identity exchanges and move * immediately to the cookie exchange which * confirms the server signature. */ #ifdef DEBUG if (debug) printf( "crypto_recv: ident host 0x%x server 0x%x\n", crypto_flags, fstamp); #endif temp32 = (crypto_flags | ident_scheme) & fstamp & CRYPTO_FLAG_MASK; if (crypto_flags & CRYPTO_FLAG_PRIV) { if (!(fstamp & CRYPTO_FLAG_PRIV)) { rval = XEVNT_KEY; break; } else { fstamp |= CRYPTO_FLAG_VALID | CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN; } /* * In symmetric modes it is an error if either * peer requests identity and the other peer * does not support it. */ } else if ((hismode == MODE_ACTIVE || hismode == MODE_PASSIVE) && ((crypto_flags | fstamp) & CRYPTO_FLAG_MASK) && !temp32) { rval = XEVNT_KEY; break; /* * It is an error if the client requests * identity and the server does not support it. */ } else if (hismode == MODE_CLIENT && (fstamp & CRYPTO_FLAG_MASK) && !temp32) { rval = XEVNT_KEY; break; } /* * Otherwise, the identity scheme(s) are those * that both client and server support. */ fstamp = temp32 | (fstamp & ~CRYPTO_FLAG_MASK); /* * Discard the message if the signature digest * NID is not supported. */ temp32 = (fstamp >> 16) & 0xffff; dp = (const EVP_MD *)EVP_get_digestbynid(temp32); if (dp == NULL) { rval = XEVNT_MD; break; } /* * Save status word, host name and message * digest/signature type. */ peer->crypto = fstamp; peer->digest = dp; peer->subject = emalloc(vallen + 1); memcpy(peer->subject, ep->pkt, vallen); peer->subject[vallen] = '\0'; peer->issuer = emalloc(vallen + 1); strcpy(peer->issuer, peer->subject); temp32 = (fstamp >> 16) & 0xffff; snprintf(statstr, NTP_MAXSTRLEN, "flags 0x%x host %s signature %s", fstamp, peer->subject, OBJ_nid2ln(temp32)); record_crypto_stats(&peer->srcadr, statstr); #ifdef DEBUG if (debug) printf("crypto_recv: %s\n", statstr); #endif break; /* * Decode X509 certificate in ASN.1 format and extract * the data containing, among other things, subject * name and public key. In the default identification * scheme, the certificate trail is followed to a self * signed trusted certificate. */ case CRYPTO_CERT | CRYPTO_RESP: /* * Discard the message if invalid. */ if ((rval = crypto_verify(ep, NULL, peer)) != XEVNT_OK) break; /* * Scan the certificate list to delete old * versions and link the newest version first on * the list. */ if ((rval = cert_install(ep, peer)) != XEVNT_OK) break; /* * If we snatch the certificate before the * server certificate has been signed by its * server, it will be self signed. When it is, * we chase the certificate issuer, which the * server has, and keep going until a self * signed trusted certificate is found. Be sure * to update the issuer field, since it may * change. */ if (peer->issuer != NULL) free(peer->issuer); peer->issuer = emalloc(strlen(cinfo->issuer) + 1); strcpy(peer->issuer, cinfo->issuer); /* * We plug in the public key and lifetime from * the first certificate received. However, note * that this certificate might not be signed by * the server, so we can't check the * signature/digest NID. */ if (peer->pkey == NULL) { ptr = (u_char *)cinfo->cert.ptr; cert = d2i_X509(NULL, &ptr, ntohl(cinfo->cert.vallen)); peer->pkey = X509_get_pubkey(cert); X509_free(cert); } peer->flash &= ~TEST8; temp32 = cinfo->nid; snprintf(statstr, NTP_MAXSTRLEN, "cert %s 0x%x %s (%u) fs %u", cinfo->subject, cinfo->flags, OBJ_nid2ln(temp32), temp32, ntohl(ep->fstamp)); record_crypto_stats(&peer->srcadr, statstr); #ifdef DEBUG if (debug) printf("crypto_recv: %s\n", statstr); #endif break; /* * Schnorr (IFF)identity scheme. This scheme is designed * for use with shared secret group keys and where the * certificate may be generated by a third party. The * client sends a challenge to the server, which * performs a calculation and returns the result. A * positive result is possible only if both client and * server contain the same secret group key. */ case CRYPTO_IFF | CRYPTO_RESP: /* * Discard the message if invalid or certificate * trail not trusted. */ if (!(peer->crypto & CRYPTO_FLAG_VALID)) { rval = XEVNT_ERR; break; } if ((rval = crypto_verify(ep, NULL, peer)) != XEVNT_OK) break; /* * If the the challenge matches the response, * the certificate public key, as well as the * server public key, signatyre and identity are * all verified at the same time. The server is * declared trusted, so we skip further * certificate stages and move immediately to * the cookie stage. */ if ((rval = crypto_iff(ep, peer)) != XEVNT_OK) break; peer->crypto |= CRYPTO_FLAG_VRFY | CRYPTO_FLAG_PROV; peer->flash &= ~TEST8; snprintf(statstr, NTP_MAXSTRLEN, "iff fs %u", ntohl(ep->fstamp)); record_crypto_stats(&peer->srcadr, statstr); #ifdef DEBUG if (debug) printf("crypto_recv: %s\n", statstr); #endif break; /* * Guillou-Quisquater (GQ) identity scheme. This scheme * is designed for use with public certificates carrying * the GQ public key in an extension field. The client * sends a challenge to the server, which performs a * calculation and returns the result. A positive result * is possible only if both client and server contain * the same group key and the server has the matching GQ * private key. */ case CRYPTO_GQ | CRYPTO_RESP: /* * Discard the message if invalid or certificate * trail not trusted. */ if (!(peer->crypto & CRYPTO_FLAG_VALID)) { rval = XEVNT_ERR; break; } if ((rval = crypto_verify(ep, NULL, peer)) != XEVNT_OK) break; /* * If the the challenge matches the response, * the certificate public key, as well as the * server public key, signatyre and identity are * all verified at the same time. The server is * declared trusted, so we skip further * certificate stages and move immediately to * the cookie stage. */ if ((rval = crypto_gq(ep, peer)) != XEVNT_OK) break; peer->crypto |= CRYPTO_FLAG_VRFY | CRYPTO_FLAG_PROV; peer->flash &= ~TEST8; snprintf(statstr, NTP_MAXSTRLEN, "gq fs %u", ntohl(ep->fstamp)); record_crypto_stats(&peer->srcadr, statstr); #ifdef DEBUG if (debug) printf("crypto_recv: %s\n", statstr); #endif break; /* * MV */ case CRYPTO_MV | CRYPTO_RESP: /* * Discard the message if invalid or certificate * trail not trusted. */ if (!(peer->crypto & CRYPTO_FLAG_VALID)) { rval = XEVNT_ERR; break; } if ((rval = crypto_verify(ep, NULL, peer)) != XEVNT_OK) break; /* * If the the challenge matches the response, * the certificate public key, as well as the * server public key, signatyre and identity are * all verified at the same time. The server is * declared trusted, so we skip further * certificate stages and move immediately to * the cookie stage. */ if ((rval = crypto_mv(ep, peer)) != XEVNT_OK) break; peer->crypto |= CRYPTO_FLAG_VRFY | CRYPTO_FLAG_PROV; peer->flash &= ~TEST8; snprintf(statstr, NTP_MAXSTRLEN, "mv fs %u", ntohl(ep->fstamp)); record_crypto_stats(&peer->srcadr, statstr); #ifdef DEBUG if (debug) printf("crypto_recv: %s\n", statstr); #endif break; /* * Cookie request in symmetric modes. Roll a random * cookie and install in symmetric mode. Encrypt for the * response, which is transmitted later. */ case CRYPTO_COOK: /* * Discard the message if invalid or certificate * trail not trusted. */ if (!(peer->crypto & CRYPTO_FLAG_VALID)) { rval = XEVNT_ERR; break; } if ((rval = crypto_verify(ep, NULL, peer)) != XEVNT_OK) break; /* * Pass the extension field to the transmit * side. If already agreed, walk away. */ fp = emalloc(len); memcpy(fp, ep, len); temp32 = CRYPTO_RESP; fp->opcode |= htonl(temp32); peer->cmmd = fp; if (peer->crypto & CRYPTO_FLAG_AGREE) { peer->flash &= ~TEST8; break; } /* * Install cookie values and light the cookie * bit. The transmit side will pick up and * encrypt it for the response. */ key_expire(peer); peer->cookval.tstamp = ep->tstamp; peer->cookval.fstamp = ep->fstamp; RAND_bytes((u_char *)&peer->pcookie, 4); peer->crypto &= ~CRYPTO_FLAG_AUTO; peer->crypto |= CRYPTO_FLAG_AGREE; peer->flash &= ~TEST8; snprintf(statstr, NTP_MAXSTRLEN, "cook %x ts %u fs %u", peer->pcookie, ntohl(ep->tstamp), ntohl(ep->fstamp)); record_crypto_stats(&peer->srcadr, statstr); #ifdef DEBUG if (debug) printf("crypto_recv: %s\n", statstr); #endif break; /* * Cookie response in client and symmetric modes. If the * cookie bit is set, the working cookie is the EXOR of * the current and new values. */ case CRYPTO_COOK | CRYPTO_RESP: /* * Discard the message if invalid or identity * not confirmed or signature not verified with * respect to the cookie values. */ if (!(peer->crypto & CRYPTO_FLAG_VRFY)) { rval = XEVNT_ERR; break; } if ((rval = crypto_verify(ep, &peer->cookval, peer)) != XEVNT_OK) break; /* * Decrypt the cookie, hunting all the time for * errors. */ if (vallen == (u_int) EVP_PKEY_size(host_pkey)) { RSA_private_decrypt(vallen, (u_char *)ep->pkt, (u_char *)&temp32, host_pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING); cookie = ntohl(temp32); } else { rval = XEVNT_CKY; break; } /* * Install cookie values and light the cookie * bit. If this is not broadcast client mode, we * are done here. */ key_expire(peer); peer->cookval.tstamp = ep->tstamp; peer->cookval.fstamp = ep->fstamp; if (peer->crypto & CRYPTO_FLAG_AGREE) peer->pcookie ^= cookie; else peer->pcookie = cookie; if (peer->hmode == MODE_CLIENT && !(peer->cast_flags & MDF_BCLNT)) peer->crypto |= CRYPTO_FLAG_AUTO; else peer->crypto &= ~CRYPTO_FLAG_AUTO; peer->crypto |= CRYPTO_FLAG_AGREE; peer->flash &= ~TEST8; snprintf(statstr, NTP_MAXSTRLEN, "cook %x ts %u fs %u", peer->pcookie, ntohl(ep->tstamp), ntohl(ep->fstamp)); record_crypto_stats(&peer->srcadr, statstr); #ifdef DEBUG if (debug) printf("crypto_recv: %s\n", statstr); #endif break; /* * Install autokey values in broadcast client and * symmetric modes. We have to do this every time the * sever/peer cookie changes or a new keylist is * rolled. Ordinarily, this is automatic as this message * is piggybacked on the first NTP packet sent upon * either of these events. Note that a broadcast client * or symmetric peer can receive this response without a * matching request. */ case CRYPTO_AUTO | CRYPTO_RESP: /* * Discard the message if invalid or identity * not confirmed or signature not verified with * respect to the receive autokey values. */ if (!(peer->crypto & CRYPTO_FLAG_VRFY)) { rval = XEVNT_ERR; break; } if ((rval = crypto_verify(ep, &peer->recval, peer)) != XEVNT_OK) break; /* * Install autokey values and light the * autokey bit. This is not hard. */ if (peer->recval.ptr == NULL) peer->recval.ptr = emalloc(sizeof(struct autokey)); bp = (struct autokey *)peer->recval.ptr; peer->recval.tstamp = ep->tstamp; peer->recval.fstamp = ep->fstamp; ap = (struct autokey *)ep->pkt; bp->seq = ntohl(ap->seq); bp->key = ntohl(ap->key); peer->pkeyid = bp->key; peer->crypto |= CRYPTO_FLAG_AUTO; peer->flash &= ~TEST8; snprintf(statstr, NTP_MAXSTRLEN, "auto seq %d key %x ts %u fs %u", bp->seq, bp->key, ntohl(ep->tstamp), ntohl(ep->fstamp)); record_crypto_stats(&peer->srcadr, statstr); #ifdef DEBUG if (debug) printf("crypto_recv: %s\n", statstr); #endif break; /* * X509 certificate sign response. Validate the * certificate signed by the server and install. Later * this can be provided to clients of this server in * lieu of the self signed certificate in order to * validate the public key. */ case CRYPTO_SIGN | CRYPTO_RESP: /* * Discard the message if invalid or not * proventic. */ if (!(peer->crypto & CRYPTO_FLAG_PROV)) { rval = XEVNT_ERR; break; } if ((rval = crypto_verify(ep, NULL, peer)) != XEVNT_OK) break; /* * Scan the certificate list to delete old * versions and link the newest version first on * the list. */ if ((rval = cert_install(ep, peer)) != XEVNT_OK) break; peer->crypto |= CRYPTO_FLAG_SIGN; peer->flash &= ~TEST8; temp32 = cinfo->nid; snprintf(statstr, NTP_MAXSTRLEN, "sign %s 0x%x %s (%u) fs %u", cinfo->issuer, cinfo->flags, OBJ_nid2ln(temp32), temp32, ntohl(ep->fstamp)); record_crypto_stats(&peer->srcadr, statstr); #ifdef DEBUG if (debug) printf("crypto_recv: %s\n", statstr); #endif break; /* * Install leapseconds table in symmetric modes. This * table is proventicated to the NIST primary servers, * either by copying the file containing the table from * a NIST server to a trusted server or directly using * this protocol. While the entire table is installed at * the server, presently only the current TAI offset is * provided via the kernel to other applications. */ case CRYPTO_TAI: /* * Discard the message if invalid. */ if ((rval = crypto_verify(ep, NULL, peer)) != XEVNT_OK) break; /* * Pass the extension field to the transmit * side. Continue below if a leapseconds table * accompanies the message. */ fp = emalloc(len); memcpy(fp, ep, len); temp32 = CRYPTO_RESP; fp->opcode |= htonl(temp32); peer->cmmd = fp; if (len <= VALUE_LEN) { peer->flash &= ~TEST8; break; } /* fall through */ case CRYPTO_TAI | CRYPTO_RESP: /* * If this is a response, discard the message if * signature not verified with respect to the * leapsecond table values. */ if (peer->cmmd == NULL) { if ((rval = crypto_verify(ep, &peer->tai_leap, peer)) != XEVNT_OK) break; } /* * Initialize peer variables with latest update. */ peer->tai_leap.tstamp = ep->tstamp; peer->tai_leap.fstamp = ep->fstamp; peer->tai_leap.vallen = ep->vallen; /* * Install the new table if there is no stored * table or the new table is more recent than * the stored table. Since a filestamp may have * changed, recompute the signatures. */ if (ntohl(peer->tai_leap.fstamp) > ntohl(tai_leap.fstamp)) { tai_leap.fstamp = ep->fstamp; tai_leap.vallen = ep->vallen; if (tai_leap.ptr != NULL) free(tai_leap.ptr); tai_leap.ptr = emalloc(vallen); memcpy(tai_leap.ptr, ep->pkt, vallen); crypto_update(); } crypto_flags |= CRYPTO_FLAG_TAI; peer->crypto |= CRYPTO_FLAG_LEAP; peer->flash &= ~TEST8; snprintf(statstr, NTP_MAXSTRLEN, "leap %u ts %u fs %u", vallen, ntohl(ep->tstamp), ntohl(ep->fstamp)); record_crypto_stats(&peer->srcadr, statstr); #ifdef DEBUG if (debug) printf("crypto_recv: %s\n", statstr); #endif break; /* * We come here in symmetric modes for miscellaneous * commands that have value fields but are processed on * the transmit side. All we need do here is check for * valid field length. Remaining checks are below and on * the transmit side. */ case CRYPTO_CERT: case CRYPTO_IFF: case CRYPTO_GQ: case CRYPTO_MV: case CRYPTO_SIGN: if (len < VALUE_LEN) { rval = XEVNT_LEN; break; } /* fall through */ /* * We come here for miscellaneous requests and unknown * requests and responses. If an unknown response or * error, forget it. If a request, save the extension * field for later. Unknown requests will be caught on * the transmit side. */ default: if (code & (CRYPTO_RESP | CRYPTO_ERROR)) { rval = XEVNT_ERR; } else if ((rval = crypto_verify(ep, NULL, peer)) == XEVNT_OK) { fp = emalloc(len); memcpy(fp, ep, len); temp32 = CRYPTO_RESP; fp->opcode |= htonl(temp32); peer->cmmd = fp; } } /* * We don't log length/format/timestamp errors and * duplicates, which are log clogging vulnerabilities. * The first error found terminates the extension field * scan and we return the laundry to the caller. A * length/format/timestamp error on transmit is * cheerfully ignored, as the message is not sent. */ if (rval > XEVNT_TSP) { snprintf(statstr, NTP_MAXSTRLEN, "error %x opcode %x ts %u fs %u", rval, code, tstamp, fstamp); record_crypto_stats(&peer->srcadr, statstr); report_event(rval, peer); #ifdef DEBUG if (debug) printf("crypto_recv: %s\n", statstr); #endif break; } else if (rval > XEVNT_OK && (code & CRYPTO_RESP)) { rval = XEVNT_OK; } authlen += len; } return (rval); } /* * crypto_xmit - construct extension fields * * This routine is called both when an association is configured and * when one is not. The only case where this matters is to retrieve the * autokey information, in which case the caller has to provide the * association ID to match the association. * * Returns length of extension field. */ int crypto_xmit( struct pkt *xpkt, /* transmit packet pointer */ struct sockaddr_storage *srcadr_sin, /* active runway */ int start, /* offset to extension field */ struct exten *ep, /* extension pointer */ keyid_t cookie /* session cookie */ ) { u_int32 *pkt; /* packet pointer */ struct peer *peer; /* peer structure pointer */ u_int opcode; /* extension field opcode */ struct exten *fp; /* extension pointers */ struct cert_info *cp, *xp; /* certificate info/value pointer */ char certname[MAXHOSTNAME + 1]; /* subject name buffer */ char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ tstamp_t tstamp; u_int vallen; u_int len; struct value vtemp; associd_t associd; int rval; keyid_t tcookie; /* * Generate the requested extension field request code, length * and association ID. If this is a response and the host is not * synchronized, light the error bit and go home. */ pkt = (u_int32 *)xpkt + start / 4; fp = (struct exten *)pkt; opcode = ntohl(ep->opcode); associd = (associd_t) ntohl(ep->associd); fp->associd = htonl(associd); len = 8; rval = XEVNT_OK; tstamp = crypto_time(); switch (opcode & 0xffff0000) { /* * Send association request and response with status word and * host name. Note, this message is not signed and the filestamp * contains only the status word. */ case CRYPTO_ASSOC | CRYPTO_RESP: len += crypto_send(fp, &hostval); fp->fstamp = htonl(crypto_flags); break; case CRYPTO_ASSOC: len += crypto_send(fp, &hostval); fp->fstamp = htonl(crypto_flags | ident_scheme); break; /* * Send certificate request. Use the values from the extension * field. */ case CRYPTO_CERT: memset(&vtemp, 0, sizeof(vtemp)); vtemp.tstamp = ep->tstamp; vtemp.fstamp = ep->fstamp; vtemp.vallen = ep->vallen; vtemp.ptr = (u_char *)ep->pkt; len += crypto_send(fp, &vtemp); break; /* * Send certificate response or sign request. Use the values * from the certificate cache. If the request contains no * subject name, assume the name of this host. This is for * backwards compatibility. Private certificates are never sent. */ case CRYPTO_SIGN: case CRYPTO_CERT | CRYPTO_RESP: vallen = ntohl(ep->vallen); if (vallen == 8) { strcpy(certname, sys_hostname); } else if (vallen == 0 || vallen > MAXHOSTNAME) { rval = XEVNT_LEN; break; } else { memcpy(certname, ep->pkt, vallen); certname[vallen] = '\0'; } /* * Find all certificates with matching subject. If a * self-signed, trusted certificate is found, use that. * If not, use the first one with matching subject. A * private certificate is never divulged or signed. */ xp = NULL; for (cp = cinfo; cp != NULL; cp = cp->link) { if (cp->flags & CERT_PRIV) continue; if (strcmp(certname, cp->subject) == 0) { if (xp == NULL) xp = cp; if (strcmp(certname, cp->issuer) == 0 && cp->flags & CERT_TRUST) { xp = cp; break; } } } /* * Be careful who you trust. If not yet synchronized, * give back an empty response. If certificate not found * or beyond the lifetime, return an error. This is to * avoid a bad dude trying to get an expired certificate * re-signed. Otherwise, send it. * * Note the timestamp and filestamp are taken from the * certificate value structure. For all certificates the * timestamp is the latest signature update time. For * host and imported certificates the filestamp is the * creation epoch. For signed certificates the filestamp * is the creation epoch of the trusted certificate at * the base of the certificate trail. In principle, this * allows strong checking for signature masquerade. */ if (tstamp == 0) break; if (xp == NULL) rval = XEVNT_CRT; else if (tstamp < xp->first || tstamp > xp->last) rval = XEVNT_SRV; else len += crypto_send(fp, &xp->cert); break; /* * Send challenge in Schnorr (IFF) identity scheme. */ case CRYPTO_IFF: if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) { rval = XEVNT_ERR; break; } if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) { len += crypto_send(fp, &vtemp); value_free(&vtemp); } break; /* * Send response in Schnorr (IFF) identity scheme. */ case CRYPTO_IFF | CRYPTO_RESP: if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) { len += crypto_send(fp, &vtemp); value_free(&vtemp); } break; /* * Send challenge in Guillou-Quisquater (GQ) identity scheme. */ case CRYPTO_GQ: if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) { rval = XEVNT_ERR; break; } if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) { len += crypto_send(fp, &vtemp); value_free(&vtemp); } break; /* * Send response in Guillou-Quisquater (GQ) identity scheme. */ case CRYPTO_GQ | CRYPTO_RESP: if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) { len += crypto_send(fp, &vtemp); value_free(&vtemp); } break; /* * Send challenge in MV identity scheme. */ case CRYPTO_MV: if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) { rval = XEVNT_ERR; break; } if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) { len += crypto_send(fp, &vtemp); value_free(&vtemp); } break; /* * Send response in MV identity scheme. */ case CRYPTO_MV | CRYPTO_RESP: if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) { len += crypto_send(fp, &vtemp); value_free(&vtemp); } break; /* * Send certificate sign response. The integrity of the request * certificate has already been verified on the receive side. * Sign the response using the local server key. Use the * filestamp from the request and use the timestamp as the * current time. Light the error bit if the certificate is * invalid or contains an unverified signature. */ case CRYPTO_SIGN | CRYPTO_RESP: if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) len += crypto_send(fp, &vtemp); value_free(&vtemp); break; /* * Send public key and signature. Use the values from the public * key. */ case CRYPTO_COOK: len += crypto_send(fp, &pubkey); break; /* * Encrypt and send cookie and signature. Light the error bit if * anything goes wrong. */ case CRYPTO_COOK | CRYPTO_RESP: if ((opcode & 0xffff) < VALUE_LEN) { rval = XEVNT_LEN; break; } if (PKT_MODE(xpkt->li_vn_mode) == MODE_SERVER) { tcookie = cookie; } else { if ((peer = findpeerbyassoc(associd)) == NULL) { rval = XEVNT_ERR; break; } tcookie = peer->pcookie; } if ((rval = crypto_encrypt(ep, &vtemp, &tcookie)) == XEVNT_OK) len += crypto_send(fp, &vtemp); value_free(&vtemp); break; /* * Find peer and send autokey data and signature in broadcast * server and symmetric modes. Use the values in the autokey * structure. If no association is found, either the server has * restarted with new associations or some perp has replayed an * old message, in which case light the error bit. */ case CRYPTO_AUTO | CRYPTO_RESP: if ((peer = findpeerbyassoc(associd)) == NULL) { rval = XEVNT_ERR; break; } peer->flags &= ~FLAG_ASSOC; len += crypto_send(fp, &peer->sndval); break; /* * Send leapseconds table and signature. Use the values from the * tai structure. If no table has been loaded, just send an * empty request. */ case CRYPTO_TAI: case CRYPTO_TAI | CRYPTO_RESP: if (crypto_flags & CRYPTO_FLAG_TAI) len += crypto_send(fp, &tai_leap); break; /* * Default - Fall through for requests; for unknown responses, * flag as error. */ default: if (opcode & CRYPTO_RESP) rval = XEVNT_ERR; } /* * In case of error, flame the log. If a request, toss the * puppy; if a response, return so the sender can flame, too. */ if (rval != XEVNT_OK) { opcode |= CRYPTO_ERROR; snprintf(statstr, NTP_MAXSTRLEN, "error %x opcode %x", rval, opcode); record_crypto_stats(srcadr_sin, statstr); report_event(rval, NULL); #ifdef DEBUG if (debug) printf("crypto_xmit: %s\n", statstr); #endif if (!(opcode & CRYPTO_RESP)) return (0); } /* * Round up the field length to a multiple of 8 bytes and save * the request code and length. */ len = ((len + 7) / 8) * 8; fp->opcode = htonl((opcode & 0xffff0000) | len); #ifdef DEBUG if (debug) printf( "crypto_xmit: flags 0x%x ext offset %d len %u code 0x%x assocID %d\n", crypto_flags, start, len, opcode >> 16, associd); #endif return (len); } /* * crypto_verify - parse and verify the extension field and value * * Returns * XEVNT_OK success * XEVNT_LEN bad field format or length * XEVNT_TSP bad timestamp * XEVNT_FSP bad filestamp * XEVNT_PUB bad or missing public key * XEVNT_SGL bad signature length * XEVNT_SIG signature not verified * XEVNT_ERR protocol error */ static int crypto_verify( struct exten *ep, /* extension pointer */ struct value *vp, /* value pointer */ struct peer *peer /* peer structure pointer */ ) { EVP_PKEY *pkey; /* server public key */ EVP_MD_CTX ctx; /* signature context */ tstamp_t tstamp, tstamp1 = 0; /* timestamp */ tstamp_t fstamp, fstamp1 = 0; /* filestamp */ u_int vallen; /* value length */ u_int siglen; /* signature length */ u_int opcode, len; int i; /* * We require valid opcode and field lengths, timestamp, * filestamp, public key, digest, signature length and * signature, where relevant. Note that preliminary length * checks are done in the main loop. */ len = ntohl(ep->opcode) & 0x0000ffff; opcode = ntohl(ep->opcode) & 0xffff0000; /* * Check for valid operation code and protocol. The opcode must * not have the error bit set. If a response, it must have a * value header. If a request and does not contain a value * header, no need for further checking. */ if (opcode & CRYPTO_ERROR) return (XEVNT_ERR); if (opcode & CRYPTO_RESP) { if (len < VALUE_LEN) return (XEVNT_LEN); } else { if (len < VALUE_LEN) return (XEVNT_OK); } /* * We have a value header. Check for valid field lengths. The * field length must be long enough to contain the value header, * value and signature. Note both the value and signature fields * are rounded up to the next word. */ vallen = ntohl(ep->vallen); i = (vallen + 3) / 4; siglen = ntohl(ep->pkt[i++]); if (len < VALUE_LEN + ((vallen + 3) / 4) * 4 + ((siglen + 3) / 4) * 4) return (XEVNT_LEN); /* * Punt if this is a response with no data. Punt if this is a * request and a previous response is pending. */ if (opcode & CRYPTO_RESP) { if (vallen == 0) return (XEVNT_LEN); } else { if (peer->cmmd != NULL) return (XEVNT_LEN); } /* * Check for valid timestamp and filestamp. If the timestamp is * zero, the sender is not synchronized and signatures are * disregarded. If not, the timestamp must not precede the * filestamp. The timestamp and filestamp must not precede the * corresponding values in the value structure, if present. Once * the autokey values have been installed, the timestamp must * always be later than the corresponding value in the value * structure. Duplicate timestamps are illegal once the cookie * has been validated. */ tstamp = ntohl(ep->tstamp); fstamp = ntohl(ep->fstamp); if (tstamp == 0) return (XEVNT_OK); if (tstamp < fstamp) return (XEVNT_TSP); if (vp != NULL) { tstamp1 = ntohl(vp->tstamp); fstamp1 = ntohl(vp->fstamp); if ((tstamp < tstamp1 || (tstamp == tstamp1 && (peer->crypto & CRYPTO_FLAG_AUTO)))) return (XEVNT_TSP); if ((tstamp < fstamp1 || fstamp < fstamp1)) return (XEVNT_FSP); } /* * Check for valid signature length, public key and digest * algorithm. */ if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV) pkey = sign_pkey; else pkey = peer->pkey; if (siglen == 0 || pkey == NULL || peer->digest == NULL) return (XEVNT_OK); if (siglen != (u_int)EVP_PKEY_size(pkey)) return (XEVNT_SGL); /* * Darn, I thought we would never get here. Verify the * signature. If the identity exchange is verified, light the * proventic bit. If no client identity scheme is specified, * avoid doing the sign exchange. */ EVP_VerifyInit(&ctx, peer->digest); EVP_VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12); if (EVP_VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen, pkey) <= 0) return (XEVNT_SIG); if (peer->crypto & CRYPTO_FLAG_VRFY) { peer->crypto |= CRYPTO_FLAG_PROV; if (!(crypto_flags & CRYPTO_FLAG_MASK)) peer->crypto |= CRYPTO_FLAG_SIGN; } return (XEVNT_OK); } /* * crypto_encrypt - construct encrypted cookie and signature from * extension field and cookie * * Returns * XEVNT_OK success * XEVNT_PUB bad or missing public key * XEVNT_CKY bad or missing cookie * XEVNT_PER host certificate expired */ static int crypto_encrypt( struct exten *ep, /* extension pointer */ struct value *vp, /* value pointer */ keyid_t *cookie /* server cookie */ ) { EVP_PKEY *pkey; /* public key */ EVP_MD_CTX ctx; /* signature context */ tstamp_t tstamp; /* NTP timestamp */ u_int32 temp32; u_int len; u_char *ptr; /* * Extract the public key from the request. */ len = ntohl(ep->vallen); ptr = (u_char *)ep->pkt; pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, len); if (pkey == NULL) { msyslog(LOG_ERR, "crypto_encrypt %s\n", ERR_error_string(ERR_get_error(), NULL)); return (XEVNT_PUB); } /* * Encrypt the cookie, encode in ASN.1 and sign. */ tstamp = crypto_time(); memset(vp, 0, sizeof(struct value)); vp->tstamp = htonl(tstamp); vp->fstamp = hostval.tstamp; len = EVP_PKEY_size(pkey); vp->vallen = htonl(len); vp->ptr = emalloc(len); temp32 = htonl(*cookie); if (!RSA_public_encrypt(4, (u_char *)&temp32, vp->ptr, pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING)) { msyslog(LOG_ERR, "crypto_encrypt %s\n", ERR_error_string(ERR_get_error(), NULL)); EVP_PKEY_free(pkey); return (XEVNT_CKY); } EVP_PKEY_free(pkey); vp->siglen = 0; if (tstamp == 0) return (XEVNT_OK); if (tstamp < cinfo->first || tstamp > cinfo->last) return (XEVNT_PER); vp->sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); EVP_SignUpdate(&ctx, vp->ptr, len); if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) vp->siglen = htonl(len); return (XEVNT_OK); } /* * crypto_ident - construct extension field for identity scheme * * This routine determines which identity scheme is in use and * constructs an extension field for that scheme. */ u_int crypto_ident( struct peer *peer /* peer structure pointer */ ) { char filename[MAXFILENAME + 1]; /* * If the server identity has already been verified, no further * action is necessary. Otherwise, try to load the identity file * of the certificate issuer. If the issuer file is not found, * try the host file. If nothing found, declare a cryptobust. * Note we can't get here unless the trusted certificate has * been found and the CRYPTO_FLAG_VALID bit is set, so the * certificate issuer is valid. */ if (peer->ident_pkey != NULL) EVP_PKEY_free(peer->ident_pkey); if (peer->crypto & CRYPTO_FLAG_GQ) { snprintf(filename, MAXFILENAME, "ntpkey_gq_%s", peer->issuer); peer->ident_pkey = crypto_key(filename, &peer->fstamp); if (peer->ident_pkey != NULL) return (CRYPTO_GQ); snprintf(filename, MAXFILENAME, "ntpkey_gq_%s", sys_hostname); peer->ident_pkey = crypto_key(filename, &peer->fstamp); if (peer->ident_pkey != NULL) return (CRYPTO_GQ); } if (peer->crypto & CRYPTO_FLAG_IFF) { snprintf(filename, MAXFILENAME, "ntpkey_iff_%s", peer->issuer); peer->ident_pkey = crypto_key(filename, &peer->fstamp); if (peer->ident_pkey != NULL) return (CRYPTO_IFF); snprintf(filename, MAXFILENAME, "ntpkey_iff_%s", sys_hostname); peer->ident_pkey = crypto_key(filename, &peer->fstamp); if (peer->ident_pkey != NULL) return (CRYPTO_IFF); } if (peer->crypto & CRYPTO_FLAG_MV) { snprintf(filename, MAXFILENAME, "ntpkey_mv_%s", peer->issuer); peer->ident_pkey = crypto_key(filename, &peer->fstamp); if (peer->ident_pkey != NULL) return (CRYPTO_MV); snprintf(filename, MAXFILENAME, "ntpkey_mv_%s", sys_hostname); peer->ident_pkey = crypto_key(filename, &peer->fstamp); if (peer->ident_pkey != NULL) return (CRYPTO_MV); } /* * No compatible identity scheme is available. Life is hard. */ msyslog(LOG_INFO, "crypto_ident: no compatible identity scheme found"); return (0); } /* * crypto_args - construct extension field from arguments * * This routine creates an extension field with current timestamps and * specified opcode, association ID and optional string. Note that the * extension field is created here, but freed after the crypto_xmit() * call in the protocol module. * * Returns extension field pointer (no errors). */ struct exten * crypto_args( struct peer *peer, /* peer structure pointer */ u_int opcode, /* operation code */ char *str /* argument string */ ) { tstamp_t tstamp; /* NTP timestamp */ struct exten *ep; /* extension field pointer */ u_int len; /* extension field length */ tstamp = crypto_time(); len = sizeof(struct exten); if (str != NULL) len += strlen(str); ep = emalloc(len); memset(ep, 0, len); if (opcode == 0) return (ep); ep->opcode = htonl(opcode + len); /* * If a response, send our ID; if a request, send the * responder's ID. */ if (opcode & CRYPTO_RESP) ep->associd = htonl(peer->associd); else ep->associd = htonl(peer->assoc); ep->tstamp = htonl(tstamp); ep->fstamp = hostval.tstamp; ep->vallen = 0; if (str != NULL) { ep->vallen = htonl(strlen(str)); memcpy((char *)ep->pkt, str, strlen(str)); } else { ep->pkt[0] = peer->associd; } return (ep); } /* * crypto_send - construct extension field from value components * * Returns extension field length. Note: it is not polite to send a * nonempty signature with zero timestamp or a nonzero timestamp with * empty signature, but these rules are not enforced here. */ u_int crypto_send( struct exten *ep, /* extension field pointer */ struct value *vp /* value pointer */ ) { u_int len, temp32; int i; /* * Copy data. If the data field is empty or zero length, encode * an empty value with length zero. */ ep->tstamp = vp->tstamp; ep->fstamp = vp->fstamp; ep->vallen = vp->vallen; len = 12; temp32 = ntohl(vp->vallen); if (temp32 > 0 && vp->ptr != NULL) memcpy(ep->pkt, vp->ptr, temp32); /* * Copy signature. If the signature field is empty or zero * length, encode an empty signature with length zero. */ i = (temp32 + 3) / 4; len += i * 4 + 4; ep->pkt[i++] = vp->siglen; temp32 = ntohl(vp->siglen); if (temp32 > 0 && vp->sig != NULL) memcpy(&ep->pkt[i], vp->sig, temp32); len += temp32; return (len); } /* * crypto_update - compute new public value and sign extension fields * * This routine runs periodically, like once a day, and when something * changes. It updates the timestamps on three value structures and one * value structure list, then signs all the structures: * * hostval host name (not signed) * pubkey public key * cinfo certificate info/value list * tai_leap leapseconds file * * Filestamps are proventicated data, so this routine is run only when * the host has been synchronized to a proventicated source. Thus, the * timestamp is proventicated, too, and can be used to deflect * clogging attacks and even cook breakfast. * * Returns void (no errors) */ void crypto_update(void) { EVP_MD_CTX ctx; /* message digest context */ struct cert_info *cp, *cpn; /* certificate info/value */ char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ tstamp_t tstamp; /* NTP timestamp */ u_int len; if ((tstamp = crypto_time()) == 0) return; hostval.tstamp = htonl(tstamp); /* * Sign public key and timestamps. The filestamp is derived from * the host key file extension from wherever the file was * generated. */ if (pubkey.vallen != 0) { pubkey.tstamp = hostval.tstamp; pubkey.siglen = 0; if (pubkey.sig == NULL) pubkey.sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)&pubkey, 12); EVP_SignUpdate(&ctx, pubkey.ptr, ntohl(pubkey.vallen)); if (EVP_SignFinal(&ctx, pubkey.sig, &len, sign_pkey)) pubkey.siglen = htonl(len); } /* * Sign certificates and timestamps. The filestamp is derived * from the certificate file extension from wherever the file * was generated. Note we do not throw expired certificates * away; they may have signed younger ones. */ for (cp = cinfo; cp != NULL; cp = cpn) { cpn = cp->link; cp->cert.tstamp = hostval.tstamp; cp->cert.siglen = 0; if (cp->cert.sig == NULL) cp->cert.sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)&cp->cert, 12); EVP_SignUpdate(&ctx, cp->cert.ptr, ntohl(cp->cert.vallen)); if (EVP_SignFinal(&ctx, cp->cert.sig, &len, sign_pkey)) cp->cert.siglen = htonl(len); } /* * Sign leapseconds table and timestamps. The filestamp is * derived from the leapsecond file extension from wherever the * file was generated. */ if (tai_leap.vallen != 0) { tai_leap.tstamp = hostval.tstamp; tai_leap.siglen = 0; if (tai_leap.sig == NULL) tai_leap.sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)&tai_leap, 12); EVP_SignUpdate(&ctx, tai_leap.ptr, ntohl(tai_leap.vallen)); if (EVP_SignFinal(&ctx, tai_leap.sig, &len, sign_pkey)) tai_leap.siglen = htonl(len); } snprintf(statstr, NTP_MAXSTRLEN, "update ts %u", ntohl(hostval.tstamp)); record_crypto_stats(NULL, statstr); #ifdef DEBUG if (debug) printf("crypto_update: %s\n", statstr); #endif } /* * value_free - free value structure components. * * Returns void (no errors) */ void value_free( struct value *vp /* value structure */ ) { if (vp->ptr != NULL) free(vp->ptr); if (vp->sig != NULL) free(vp->sig); memset(vp, 0, sizeof(struct value)); } /* * crypto_time - returns current NTP time in seconds. */ tstamp_t crypto_time() { l_fp tstamp; /* NTP time */ L_CLR(&tstamp); L_CLR(&tstamp); if (sys_leap != LEAP_NOTINSYNC) get_systime(&tstamp); return (tstamp.l_ui); } /* * asn2ntp - convert ASN1_TIME time structure to NTP time in seconds. */ u_long asn2ntp ( ASN1_TIME *asn1time /* pointer to ASN1_TIME structure */ ) { char *v; /* pointer to ASN1_TIME string */ struct tm tm; /* used to convert to NTP time */ /* * Extract time string YYMMDDHHMMSSZ from ASN1 time structure. * Note that the YY, MM, DD fields start with one, the HH, MM, * SS fiels start with zero and the Z character should be 'Z' * for UTC. Also note that years less than 50 map to years * greater than 100. Dontcha love ASN.1? Better than MIL-188. */ if (asn1time->length > 13) return ((u_long)(~0)); /* We can't use -1 here. It's invalid */ v = (char *)asn1time->data; tm.tm_year = (v[0] - '0') * 10 + v[1] - '0'; if (tm.tm_year < 50) tm.tm_year += 100; tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1; tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0'; tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0'; tm.tm_min = (v[8] - '0') * 10 + v[9] - '0'; tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0'; tm.tm_wday = 0; tm.tm_yday = 0; tm.tm_isdst = 0; return (timegm(&tm) + JAN_1970); } /* * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number. */ static int bighash( BIGNUM *bn, /* BIGNUM * from */ BIGNUM *bk /* BIGNUM * to */ ) { EVP_MD_CTX ctx; /* message digest context */ u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ u_char *ptr; /* a BIGNUM as binary string */ u_int len; len = BN_num_bytes(bn); ptr = emalloc(len); BN_bn2bin(bn, ptr); EVP_DigestInit(&ctx, EVP_md5()); EVP_DigestUpdate(&ctx, ptr, len); EVP_DigestFinal(&ctx, dgst, &len); BN_bin2bn(dgst, len, bk); /* XXX MEMLEAK? free ptr? */ return (1); } /* *********************************************************************** * * * The following routines implement the Schnorr (IFF) identity scheme * * * *********************************************************************** * * The Schnorr (IFF) identity scheme is intended for use when * the ntp-genkeys program does not generate the certificates used in * the protocol and the group key cannot be conveyed in the certificate * itself. For this purpose, new generations of IFF values must be * securely transmitted to all members of the group before use. The * scheme is self contained and independent of new generations of host * keys, sign keys and certificates. * * The IFF identity scheme is based on DSA cryptography and algorithms * described in Stinson p. 285. The IFF values hide in a DSA cuckoo * structure, but only the primes and generator are used. The p is a * 512-bit prime, q a 160-bit prime that divides p - 1 and is a qth root * of 1 mod p; that is, g^q = 1 mod p. The TA rolls primvate random * group key b disguised as a DSA structure member, then computes public * key g^(q - b). These values are shared only among group members and * never revealed in messages. Alice challenges Bob to confirm identity * using the protocol described below. * * How it works * * The scheme goes like this. Both Alice and Bob have the public primes * p, q and generator g. The TA gives private key b to Bob and public * key v = g^(q - a) mod p to Alice. * * Alice rolls new random challenge r and sends to Bob in the IFF * request message. Bob rolls new random k, then computes y = k + b r * mod q and x = g^k mod p and sends (y, hash(x)) to Alice in the * response message. Besides making the response shorter, the hash makes * it effectivey impossible for an intruder to solve for b by observing * a number of these messages. * * Alice receives the response and computes g^y v^r mod p. After a bit * of algebra, this simplifies to g^k. If the hash of this result * matches hash(x), Alice knows that Bob has the group key b. The signed * response binds this knowledge to Bob's private key and the public key * previously received in his certificate. * * crypto_alice - construct Alice's challenge in IFF scheme * * Returns * XEVNT_OK success * XEVNT_PUB bad or missing public key * XEVNT_ID bad or missing group key */ static int crypto_alice( struct peer *peer, /* peer pointer */ struct value *vp /* value pointer */ ) { DSA *dsa; /* IFF parameters */ BN_CTX *bctx; /* BIGNUM context */ EVP_MD_CTX ctx; /* signature context */ tstamp_t tstamp; u_int len; /* * The identity parameters must have correct format and content. */ if (peer->ident_pkey == NULL) return (XEVNT_ID); if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) { msyslog(LOG_INFO, "crypto_alice: defective key"); return (XEVNT_PUB); } /* * Roll new random r (0 < r < q). The OpenSSL library has a bug * omitting BN_rand_range, so we have to do it the hard way. */ bctx = BN_CTX_new(); len = BN_num_bytes(dsa->q); if (peer->iffval != NULL) BN_free(peer->iffval); peer->iffval = BN_new(); BN_rand(peer->iffval, len * 8, -1, 1); /* r */ BN_mod(peer->iffval, peer->iffval, dsa->q, bctx); BN_CTX_free(bctx); /* * Sign and send to Bob. The filestamp is from the local file. */ tstamp = crypto_time(); memset(vp, 0, sizeof(struct value)); vp->tstamp = htonl(tstamp); vp->fstamp = htonl(peer->fstamp); vp->vallen = htonl(len); vp->ptr = emalloc(len); BN_bn2bin(peer->iffval, vp->ptr); vp->siglen = 0; if (tstamp == 0) return (XEVNT_OK); if (tstamp < cinfo->first || tstamp > cinfo->last) return (XEVNT_PER); vp->sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); EVP_SignUpdate(&ctx, vp->ptr, len); if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) vp->siglen = htonl(len); return (XEVNT_OK); } /* * crypto_bob - construct Bob's response to Alice's challenge * * Returns * XEVNT_OK success * XEVNT_ID bad or missing group key * XEVNT_ERR protocol error * XEVNT_PER host expired certificate */ static int crypto_bob( struct exten *ep, /* extension pointer */ struct value *vp /* value pointer */ ) { DSA *dsa; /* IFF parameters */ DSA_SIG *sdsa; /* DSA signature context fake */ BN_CTX *bctx; /* BIGNUM context */ EVP_MD_CTX ctx; /* signature context */ tstamp_t tstamp; /* NTP timestamp */ BIGNUM *bn, *bk, *r; u_char *ptr; u_int len; /* * If the IFF parameters are not valid, something awful * happened or we are being tormented. */ if (iffpar_pkey == NULL) { msyslog(LOG_INFO, "crypto_bob: scheme unavailable"); return (XEVNT_ID); } dsa = iffpar_pkey->pkey.dsa; /* * Extract r from the challenge. */ len = ntohl(ep->vallen); if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { msyslog(LOG_ERR, "crypto_bob %s\n", ERR_error_string(ERR_get_error(), NULL)); return (XEVNT_ERR); } /* * Bob rolls random k (0 < k < q), computes y = k + b r mod q * and x = g^k mod p, then sends (y, hash(x)) to Alice. */ bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); sdsa = DSA_SIG_new(); BN_rand(bk, len * 8, -1, 1); /* k */ BN_mod_mul(bn, dsa->priv_key, r, dsa->q, bctx); /* b r mod q */ BN_add(bn, bn, bk); BN_mod(bn, bn, dsa->q, bctx); /* k + b r mod q */ sdsa->r = BN_dup(bn); BN_mod_exp(bk, dsa->g, bk, dsa->p, bctx); /* g^k mod p */ bighash(bk, bk); sdsa->s = BN_dup(bk); BN_CTX_free(bctx); BN_free(r); BN_free(bn); BN_free(bk); /* * Encode the values in ASN.1 and sign. */ tstamp = crypto_time(); memset(vp, 0, sizeof(struct value)); vp->tstamp = htonl(tstamp); vp->fstamp = htonl(if_fstamp); len = i2d_DSA_SIG(sdsa, NULL); if (len <= 0) { msyslog(LOG_ERR, "crypto_bob %s\n", ERR_error_string(ERR_get_error(), NULL)); DSA_SIG_free(sdsa); return (XEVNT_ERR); } vp->vallen = htonl(len); ptr = emalloc(len); vp->ptr = ptr; i2d_DSA_SIG(sdsa, &ptr); DSA_SIG_free(sdsa); vp->siglen = 0; if (tstamp == 0) return (XEVNT_OK); if (tstamp < cinfo->first || tstamp > cinfo->last) return (XEVNT_PER); vp->sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); EVP_SignUpdate(&ctx, vp->ptr, len); if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) vp->siglen = htonl(len); return (XEVNT_OK); } /* * crypto_iff - verify Bob's response to Alice's challenge * * Returns * XEVNT_OK success * XEVNT_PUB bad or missing public key * XEVNT_ID bad or missing group key * XEVNT_FSP bad filestamp */ int crypto_iff( struct exten *ep, /* extension pointer */ struct peer *peer /* peer structure pointer */ ) { DSA *dsa; /* IFF parameters */ BN_CTX *bctx; /* BIGNUM context */ DSA_SIG *sdsa; /* DSA parameters */ BIGNUM *bn, *bk; u_int len; const u_char *ptr; int temp; /* * If the IFF parameters are not valid or no challenge was sent, * something awful happened or we are being tormented. */ if (peer->ident_pkey == NULL) { msyslog(LOG_INFO, "crypto_iff: scheme unavailable"); return (XEVNT_ID); } if (ntohl(ep->fstamp) != peer->fstamp) { msyslog(LOG_INFO, "crypto_iff: invalid filestamp %u", ntohl(ep->fstamp)); return (XEVNT_FSP); } if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) { msyslog(LOG_INFO, "crypto_iff: defective key"); return (XEVNT_PUB); } if (peer->iffval == NULL) { msyslog(LOG_INFO, "crypto_iff: missing challenge"); return (XEVNT_ID); } /* * Extract the k + b r and g^k values from the response. */ bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); len = ntohl(ep->vallen); ptr = (const u_char *)ep->pkt; if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { msyslog(LOG_ERR, "crypto_iff %s\n", ERR_error_string(ERR_get_error(), NULL)); return (XEVNT_ERR); } /* * Compute g^(k + b r) g^(q - b)r mod p. */ BN_mod_exp(bn, dsa->pub_key, peer->iffval, dsa->p, bctx); BN_mod_exp(bk, dsa->g, sdsa->r, dsa->p, bctx); BN_mod_mul(bn, bn, bk, dsa->p, bctx); /* * Verify the hash of the result matches hash(x). */ bighash(bn, bn); temp = BN_cmp(bn, sdsa->s); BN_free(bn); BN_free(bk); BN_CTX_free(bctx); BN_free(peer->iffval); peer->iffval = NULL; DSA_SIG_free(sdsa); if (temp == 0) return (XEVNT_OK); else return (XEVNT_ID); } /* *********************************************************************** * * * The following routines implement the Guillou-Quisquater (GQ) * * identity scheme * * * *********************************************************************** * * The Guillou-Quisquater (GQ) identity scheme is intended for use when * the ntp-genkeys program generates the certificates used in the * protocol and the group key can be conveyed in a certificate extension * field. The scheme is self contained and independent of new * generations of host keys, sign keys and certificates. * * The GQ identity scheme is based on RSA cryptography and algorithms * described in Stinson p. 300 (with errors). The GQ values hide in a * RSA cuckoo structure, but only the modulus is used. The 512-bit * public modulus is n = p q, where p and q are secret large primes. The * TA rolls random group key b disguised as a RSA structure member. * Except for the public key, these values are shared only among group * members and never revealed in messages. * * When rolling new certificates, Bob recomputes the private and * public keys. The private key u is a random roll, while the public key * is the inverse obscured by the group key v = (u^-1)^b. These values * replace the private and public keys normally generated by the RSA * scheme. Alice challenges Bob to confirm identity using the protocol * described below. * * How it works * * The scheme goes like this. Both Alice and Bob have the same modulus n * and some random b as the group key. These values are computed and * distributed in advance via secret means, although only the group key * b is truly secret. Each has a private random private key u and public * key (u^-1)^b, although not necessarily the same ones. Bob and Alice * can regenerate the key pair from time to time without affecting * operations. The public key is conveyed on the certificate in an * extension field; the private key is never revealed. * * Alice rolls new random challenge r and sends to Bob in the GQ * request message. Bob rolls new random k, then computes y = k u^r mod * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response * message. Besides making the response shorter, the hash makes it * effectivey impossible for an intruder to solve for b by observing * a number of these messages. * * Alice receives the response and computes y^b v^r mod n. After a bit * of algebra, this simplifies to k^b. If the hash of this result * matches hash(x), Alice knows that Bob has the group key b. The signed * response binds this knowledge to Bob's private key and the public key * previously received in his certificate. * * crypto_alice2 - construct Alice's challenge in GQ scheme * * Returns * XEVNT_OK success * XEVNT_PUB bad or missing public key * XEVNT_ID bad or missing group key * XEVNT_PER host certificate expired */ static int crypto_alice2( struct peer *peer, /* peer pointer */ struct value *vp /* value pointer */ ) { RSA *rsa; /* GQ parameters */ BN_CTX *bctx; /* BIGNUM context */ EVP_MD_CTX ctx; /* signature context */ tstamp_t tstamp; u_int len; /* * The identity parameters must have correct format and content. */ if (peer->ident_pkey == NULL) return (XEVNT_ID); if ((rsa = peer->ident_pkey->pkey.rsa) == NULL) { msyslog(LOG_INFO, "crypto_alice2: defective key"); return (XEVNT_PUB); } /* * Roll new random r (0 < r < n). The OpenSSL library has a bug * omitting BN_rand_range, so we have to do it the hard way. */ bctx = BN_CTX_new(); len = BN_num_bytes(rsa->n); if (peer->iffval != NULL) BN_free(peer->iffval); peer->iffval = BN_new(); BN_rand(peer->iffval, len * 8, -1, 1); /* r mod n */ BN_mod(peer->iffval, peer->iffval, rsa->n, bctx); BN_CTX_free(bctx); /* * Sign and send to Bob. The filestamp is from the local file. */ tstamp = crypto_time(); memset(vp, 0, sizeof(struct value)); vp->tstamp = htonl(tstamp); vp->fstamp = htonl(peer->fstamp); vp->vallen = htonl(len); vp->ptr = emalloc(len); BN_bn2bin(peer->iffval, vp->ptr); vp->siglen = 0; if (tstamp == 0) return (XEVNT_OK); if (tstamp < cinfo->first || tstamp > cinfo->last) return (XEVNT_PER); vp->sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); EVP_SignUpdate(&ctx, vp->ptr, len); if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) vp->siglen = htonl(len); return (XEVNT_OK); } /* * crypto_bob2 - construct Bob's response to Alice's challenge * * Returns * XEVNT_OK success * XEVNT_ID bad or missing group key * XEVNT_ERR protocol error * XEVNT_PER host certificate expired */ static int crypto_bob2( struct exten *ep, /* extension pointer */ struct value *vp /* value pointer */ ) { RSA *rsa; /* GQ parameters */ DSA_SIG *sdsa; /* DSA parameters */ BN_CTX *bctx; /* BIGNUM context */ EVP_MD_CTX ctx; /* signature context */ tstamp_t tstamp; /* NTP timestamp */ BIGNUM *r, *k, *g, *y; u_char *ptr; u_int len; /* * If the GQ parameters are not valid, something awful * happened or we are being tormented. */ if (gqpar_pkey == NULL) { msyslog(LOG_INFO, "crypto_bob2: scheme unavailable"); return (XEVNT_ID); } rsa = gqpar_pkey->pkey.rsa; /* * Extract r from the challenge. */ len = ntohl(ep->vallen); if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { msyslog(LOG_ERR, "crypto_bob2 %s\n", ERR_error_string(ERR_get_error(), NULL)); return (XEVNT_ERR); } /* * Bob rolls random k (0 < k < n), computes y = k u^r mod n and * x = k^b mod n, then sends (y, hash(x)) to Alice. */ bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new(); sdsa = DSA_SIG_new(); BN_rand(k, len * 8, -1, 1); /* k */ BN_mod(k, k, rsa->n, bctx); BN_mod_exp(y, rsa->p, r, rsa->n, bctx); /* u^r mod n */ BN_mod_mul(y, k, y, rsa->n, bctx); /* k u^r mod n */ sdsa->r = BN_dup(y); BN_mod_exp(g, k, rsa->e, rsa->n, bctx); /* k^b mod n */ bighash(g, g); sdsa->s = BN_dup(g); BN_CTX_free(bctx); BN_free(r); BN_free(k); BN_free(g); BN_free(y); /* * Encode the values in ASN.1 and sign. */ tstamp = crypto_time(); memset(vp, 0, sizeof(struct value)); vp->tstamp = htonl(tstamp); vp->fstamp = htonl(gq_fstamp); len = i2d_DSA_SIG(sdsa, NULL); if (len <= 0) { msyslog(LOG_ERR, "crypto_bob2 %s\n", ERR_error_string(ERR_get_error(), NULL)); DSA_SIG_free(sdsa); return (XEVNT_ERR); } vp->vallen = htonl(len); ptr = emalloc(len); vp->ptr = ptr; i2d_DSA_SIG(sdsa, &ptr); DSA_SIG_free(sdsa); vp->siglen = 0; if (tstamp == 0) return (XEVNT_OK); if (tstamp < cinfo->first || tstamp > cinfo->last) return (XEVNT_PER); vp->sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); EVP_SignUpdate(&ctx, vp->ptr, len); if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) vp->siglen = htonl(len); return (XEVNT_OK); } /* * crypto_gq - verify Bob's response to Alice's challenge * * Returns * XEVNT_OK success * XEVNT_PUB bad or missing public key * XEVNT_ID bad or missing group keys * XEVNT_ERR protocol error * XEVNT_FSP bad filestamp */ int crypto_gq( struct exten *ep, /* extension pointer */ struct peer *peer /* peer structure pointer */ ) { RSA *rsa; /* GQ parameters */ BN_CTX *bctx; /* BIGNUM context */ DSA_SIG *sdsa; /* RSA signature context fake */ BIGNUM *y, *v; const u_char *ptr; u_int len; int temp; /* * If the GQ parameters are not valid or no challenge was sent, * something awful happened or we are being tormented. */ if (peer->ident_pkey == NULL) { msyslog(LOG_INFO, "crypto_gq: scheme unavailable"); return (XEVNT_ID); } if (ntohl(ep->fstamp) != peer->fstamp) { msyslog(LOG_INFO, "crypto_gq: invalid filestamp %u", ntohl(ep->fstamp)); return (XEVNT_FSP); } if ((rsa = peer->ident_pkey->pkey.rsa) == NULL) { msyslog(LOG_INFO, "crypto_gq: defective key"); return (XEVNT_PUB); } if (peer->iffval == NULL) { msyslog(LOG_INFO, "crypto_gq: missing challenge"); return (XEVNT_ID); } /* * Extract the y = k u^r and hash(x = k^b) values from the * response. */ bctx = BN_CTX_new(); y = BN_new(); v = BN_new(); len = ntohl(ep->vallen); ptr = (const u_char *)ep->pkt; if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { msyslog(LOG_ERR, "crypto_gq %s\n", ERR_error_string(ERR_get_error(), NULL)); return (XEVNT_ERR); } /* * Compute v^r y^b mod n. */ BN_mod_exp(v, peer->grpkey, peer->iffval, rsa->n, bctx); /* v^r mod n */ BN_mod_exp(y, sdsa->r, rsa->e, rsa->n, bctx); /* y^b mod n */ BN_mod_mul(y, v, y, rsa->n, bctx); /* v^r y^b mod n */ /* * Verify the hash of the result matches hash(x). */ bighash(y, y); temp = BN_cmp(y, sdsa->s); BN_CTX_free(bctx); BN_free(y); BN_free(v); BN_free(peer->iffval); peer->iffval = NULL; DSA_SIG_free(sdsa); if (temp == 0) return (XEVNT_OK); else return (XEVNT_ID); } /* *********************************************************************** * * * The following routines implement the Mu-Varadharajan (MV) identity * * scheme * * * *********************************************************************** */ /* * The Mu-Varadharajan (MV) cryptosystem was originally intended when * servers broadcast messages to clients, but clients never send * messages to servers. There is one encryption key for the server and a * separate decryption key for each client. It operated something like a * pay-per-view satellite broadcasting system where the session key is * encrypted by the broadcaster and the decryption keys are held in a * tamperproof set-top box. * * The MV parameters and private encryption key hide in a DSA cuckoo * structure which uses the same parameters, but generated in a * different way. The values are used in an encryption scheme similar to * El Gamal cryptography and a polynomial formed from the expansion of * product terms (x - x[j]), as described in Mu, Y., and V. * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, * 223-231. The paper has significant errors and serious omissions. * * Let q be the product of n distinct primes s'[j] (j = 1...n), where * each s'[j] has m significant bits. Let p be a prime p = 2 * q + 1, so * that q and each s'[j] divide p - 1 and p has M = n * m + 1 * significant bits. The elements x mod q of Zq with the elements 2 and * the primes removed form a field Zq* valid for polynomial arithetic. * Let g be a generator of Zp; that is, gcd(g, p - 1) = 1 and g^q = 1 * mod p. We expect M to be in the 500-bit range and n relatively small, * like 25, so the likelihood of a randomly generated element of x mod q * of Zq colliding with a factor of p - 1 is very small and can be * avoided. Associated with each s'[j] is an element s[j] such that s[j] * s'[j] = s'[j] mod q. We find s[j] as the quotient (q + s'[j]) / * s'[j]. These are the parameters of the scheme and they are expensive * to compute. * * We set up an instance of the scheme as follows. A set of random * values x[j] mod q (j = 1...n), are generated as the zeros of a * polynomial of order n. The product terms (x - x[j]) are expanded to * form coefficients a[i] mod q (i = 0...n) in powers of x. These are * used as exponents of the generator g mod p to generate the private * encryption key A. The pair (gbar, ghat) of public server keys and the * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used * to construct the decryption keys. The devil is in the details. * * The distinguishing characteristic of this scheme is the capability to * revoke keys. Included in the calculation of E, gbar and ghat is the * product s = prod(s'[j]) (j = 1...n) above. If the factor s'[j] is * subsequently removed from the product and E, gbar and ghat * recomputed, the jth client will no longer be able to compute E^-1 and * thus unable to decrypt the block. * * How it works * * The scheme goes like this. Bob has the server values (p, A, q, gbar, * ghat) and Alice the client values (p, xbar, xhat). * * Alice rolls new random challenge r (0 < r < p) and sends to Bob in * the MV request message. Bob rolls new random k (0 < k < q), encrypts * y = A^k mod p (a permutation) and sends (hash(y), gbar^k, ghat^k) to * Alice. * * Alice receives the response and computes the decryption key (the * inverse permutation) from previously obtained (xbar, xhat) and * (gbar^k, ghat^k) in the message. She computes the inverse, which is * unique by reasons explained in the ntp-keygen.c program sources. If * the hash of this result matches hash(y), Alice knows that Bob has the * group key b. The signed response binds this knowledge to Bob's * private key and the public key previously received in his * certificate. * * crypto_alice3 - construct Alice's challenge in MV scheme * * Returns * XEVNT_OK success * XEVNT_PUB bad or missing public key * XEVNT_ID bad or missing group key * XEVNT_PER host certificate expired */ static int crypto_alice3( struct peer *peer, /* peer pointer */ struct value *vp /* value pointer */ ) { DSA *dsa; /* MV parameters */ BN_CTX *bctx; /* BIGNUM context */ EVP_MD_CTX ctx; /* signature context */ tstamp_t tstamp; u_int len; /* * The identity parameters must have correct format and content. */ if (peer->ident_pkey == NULL) return (XEVNT_ID); if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) { msyslog(LOG_INFO, "crypto_alice3: defective key"); return (XEVNT_PUB); } /* * Roll new random r (0 < r < q). The OpenSSL library has a bug * omitting BN_rand_range, so we have to do it the hard way. */ bctx = BN_CTX_new(); len = BN_num_bytes(dsa->p); if (peer->iffval != NULL) BN_free(peer->iffval); peer->iffval = BN_new(); BN_rand(peer->iffval, len * 8, -1, 1); /* r */ BN_mod(peer->iffval, peer->iffval, dsa->p, bctx); BN_CTX_free(bctx); /* * Sign and send to Bob. The filestamp is from the local file. */ tstamp = crypto_time(); memset(vp, 0, sizeof(struct value)); vp->tstamp = htonl(tstamp); vp->fstamp = htonl(peer->fstamp); vp->vallen = htonl(len); vp->ptr = emalloc(len); BN_bn2bin(peer->iffval, vp->ptr); vp->siglen = 0; if (tstamp == 0) return (XEVNT_OK); if (tstamp < cinfo->first || tstamp > cinfo->last) return (XEVNT_PER); vp->sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); EVP_SignUpdate(&ctx, vp->ptr, len); if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) vp->siglen = htonl(len); return (XEVNT_OK); } /* * crypto_bob3 - construct Bob's response to Alice's challenge * * Returns * XEVNT_OK success * XEVNT_ERR protocol error * XEVNT_PER host certificate expired */ static int crypto_bob3( struct exten *ep, /* extension pointer */ struct value *vp /* value pointer */ ) { DSA *dsa; /* MV parameters */ DSA *sdsa; /* DSA signature context fake */ BN_CTX *bctx; /* BIGNUM context */ EVP_MD_CTX ctx; /* signature context */ tstamp_t tstamp; /* NTP timestamp */ BIGNUM *r, *k, *u; u_char *ptr; u_int len; /* * If the MV parameters are not valid, something awful * happened or we are being tormented. */ if (mvpar_pkey == NULL) { msyslog(LOG_INFO, "crypto_bob3: scheme unavailable"); return (XEVNT_ID); } dsa = mvpar_pkey->pkey.dsa; /* * Extract r from the challenge. */ len = ntohl(ep->vallen); if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { msyslog(LOG_ERR, "crypto_bob3 %s\n", ERR_error_string(ERR_get_error(), NULL)); return (XEVNT_ERR); } /* * Bob rolls random k (0 < k < q), making sure it is not a * factor of q. He then computes y = A^k r and sends (hash(y), * gbar^k, ghat^k) to Alice. */ bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); sdsa = DSA_new(); sdsa->p = BN_new(); sdsa->q = BN_new(); sdsa->g = BN_new(); while (1) { BN_rand(k, BN_num_bits(dsa->q), 0, 0); BN_mod(k, k, dsa->q, bctx); BN_gcd(u, k, dsa->q, bctx); if (BN_is_one(u)) break; } BN_mod_exp(u, dsa->g, k, dsa->p, bctx); /* A r */ BN_mod_mul(u, u, r, dsa->p, bctx); bighash(u, sdsa->p); BN_mod_exp(sdsa->q, dsa->priv_key, k, dsa->p, bctx); /* gbar */ BN_mod_exp(sdsa->g, dsa->pub_key, k, dsa->p, bctx); /* ghat */ BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u); /* * Encode the values in ASN.1 and sign. */ tstamp = crypto_time(); memset(vp, 0, sizeof(struct value)); vp->tstamp = htonl(tstamp); vp->fstamp = htonl(mv_fstamp); len = i2d_DSAparams(sdsa, NULL); if (len <= 0) { msyslog(LOG_ERR, "crypto_bob3 %s\n", ERR_error_string(ERR_get_error(), NULL)); DSA_free(sdsa); return (XEVNT_ERR); } vp->vallen = htonl(len); ptr = emalloc(len); vp->ptr = ptr; i2d_DSAparams(sdsa, &ptr); DSA_free(sdsa); vp->siglen = 0; if (tstamp == 0) return (XEVNT_OK); if (tstamp < cinfo->first || tstamp > cinfo->last) return (XEVNT_PER); vp->sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); EVP_SignUpdate(&ctx, vp->ptr, len); if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) vp->siglen = htonl(len); return (XEVNT_OK); } /* * crypto_mv - verify Bob's response to Alice's challenge * * Returns * XEVNT_OK success * XEVNT_PUB bad or missing public key * XEVNT_ID bad or missing group key * XEVNT_ERR protocol error * XEVNT_FSP bad filestamp */ int crypto_mv( struct exten *ep, /* extension pointer */ struct peer *peer /* peer structure pointer */ ) { DSA *dsa; /* MV parameters */ DSA *sdsa; /* DSA parameters */ BN_CTX *bctx; /* BIGNUM context */ BIGNUM *k, *u, *v; u_int len; const u_char *ptr; int temp; /* * If the MV parameters are not valid or no challenge was sent, * something awful happened or we are being tormented. */ if (peer->ident_pkey == NULL) { msyslog(LOG_INFO, "crypto_mv: scheme unavailable"); return (XEVNT_ID); } if (ntohl(ep->fstamp) != peer->fstamp) { msyslog(LOG_INFO, "crypto_mv: invalid filestamp %u", ntohl(ep->fstamp)); return (XEVNT_FSP); } if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) { msyslog(LOG_INFO, "crypto_mv: defective key"); return (XEVNT_PUB); } if (peer->iffval == NULL) { msyslog(LOG_INFO, "crypto_mv: missing challenge"); return (XEVNT_ID); } /* * Extract the (hash(y), gbar, ghat) values from the response. */ bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new(); len = ntohl(ep->vallen); ptr = (const u_char *)ep->pkt; if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) { msyslog(LOG_ERR, "crypto_mv %s\n", ERR_error_string(ERR_get_error(), NULL)); return (XEVNT_ERR); } /* * Compute (gbar^xhat ghat^xbar)^-1 mod p. */ BN_mod_exp(u, sdsa->q, dsa->pub_key, dsa->p, bctx); BN_mod_exp(v, sdsa->g, dsa->priv_key, dsa->p, bctx); BN_mod_mul(u, u, v, dsa->p, bctx); BN_mod_inverse(u, u, dsa->p, bctx); BN_mod_mul(v, u, peer->iffval, dsa->p, bctx); /* * The result should match the hash of r mod p. */ bighash(v, v); temp = BN_cmp(v, sdsa->p); BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v); BN_free(peer->iffval); peer->iffval = NULL; DSA_free(sdsa); if (temp == 0) return (XEVNT_OK); else return (XEVNT_ID); } /* *********************************************************************** * * * The following routines are used to manipulate certificates * * * *********************************************************************** */ /* * cert_parse - parse x509 certificate and create info/value structures. * * The server certificate includes the version number, issuer name, * subject name, public key and valid date interval. If the issuer name * is the same as the subject name, the certificate is self signed and * valid only if the server is configured as trustable. If the names are * different, another issuer has signed the server certificate and * vouched for it. In this case the server certificate is valid if * verified by the issuer public key. * * Returns certificate info/value pointer if valid, NULL if not. */ struct cert_info * /* certificate information structure */ cert_parse( u_char *asn1cert, /* X509 certificate */ u_int len, /* certificate length */ tstamp_t fstamp /* filestamp */ ) { X509 *cert; /* X509 certificate */ X509_EXTENSION *ext; /* X509v3 extension */ struct cert_info *ret; /* certificate info/value */ BIO *bp; X509V3_EXT_METHOD *method; char pathbuf[MAXFILENAME]; u_char *uptr; char *ptr; int temp, cnt, i; /* * Decode ASN.1 objects and construct certificate structure. */ uptr = asn1cert; if ((cert = d2i_X509(NULL, &uptr, len)) == NULL) { msyslog(LOG_ERR, "cert_parse %s\n", ERR_error_string(ERR_get_error(), NULL)); return (NULL); } /* * Extract version, subject name and public key. */ ret = emalloc(sizeof(struct cert_info)); memset(ret, 0, sizeof(struct cert_info)); if ((ret->pkey = X509_get_pubkey(cert)) == NULL) { msyslog(LOG_ERR, "cert_parse %s\n", ERR_error_string(ERR_get_error(), NULL)); cert_free(ret); X509_free(cert); return (NULL); } ret->version = X509_get_version(cert); X509_NAME_oneline(X509_get_subject_name(cert), pathbuf, MAXFILENAME - 1); ptr = strstr(pathbuf, "CN="); if (ptr == NULL) { msyslog(LOG_INFO, "cert_parse: invalid subject %s", pathbuf); cert_free(ret); X509_free(cert); return (NULL); } ret->subject = emalloc(strlen(ptr) + 1); strcpy(ret->subject, ptr + 3); /* * Extract remaining objects. Note that the NTP serial number is * the NTP seconds at the time of signing, but this might not be * the case for other authority. We don't bother to check the * objects at this time, since the real crunch can happen only * when the time is valid but not yet certificated. */ ret->nid = OBJ_obj2nid(cert->cert_info->signature->algorithm); ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid); ret->serial = (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert)); X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf, MAXFILENAME); if ((ptr = strstr(pathbuf, "CN=")) == NULL) { msyslog(LOG_INFO, "cert_parse: invalid issuer %s", pathbuf); cert_free(ret); X509_free(cert); return (NULL); } ret->issuer = emalloc(strlen(ptr) + 1); strcpy(ret->issuer, ptr + 3); ret->first = asn2ntp(X509_get_notBefore(cert)); ret->last = asn2ntp(X509_get_notAfter(cert)); /* * Extract extension fields. These are ad hoc ripoffs of * currently assigned functions and will certainly be changed * before prime time. */ cnt = X509_get_ext_count(cert); for (i = 0; i < cnt; i++) { ext = X509_get_ext(cert, i); method = X509V3_EXT_get(ext); temp = OBJ_obj2nid(ext->object); switch (temp) { /* * If a key_usage field is present, we decode whether * this is a trusted or private certificate. This is * dorky; all we want is to compare NIDs, but OpenSSL * insists on BIO text strings. */ case NID_ext_key_usage: bp = BIO_new(BIO_s_mem()); X509V3_EXT_print(bp, ext, 0, 0); BIO_gets(bp, pathbuf, MAXFILENAME); BIO_free(bp); #if DEBUG if (debug) printf("cert_parse: %s: %s\n", OBJ_nid2ln(temp), pathbuf); #endif if (strcmp(pathbuf, "Trust Root") == 0) ret->flags |= CERT_TRUST; else if (strcmp(pathbuf, "Private") == 0) ret->flags |= CERT_PRIV; break; /* * If a NID_subject_key_identifier field is present, it * contains the GQ public key. */ case NID_subject_key_identifier: ret->grplen = ext->value->length - 2; ret->grpkey = emalloc(ret->grplen); memcpy(ret->grpkey, &ext->value->data[2], ret->grplen); break; } } /* * If certificate is self signed, verify signature. */ if (strcmp(ret->subject, ret->issuer) == 0) { if (!X509_verify(cert, ret->pkey)) { msyslog(LOG_INFO, "cert_parse: signature not verified %s", pathbuf); cert_free(ret); X509_free(cert); return (NULL); } } /* * Verify certificate valid times. Note that certificates cannot * be retroactive. */ if (ret->first > ret->last || ret->first < fstamp) { msyslog(LOG_INFO, "cert_parse: invalid certificate %s first %u last %u fstamp %u", ret->subject, ret->first, ret->last, fstamp); cert_free(ret); X509_free(cert); return (NULL); } /* * Build the value structure to sign and send later. */ ret->cert.fstamp = htonl(fstamp); ret->cert.vallen = htonl(len); ret->cert.ptr = emalloc(len); memcpy(ret->cert.ptr, asn1cert, len); #ifdef DEBUG if (debug > 1) X509_print_fp(stdout, cert); #endif X509_free(cert); return (ret); } /* * cert_sign - sign x509 certificate equest and update value structure. * * The certificate request includes a copy of the host certificate, * which includes the version number, subject name and public key of the * host. The resulting certificate includes these values plus the * serial number, issuer name and valid interval of the server. The * valid interval extends from the current time to the same time one * year hence. This may extend the life of the signed certificate beyond * that of the signer certificate. * * It is convenient to use the NTP seconds of the current time as the * serial number. In the value structure the timestamp is the current * time and the filestamp is taken from the extension field. Note this * routine is called only when the client clock is synchronized to a * proventic source, so timestamp comparisons are valid. * * The host certificate is valid from the time it was generated for a * period of one year. A signed certificate is valid from the time of * signature for a period of one year, but only the host certificate (or * sign certificate if used) is actually used to encrypt and decrypt * signatures. The signature trail is built from the client via the * intermediate servers to the trusted server. Each signature on the * trail must be valid at the time of signature, but it could happen * that a signer certificate expire before the signed certificate, which * remains valid until its expiration. * * Returns * XEVNT_OK success * XEVNT_PUB bad or missing public key * XEVNT_CRT bad or missing certificate * XEVNT_VFY certificate not verified * XEVNT_PER host certificate expired */ static int cert_sign( struct exten *ep, /* extension field pointer */ struct value *vp /* value pointer */ ) { X509 *req; /* X509 certificate request */ X509 *cert; /* X509 certificate */ X509_EXTENSION *ext; /* certificate extension */ ASN1_INTEGER *serial; /* serial number */ X509_NAME *subj; /* distinguished (common) name */ EVP_PKEY *pkey; /* public key */ EVP_MD_CTX ctx; /* message digest context */ tstamp_t tstamp; /* NTP timestamp */ u_int len; u_char *ptr; int i, temp; /* * Decode ASN.1 objects and construct certificate structure. * Make sure the system clock is synchronized to a proventic * source. */ tstamp = crypto_time(); if (tstamp == 0) return (XEVNT_TSP); if (tstamp < cinfo->first || tstamp > cinfo->last) return (XEVNT_PER); ptr = (u_char *)ep->pkt; if ((req = d2i_X509(NULL, &ptr, ntohl(ep->vallen))) == NULL) { msyslog(LOG_ERR, "cert_sign %s\n", ERR_error_string(ERR_get_error(), NULL)); return (XEVNT_CRT); } /* * Extract public key and check for errors. */ if ((pkey = X509_get_pubkey(req)) == NULL) { msyslog(LOG_ERR, "cert_sign %s\n", ERR_error_string(ERR_get_error(), NULL)); X509_free(req); return (XEVNT_PUB); } /* * Generate X509 certificate signed by this server. For this * purpose the issuer name is the server name. Also copy any * extensions that might be present. */ cert = X509_new(); X509_set_version(cert, X509_get_version(req)); serial = ASN1_INTEGER_new(); ASN1_INTEGER_set(serial, tstamp); X509_set_serialNumber(cert, serial); X509_gmtime_adj(X509_get_notBefore(cert), 0L); X509_gmtime_adj(X509_get_notAfter(cert), YEAR); subj = X509_get_issuer_name(cert); X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, (u_char *)sys_hostname, strlen(sys_hostname), -1, 0); subj = X509_get_subject_name(req); X509_set_subject_name(cert, subj); X509_set_pubkey(cert, pkey); ext = X509_get_ext(req, 0); temp = X509_get_ext_count(req); for (i = 0; i < temp; i++) { ext = X509_get_ext(req, i); X509_add_ext(cert, ext, -1); } X509_free(req); /* * Sign and verify the certificate. */ X509_sign(cert, sign_pkey, sign_digest); if (!X509_verify(cert, sign_pkey)) { printf("cert_sign\n%s\n", ERR_error_string(ERR_get_error(), NULL)); X509_free(cert); return (XEVNT_VFY); } len = i2d_X509(cert, NULL); /* * Build and sign the value structure. We have to sign it here, * since the response has to be returned right away. This is a * clogging hazard. */ memset(vp, 0, sizeof(struct value)); vp->tstamp = htonl(tstamp); vp->fstamp = ep->fstamp; vp->vallen = htonl(len); vp->ptr = emalloc(len); ptr = vp->ptr; i2d_X509(cert, &ptr); vp->siglen = 0; vp->sig = emalloc(sign_siglen); EVP_SignInit(&ctx, sign_digest); EVP_SignUpdate(&ctx, (u_char *)vp, 12); EVP_SignUpdate(&ctx, vp->ptr, len); if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) vp->siglen = htonl(len); #ifdef DEBUG if (debug > 1) X509_print_fp(stdout, cert); #endif X509_free(cert); return (XEVNT_OK); } /* * cert_valid - verify certificate with given public key * * This is pretty ugly, as the certificate has to be verified in the * OpenSSL X509 structure, not in the DER format in the info/value * structure. * * Returns * XEVNT_OK success * XEVNT_VFY certificate not verified */ int cert_valid( struct cert_info *cinf, /* certificate information structure */ EVP_PKEY *pkey /* public key */ ) { X509 *cert; /* X509 certificate */ u_char *ptr; if (cinf->flags & CERT_SIGN) return (XEVNT_OK); ptr = (u_char *)cinf->cert.ptr; cert = d2i_X509(NULL, &ptr, ntohl(cinf->cert.vallen)); if (cert == NULL || !X509_verify(cert, pkey)) return (XEVNT_VFY); X509_free(cert); return (XEVNT_OK); } /* * cert - install certificate in certificate list * * This routine encodes an extension field into a certificate info/value * structure. It searches the certificate list for duplicates and * expunges whichever is older. It then searches the list for other * certificates that might be verified by this latest one. Finally, it * inserts this certificate first on the list. * * Returns * XEVNT_OK success * XEVNT_FSP bad or missing filestamp * XEVNT_CRT bad or missing certificate */ int cert_install( struct exten *ep, /* cert info/value */ struct peer *peer /* peer structure */ ) { struct cert_info *cp, *xp, *yp, **zp; /* * Parse and validate the signed certificate. If valid, * construct the info/value structure; otherwise, scamper home. */ if ((cp = cert_parse((u_char *)ep->pkt, ntohl(ep->vallen), ntohl(ep->fstamp))) == NULL) return (XEVNT_CRT); /* * Scan certificate list looking for another certificate with * the same subject and issuer. If another is found with the * same or older filestamp, unlink it and return the goodies to * the heap. If another is found with a later filestamp, discard * the new one and leave the building. * * Make a note to study this issue again. An earlier certificate * with a long lifetime might be overtaken by a later * certificate with a short lifetime, thus invalidating the * earlier signature. However, we gotta find a way to leak old * stuff from the cache, so we do it anyway. */ yp = cp; zp = &cinfo; for (xp = cinfo; xp != NULL; xp = xp->link) { if (strcmp(cp->subject, xp->subject) == 0 && strcmp(cp->issuer, xp->issuer) == 0) { if (ntohl(cp->cert.fstamp) <= ntohl(xp->cert.fstamp)) { *zp = xp->link;; cert_free(xp); } else { cert_free(cp); return (XEVNT_FSP); } break; } zp = &xp->link; } yp->link = cinfo; cinfo = yp; /* * Scan the certificate list to see if Y is signed by X. This is * independent of order. */ for (yp = cinfo; yp != NULL; yp = yp->link) { for (xp = cinfo; xp != NULL; xp = xp->link) { /* * If the issuer of certificate Y matches the * subject of certificate X, verify the * signature of Y using the public key of X. If * so, X signs Y. */ if (strcmp(yp->issuer, xp->subject) != 0 || xp->flags & CERT_ERROR) continue; if (cert_valid(yp, xp->pkey) != XEVNT_OK) { yp->flags |= CERT_ERROR; continue; } /* * The signature Y is valid only if it begins * during the lifetime of X; however, it is not * necessarily an error, since some other * certificate might sign Y. */ if (yp->first < xp->first || yp->first > xp->last) continue; yp->flags |= CERT_SIGN; /* * If X is trusted, then Y is trusted. Note that * we might stumble over a self-signed * certificate that is not trusted, at least * temporarily. This can happen when a dude * first comes up, but has not synchronized the * clock and had its certificate signed by its * server. In case of broken certificate trail, * this might result in a loop that could * persist until timeout. */ if (!(xp->flags & (CERT_TRUST | CERT_VALID))) continue; yp->flags |= CERT_VALID; /* * If subject Y matches the server subject name, * then Y has completed the certificate trail. * Save the group key and light the valid bit. */ if (strcmp(yp->subject, peer->subject) != 0) continue; if (yp->grpkey != NULL) { if (peer->grpkey != NULL) BN_free(peer->grpkey); peer->grpkey = BN_bin2bn(yp->grpkey, yp->grplen, NULL); } peer->crypto |= CRYPTO_FLAG_VALID; /* * If the server has an an identity scheme, * fetch the identity credentials. If not, the * identity is verified only by the trusted * certificate. The next signature will set the * server proventic. */ if (peer->crypto & (CRYPTO_FLAG_GQ | CRYPTO_FLAG_IFF | CRYPTO_FLAG_MV)) continue; peer->crypto |= CRYPTO_FLAG_VRFY; } } /* * That was awesome. Now update the timestamps and signatures. */ crypto_update(); return (XEVNT_OK); } /* * cert_free - free certificate information structure */ void cert_free( struct cert_info *cinf /* certificate info/value structure */ ) { if (cinf->pkey != NULL) EVP_PKEY_free(cinf->pkey); if (cinf->subject != NULL) free(cinf->subject); if (cinf->issuer != NULL) free(cinf->issuer); if (cinf->grpkey != NULL) free(cinf->grpkey); value_free(&cinf->cert); free(cinf); } /* *********************************************************************** * * * The following routines are used only at initialization time * * * *********************************************************************** */ /* * crypto_key - load cryptographic parameters and keys from files * * This routine loads a PEM-encoded public/private key pair and extracts * the filestamp from the file name. * * Returns public key pointer if valid, NULL if not. Side effect updates * the filestamp if valid. */ static EVP_PKEY * crypto_key( char *cp, /* file name */ tstamp_t *fstamp /* filestamp */ ) { FILE *str; /* file handle */ EVP_PKEY *pkey = NULL; /* public/private key */ char filename[MAXFILENAME]; /* name of key file */ char linkname[MAXFILENAME]; /* filestamp buffer) */ char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ char *ptr; /* * Open the key file. If the first character of the file name is * not '/', prepend the keys directory string. If something goes * wrong, abandon ship. */ if (*cp == '/') strcpy(filename, cp); else snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp); str = fopen(filename, "r"); if (str == NULL) return (NULL); /* * Read the filestamp, which is contained in the first line. */ if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) { msyslog(LOG_ERR, "crypto_key: no data %s\n", filename); (void)fclose(str); return (NULL); } if ((ptr = strrchr(ptr, '.')) == NULL) { msyslog(LOG_ERR, "crypto_key: no filestamp %s\n", filename); (void)fclose(str); return (NULL); } if (sscanf(++ptr, "%u", fstamp) != 1) { msyslog(LOG_ERR, "crypto_key: invalid timestamp %s\n", filename); (void)fclose(str); return (NULL); } /* * Read and decrypt PEM-encoded private key. */ pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd); fclose(str); if (pkey == NULL) { msyslog(LOG_ERR, "crypto_key %s\n", ERR_error_string(ERR_get_error(), NULL)); return (NULL); } /* * Leave tracks in the cryptostats. */ if ((ptr = strrchr(linkname, '\n')) != NULL) *ptr = '\0'; snprintf(statstr, NTP_MAXSTRLEN, "%s mod %d", &linkname[2], EVP_PKEY_size(pkey) * 8); record_crypto_stats(NULL, statstr); #ifdef DEBUG if (debug) printf("crypto_key: %s\n", statstr); if (debug > 1) { if (pkey->type == EVP_PKEY_DSA) DSA_print_fp(stdout, pkey->pkey.dsa, 0); else RSA_print_fp(stdout, pkey->pkey.rsa, 0); } #endif return (pkey); } /* * crypto_cert - load certificate from file * * This routine loads a X.509 RSA or DSA certificate from a file and * constructs a info/cert value structure for this machine. The * structure includes a filestamp extracted from the file name. Later * the certificate can be sent to another machine by request. * * Returns certificate info/value pointer if valid, NULL if not. */ static struct cert_info * /* certificate information */ crypto_cert( char *cp /* file name */ ) { struct cert_info *ret; /* certificate information */ FILE *str; /* file handle */ char filename[MAXFILENAME]; /* name of certificate file */ char linkname[MAXFILENAME]; /* filestamp buffer */ char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ tstamp_t fstamp; /* filestamp */ long len; char *ptr; char *name, *header; u_char *data; /* * Open the certificate file. If the first character of the file * name is not '/', prepend the keys directory string. If * something goes wrong, abandon ship. */ if (*cp == '/') strcpy(filename, cp); else snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp); str = fopen(filename, "r"); if (str == NULL) return (NULL); /* * Read the filestamp, which is contained in the first line. */ if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) { msyslog(LOG_ERR, "crypto_cert: no data %s\n", filename); (void)fclose(str); return (NULL); } if ((ptr = strrchr(ptr, '.')) == NULL) { msyslog(LOG_ERR, "crypto_cert: no filestamp %s\n", filename); (void)fclose(str); return (NULL); } if (sscanf(++ptr, "%u", &fstamp) != 1) { msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s\n", filename); (void)fclose(str); return (NULL); } /* * Read PEM-encoded certificate and install. */ if (!PEM_read(str, &name, &header, &data, &len)) { msyslog(LOG_ERR, "crypto_cert %s\n", ERR_error_string(ERR_get_error(), NULL)); (void)fclose(str); return (NULL); } free(header); if (strcmp(name, "CERTIFICATE") !=0) { msyslog(LOG_INFO, "crypto_cert: wrong PEM type %s", name); free(name); free(data); (void)fclose(str); return (NULL); } free(name); /* * Parse certificate and generate info/value structure. */ ret = cert_parse(data, len, fstamp); free(data); (void)fclose(str); if (ret == NULL) return (NULL); if ((ptr = strrchr(linkname, '\n')) != NULL) *ptr = '\0'; snprintf(statstr, NTP_MAXSTRLEN, "%s 0x%x len %lu", &linkname[2], ret->flags, len); record_crypto_stats(NULL, statstr); #ifdef DEBUG if (debug) printf("crypto_cert: %s\n", statstr); #endif return (ret); } /* * crypto_tai - load leapseconds table from file * * This routine loads the ERTS leapsecond file in NIST text format, * converts to a value structure and extracts a filestamp from the file * name. The data are used to establish the TAI offset from UTC, which * is provided to the kernel if supported. Later the data can be sent to * another machine on request. */ static void crypto_tai( char *cp /* file name */ ) { FILE *str; /* file handle */ char buf[NTP_MAXSTRLEN]; /* file line buffer */ u_int32 leapsec[MAX_LEAP]; /* NTP time at leaps */ int offset; /* offset at leap (s) */ char filename[MAXFILENAME]; /* name of leapseconds file */ char linkname[MAXFILENAME]; /* file link (for filestamp) */ char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ tstamp_t fstamp; /* filestamp */ u_int len; u_int32 *ptr; char *dp; int rval, i, j; /* * Open the file and discard comment lines. If the first * character of the file name is not '/', prepend the keys * directory string. If the file is not found, not to worry; it * can be retrieved over the net. But, if it is found with * errors, we crash and burn. */ if (*cp == '/') strcpy(filename, cp); else snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp); if ((str = fopen(filename, "r")) == NULL) return; /* * Extract filestamp if present. */ rval = readlink(filename, linkname, MAXFILENAME - 1); if (rval > 0) { linkname[rval] = '\0'; dp = strrchr(linkname, '.'); } else { dp = strrchr(filename, '.'); } if (dp != NULL) sscanf(++dp, "%u", &fstamp); else fstamp = 0; tai_leap.fstamp = htonl(fstamp); /* * We are rather paranoid here, since an intruder might cause a * coredump by infiltrating naughty values. Empty lines and * comments are ignored. Other lines must begin with two * integers followed by junk or comments. The first integer is * the NTP seconds of leap insertion, the second is the offset * of TAI relative to UTC after that insertion. The second word * must equal the initial insertion of ten seconds on 1 January * 1972 plus one second for each succeeding insertion. */ i = 0; while (i < MAX_LEAP) { dp = fgets(buf, NTP_MAXSTRLEN - 1, str); if (dp == NULL) break; if (strlen(buf) < 1) continue; if (*buf == '#') continue; if (sscanf(buf, "%u %d", &leapsec[i], &offset) != 2) continue; if (i != offset - TAI_1972) break; i++; } fclose(str); if (dp != NULL) { msyslog(LOG_INFO, "crypto_tai: leapseconds file %s error %d", cp, rval); exit (-1); } /* * The extension field table entries consists of the NTP seconds * of leap insertion in network byte order. */ len = i * sizeof(u_int32); tai_leap.vallen = htonl(len); ptr = emalloc(len); tai_leap.ptr = (u_char *)ptr; for (j = 0; j < i; j++) *ptr++ = htonl(leapsec[j]); crypto_flags |= CRYPTO_FLAG_TAI; snprintf(statstr, NTP_MAXSTRLEN, "%s fs %u leap %u len %u", cp, fstamp, leapsec[--j], len); record_crypto_stats(NULL, statstr); #ifdef DEBUG if (debug) printf("crypto_tai: %s\n", statstr); #endif } /* * crypto_setup - load keys, certificate and leapseconds table * * This routine loads the public/private host key and certificate. If * available, it loads the public/private sign key, which defaults to * the host key, and leapseconds table. The host key must be RSA, but * the sign key can be either RSA or DSA. In either case, the public key * on the certificate must agree with the sign key. */ void crypto_setup(void) { EVP_PKEY *pkey; /* private/public key pair */ char filename[MAXFILENAME]; /* file name buffer */ l_fp seed; /* crypto PRNG seed as NTP timestamp */ tstamp_t fstamp; /* filestamp */ tstamp_t sstamp; /* sign filestamp */ u_int len, bytes; u_char *ptr; /* * Initialize structures. */ if (!crypto_flags) return; gethostname(filename, MAXFILENAME); bytes = strlen(filename) + 1; sys_hostname = emalloc(bytes); memcpy(sys_hostname, filename, bytes); if (passwd == NULL) passwd = sys_hostname; memset(&hostval, 0, sizeof(hostval)); memset(&pubkey, 0, sizeof(pubkey)); memset(&tai_leap, 0, sizeof(tai_leap)); /* * Load required random seed file and seed the random number * generator. Be default, it is found in the user home * directory. The root home directory may be / or /root, * depending on the system. Wiggle the contents a bit and write * it back so the sequence does not repeat when we next restart. */ ERR_load_crypto_strings(); if (rand_file == NULL) { if ((RAND_file_name(filename, MAXFILENAME)) != NULL) { rand_file = emalloc(strlen(filename) + 1); strcpy(rand_file, filename); } } else if (*rand_file != '/') { snprintf(filename, MAXFILENAME, "%s/%s", keysdir, rand_file); free(rand_file); rand_file = emalloc(strlen(filename) + 1); strcpy(rand_file, filename); } if (rand_file == NULL) { msyslog(LOG_ERR, "crypto_setup: random seed file not specified"); exit (-1); } if ((bytes = RAND_load_file(rand_file, -1)) == 0) { msyslog(LOG_ERR, "crypto_setup: random seed file %s not found\n", rand_file); exit (-1); } get_systime(&seed); RAND_seed(&seed, sizeof(l_fp)); RAND_write_file(rand_file); OpenSSL_add_all_algorithms(); #ifdef DEBUG if (debug) printf( "crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n", SSLeay(), rand_file, bytes); #endif /* * Load required host key from file "ntpkey_host_<hostname>". It * also becomes the default sign key. */ if (host_file == NULL) { snprintf(filename, MAXFILENAME, "ntpkey_host_%s", sys_hostname); host_file = emalloc(strlen(filename) + 1); strcpy(host_file, filename); } pkey = crypto_key(host_file, &fstamp); if (pkey == NULL) { msyslog(LOG_ERR, "crypto_setup: host key file %s not found or corrupt", host_file); exit (-1); } host_pkey = pkey; sign_pkey = pkey; sstamp = fstamp; hostval.fstamp = htonl(fstamp); if (host_pkey->type != EVP_PKEY_RSA) { msyslog(LOG_ERR, "crypto_setup: host key is not RSA key type"); exit (-1); } hostval.vallen = htonl(strlen(sys_hostname)); hostval.ptr = (u_char *)sys_hostname; /* * Construct public key extension field for agreement scheme. */ len = i2d_PublicKey(host_pkey, NULL); ptr = emalloc(len); pubkey.ptr = ptr; i2d_PublicKey(host_pkey, &ptr); pubkey.vallen = htonl(len); pubkey.fstamp = hostval.fstamp; /* * Load optional sign key from file "ntpkey_sign_<hostname>". If * loaded, it becomes the sign key. */ if (sign_file == NULL) { snprintf(filename, MAXFILENAME, "ntpkey_sign_%s", sys_hostname); sign_file = emalloc(strlen(filename) + 1); strcpy(sign_file, filename); } pkey = crypto_key(sign_file, &fstamp); if (pkey != NULL) { sign_pkey = pkey; sstamp = fstamp; } sign_siglen = EVP_PKEY_size(sign_pkey); /* * Load optional IFF parameters from file * "ntpkey_iff_<hostname>". */ if (iffpar_file == NULL) { snprintf(filename, MAXFILENAME, "ntpkey_iff_%s", sys_hostname); iffpar_file = emalloc(strlen(filename) + 1); strcpy(iffpar_file, filename); } iffpar_pkey = crypto_key(iffpar_file, &if_fstamp); if (iffpar_pkey != NULL) crypto_flags |= CRYPTO_FLAG_IFF; /* * Load optional GQ parameters from file "ntpkey_gq_<hostname>". */ if (gqpar_file == NULL) { snprintf(filename, MAXFILENAME, "ntpkey_gq_%s", sys_hostname); gqpar_file = emalloc(strlen(filename) + 1); strcpy(gqpar_file, filename); } gqpar_pkey = crypto_key(gqpar_file, &gq_fstamp); if (gqpar_pkey != NULL) crypto_flags |= CRYPTO_FLAG_GQ; /* * Load optional MV parameters from file "ntpkey_mv_<hostname>". */ if (mvpar_file == NULL) { snprintf(filename, MAXFILENAME, "ntpkey_mv_%s", sys_hostname); mvpar_file = emalloc(strlen(filename) + 1); strcpy(mvpar_file, filename); } mvpar_pkey = crypto_key(mvpar_file, &mv_fstamp); if (mvpar_pkey != NULL) crypto_flags |= CRYPTO_FLAG_MV; /* * Load required certificate from file "ntpkey_cert_<hostname>". */ if (cert_file == NULL) { snprintf(filename, MAXFILENAME, "ntpkey_cert_%s", sys_hostname); cert_file = emalloc(strlen(filename) + 1); strcpy(cert_file, filename); } if ((cinfo = crypto_cert(cert_file)) == NULL) { msyslog(LOG_ERR, "certificate file %s not found or corrupt", cert_file); exit (-1); } /* * The subject name must be the same as the host name, unless * the certificate is private, in which case it may have come * from another host. */ if (!(cinfo->flags & CERT_PRIV) && strcmp(cinfo->subject, sys_hostname) != 0) { msyslog(LOG_ERR, "crypto_setup: certificate %s not for this host", cert_file); cert_free(cinfo); exit (-1); } /* * It the certificate is trusted, the subject must be the same * as the issuer, in other words it must be self signed. */ if (cinfo->flags & CERT_TRUST && strcmp(cinfo->subject, cinfo->issuer) != 0) { if (cert_valid(cinfo, sign_pkey) != XEVNT_OK) { msyslog(LOG_ERR, "crypto_setup: certificate %s is trusted, but not self signed.", cert_file); cert_free(cinfo); exit (-1); } } sign_digest = cinfo->digest; if (cinfo->flags & CERT_PRIV) crypto_flags |= CRYPTO_FLAG_PRIV; crypto_flags |= cinfo->nid << 16; /* * Load optional leapseconds table from file "ntpkey_leap". If * the file is missing or defective, the values can later be * retrieved from a server. */ if (leap_file == NULL) leap_file = "ntpkey_leap"; crypto_tai(leap_file); #ifdef DEBUG if (debug) printf( "crypto_setup: flags 0x%x host %s signature %s\n", crypto_flags, sys_hostname, OBJ_nid2ln(cinfo->nid)); #endif } /* * crypto_config - configure data from crypto configuration command. */ void crypto_config( int item, /* configuration item */ char *cp /* file name */ ) { switch (item) { /* * Set random seed file name. */ case CRYPTO_CONF_RAND: rand_file = emalloc(strlen(cp) + 1); strcpy(rand_file, cp); break; /* * Set private key password. */ case CRYPTO_CONF_PW: passwd = emalloc(strlen(cp) + 1); strcpy(passwd, cp); break; /* * Set host file name. */ case CRYPTO_CONF_PRIV: host_file = emalloc(strlen(cp) + 1); strcpy(host_file, cp); break; /* * Set sign key file name. */ case CRYPTO_CONF_SIGN: sign_file = emalloc(strlen(cp) + 1); strcpy(sign_file, cp); break; /* * Set iff parameters file name. */ case CRYPTO_CONF_IFFPAR: iffpar_file = emalloc(strlen(cp) + 1); strcpy(iffpar_file, cp); break; /* * Set gq parameters file name. */ case CRYPTO_CONF_GQPAR: gqpar_file = emalloc(strlen(cp) + 1); strcpy(gqpar_file, cp); break; /* * Set mv parameters file name. */ case CRYPTO_CONF_MVPAR: mvpar_file = emalloc(strlen(cp) + 1); strcpy(mvpar_file, cp); break; /* * Set identity scheme. */ case CRYPTO_CONF_IDENT: if (!strcasecmp(cp, "iff")) ident_scheme |= CRYPTO_FLAG_IFF; else if (!strcasecmp(cp, "gq")) ident_scheme |= CRYPTO_FLAG_GQ; else if (!strcasecmp(cp, "mv")) ident_scheme |= CRYPTO_FLAG_MV; break; /* * Set certificate file name. */ case CRYPTO_CONF_CERT: cert_file = emalloc(strlen(cp) + 1); strcpy(cert_file, cp); break; /* * Set leapseconds file name. */ case CRYPTO_CONF_LEAP: leap_file = emalloc(strlen(cp) + 1); strcpy(leap_file, cp); break; } crypto_flags |= CRYPTO_FLAG_ENAB; } # else int ntp_crypto_bs_pubkey; # endif /* OPENSSL */