Current Path : /usr/src/contrib/ofed/management/opensm/complib/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/ofed/management/opensm/complib/cl_ptr_vector.c |
/* * Copyright (c) 2004-2006 Voltaire, Inc. All rights reserved. * Copyright (c) 2002-2005 Mellanox Technologies LTD. All rights reserved. * Copyright (c) 1996-2003 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ /* * Abstract: * This file contains ivector and isvector implementations. * */ #if HAVE_CONFIG_H # include <config.h> #endif /* HAVE_CONFIG_H */ #include <stdlib.h> #include <string.h> #include <complib/cl_ptr_vector.h> void cl_ptr_vector_construct(IN cl_ptr_vector_t * const p_vector) { CL_ASSERT(p_vector); memset(p_vector, 0, sizeof(cl_ptr_vector_t)); p_vector->state = CL_UNINITIALIZED; } cl_status_t cl_ptr_vector_init(IN cl_ptr_vector_t * const p_vector, IN const size_t min_size, IN const size_t grow_size) { cl_status_t status = CL_SUCCESS; CL_ASSERT(p_vector); cl_ptr_vector_construct(p_vector); p_vector->grow_size = grow_size; /* * Set the state to initialized so that the call to set_size * doesn't assert. */ p_vector->state = CL_INITIALIZED; /* get the storage needed by the user */ if (min_size) { status = cl_ptr_vector_set_size(p_vector, min_size); if (status != CL_SUCCESS) cl_ptr_vector_destroy(p_vector); } return (status); } void cl_ptr_vector_destroy(IN cl_ptr_vector_t * const p_vector) { CL_ASSERT(p_vector); CL_ASSERT(cl_is_state_valid(p_vector->state)); /* Call the user's destructor for each element in the array. */ if (p_vector->state == CL_INITIALIZED) { /* Destroy the page vector. */ if (p_vector->p_ptr_array) { free((void *)p_vector->p_ptr_array); p_vector->p_ptr_array = NULL; } } p_vector->state = CL_UNINITIALIZED; } cl_status_t cl_ptr_vector_at(IN const cl_ptr_vector_t * const p_vector, IN const size_t index, OUT void **const p_element) { CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); /* Range check */ if (index >= p_vector->size) return (CL_INVALID_PARAMETER); *p_element = cl_ptr_vector_get(p_vector, index); return (CL_SUCCESS); } cl_status_t cl_ptr_vector_set(IN cl_ptr_vector_t * const p_vector, IN const size_t index, IN const void *const element) { cl_status_t status; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); /* Determine if the vector has room for this element. */ if (index >= p_vector->size) { /* Resize to accomodate the given index. */ status = cl_ptr_vector_set_size(p_vector, index + 1); /* Check for failure on or before the given index. */ if ((status != CL_SUCCESS) && (p_vector->size < index)) return (status); } /* At this point, the array is guaranteed to be big enough */ p_vector->p_ptr_array[index] = element; return (CL_SUCCESS); } void *cl_ptr_vector_remove(IN cl_ptr_vector_t * const p_vector, IN const size_t index) { size_t src; const void *element; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); CL_ASSERT(p_vector->size > index); /* Store a copy of the element to return. */ element = p_vector->p_ptr_array[index]; /* Shift all items above the removed item down. */ if (index < --p_vector->size) { for (src = index; src < p_vector->size; src++) p_vector->p_ptr_array[src] = p_vector->p_ptr_array[src + 1]; } /* Clear the entry for the element just outside of the new upper bound. */ p_vector->p_ptr_array[p_vector->size] = NULL; return ((void *)element); } cl_status_t cl_ptr_vector_set_capacity(IN cl_ptr_vector_t * const p_vector, IN const size_t new_capacity) { void *p_new_ptr_array; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); /* Do we have to do anything here? */ if (new_capacity <= p_vector->capacity) { /* Nope */ return (CL_SUCCESS); } /* Allocate our pointer array. */ p_new_ptr_array = malloc(new_capacity * sizeof(void *)); if (!p_new_ptr_array) return (CL_INSUFFICIENT_MEMORY); else memset(p_new_ptr_array, 0, new_capacity * sizeof(void *)); if (p_vector->p_ptr_array) { /* Copy the old pointer array into the new. */ memcpy(p_new_ptr_array, p_vector->p_ptr_array, p_vector->capacity * sizeof(void *)); /* Free the old pointer array. */ free((void *)p_vector->p_ptr_array); } /* Set the new array. */ p_vector->p_ptr_array = p_new_ptr_array; /* Update the vector with the new capactity. */ p_vector->capacity = new_capacity; return (CL_SUCCESS); } cl_status_t cl_ptr_vector_set_size(IN cl_ptr_vector_t * const p_vector, IN const size_t size) { cl_status_t status; size_t new_capacity; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); /* Check to see if the requested size is the same as the existing size. */ if (size == p_vector->size) return (CL_SUCCESS); /* Determine if the vector has room for this element. */ if (size >= p_vector->capacity) { if (!p_vector->grow_size) return (CL_INSUFFICIENT_MEMORY); /* Calculate the new capacity, taking into account the grow size. */ new_capacity = size; if (size % p_vector->grow_size) { /* Round up to nearest grow_size boundary. */ new_capacity += p_vector->grow_size - (size % p_vector->grow_size); } status = cl_ptr_vector_set_capacity(p_vector, new_capacity); if (status != CL_SUCCESS) return (status); } p_vector->size = size; return (CL_SUCCESS); } cl_status_t cl_ptr_vector_set_min_size(IN cl_ptr_vector_t * const p_vector, IN const size_t min_size) { CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); if (min_size > p_vector->size) { /* We have to resize the array */ return (cl_ptr_vector_set_size(p_vector, min_size)); } /* We didn't have to do anything */ return (CL_SUCCESS); } void cl_ptr_vector_apply_func(IN const cl_ptr_vector_t * const p_vector, IN cl_pfn_ptr_vec_apply_t pfn_callback, IN const void *const context) { size_t i; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); CL_ASSERT(pfn_callback); for (i = 0; i < p_vector->size; i++) pfn_callback(i, (void *)p_vector->p_ptr_array[i], (void *)context); } size_t cl_ptr_vector_find_from_start(IN const cl_ptr_vector_t * const p_vector, IN cl_pfn_ptr_vec_find_t pfn_callback, IN const void *const context) { size_t i; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); CL_ASSERT(pfn_callback); for (i = 0; i < p_vector->size; i++) { /* Invoke the callback */ if (pfn_callback(i, (void *)p_vector->p_ptr_array[i], (void *)context) == CL_SUCCESS) { break; } } return (i); } size_t cl_ptr_vector_find_from_end(IN const cl_ptr_vector_t * const p_vector, IN cl_pfn_ptr_vec_find_t pfn_callback, IN const void *const context) { size_t i; CL_ASSERT(p_vector); CL_ASSERT(p_vector->state == CL_INITIALIZED); CL_ASSERT(pfn_callback); i = p_vector->size; while (i) { /* Invoke the callback for the current element. */ if (pfn_callback(i, (void *)p_vector->p_ptr_array[--i], (void *)context) == CL_SUCCESS) { return (i); } } return (p_vector->size); }