config root man

Current Path : /usr/src/contrib/xz/src/liblzma/lzma/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //usr/src/contrib/xz/src/liblzma/lzma/lzma2_decoder.c

///////////////////////////////////////////////////////////////////////////////
//
/// \file       lzma2_decoder.c
/// \brief      LZMA2 decoder
///
//  Authors:    Igor Pavlov
//              Lasse Collin
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#include "lzma2_decoder.h"
#include "lz_decoder.h"
#include "lzma_decoder.h"


struct lzma_coder_s {
	enum sequence {
		SEQ_CONTROL,
		SEQ_UNCOMPRESSED_1,
		SEQ_UNCOMPRESSED_2,
		SEQ_COMPRESSED_0,
		SEQ_COMPRESSED_1,
		SEQ_PROPERTIES,
		SEQ_LZMA,
		SEQ_COPY,
	} sequence;

	/// Sequence after the size fields have been decoded.
	enum sequence next_sequence;

	/// LZMA decoder
	lzma_lz_decoder lzma;

	/// Uncompressed size of LZMA chunk
	size_t uncompressed_size;

	/// Compressed size of the chunk (naturally equals to uncompressed
	/// size of uncompressed chunk)
	size_t compressed_size;

	/// True if properties are needed. This is false before the
	/// first LZMA chunk.
	bool need_properties;

	/// True if dictionary reset is needed. This is false before the
	/// first chunk (LZMA or uncompressed).
	bool need_dictionary_reset;

	lzma_options_lzma options;
};


static lzma_ret
lzma2_decode(lzma_coder *restrict coder, lzma_dict *restrict dict,
		const uint8_t *restrict in, size_t *restrict in_pos,
		size_t in_size)
{
	// With SEQ_LZMA it is possible that no new input is needed to do
	// some progress. The rest of the sequences assume that there is
	// at least one byte of input.
	while (*in_pos < in_size || coder->sequence == SEQ_LZMA)
	switch (coder->sequence) {
	case SEQ_CONTROL: {
		const uint32_t control = in[*in_pos];
		++*in_pos;

		// End marker
		if (control == 0x00)
			return LZMA_STREAM_END;

		if (control >= 0xE0 || control == 1) {
			// Dictionary reset implies that next LZMA chunk has
			// to set new properties.
			coder->need_properties = true;
			coder->need_dictionary_reset = true;
		} else if (coder->need_dictionary_reset) {
			return LZMA_DATA_ERROR;
		}

		if (control >= 0x80) {
			// LZMA chunk. The highest five bits of the
			// uncompressed size are taken from the control byte.
			coder->uncompressed_size = (control & 0x1F) << 16;
			coder->sequence = SEQ_UNCOMPRESSED_1;

			// See if there are new properties or if we need to
			// reset the state.
			if (control >= 0xC0) {
				// When there are new properties, state reset
				// is done at SEQ_PROPERTIES.
				coder->need_properties = false;
				coder->next_sequence = SEQ_PROPERTIES;

			} else if (coder->need_properties) {
				return LZMA_DATA_ERROR;

			} else {
				coder->next_sequence = SEQ_LZMA;

				// If only state reset is wanted with old
				// properties, do the resetting here for
				// simplicity.
				if (control >= 0xA0)
					coder->lzma.reset(coder->lzma.coder,
							&coder->options);
			}
		} else {
			// Invalid control values
			if (control > 2)
				return LZMA_DATA_ERROR;

			// It's uncompressed chunk
			coder->sequence = SEQ_COMPRESSED_0;
			coder->next_sequence = SEQ_COPY;
		}

		if (coder->need_dictionary_reset) {
			// Finish the dictionary reset and let the caller
			// flush the dictionary to the actual output buffer.
			coder->need_dictionary_reset = false;
			dict_reset(dict);
			return LZMA_OK;
		}

		break;
	}

	case SEQ_UNCOMPRESSED_1:
		coder->uncompressed_size += (uint32_t)(in[(*in_pos)++]) << 8;
		coder->sequence = SEQ_UNCOMPRESSED_2;
		break;

	case SEQ_UNCOMPRESSED_2:
		coder->uncompressed_size += in[(*in_pos)++] + 1;
		coder->sequence = SEQ_COMPRESSED_0;
		coder->lzma.set_uncompressed(coder->lzma.coder,
				coder->uncompressed_size);
		break;

	case SEQ_COMPRESSED_0:
		coder->compressed_size = (uint32_t)(in[(*in_pos)++]) << 8;
		coder->sequence = SEQ_COMPRESSED_1;
		break;

	case SEQ_COMPRESSED_1:
		coder->compressed_size += in[(*in_pos)++] + 1;
		coder->sequence = coder->next_sequence;
		break;

	case SEQ_PROPERTIES:
		if (lzma_lzma_lclppb_decode(&coder->options, in[(*in_pos)++]))
			return LZMA_DATA_ERROR;

		coder->lzma.reset(coder->lzma.coder, &coder->options);

		coder->sequence = SEQ_LZMA;
		break;

	case SEQ_LZMA: {
		// Store the start offset so that we can update
		// coder->compressed_size later.
		const size_t in_start = *in_pos;

		// Decode from in[] to *dict.
		const lzma_ret ret = coder->lzma.code(coder->lzma.coder,
				dict, in, in_pos, in_size);

		// Validate and update coder->compressed_size.
		const size_t in_used = *in_pos - in_start;
		if (in_used > coder->compressed_size)
			return LZMA_DATA_ERROR;

		coder->compressed_size -= in_used;

		// Return if we didn't finish the chunk, or an error occurred.
		if (ret != LZMA_STREAM_END)
			return ret;

		// The LZMA decoder must have consumed the whole chunk now.
		// We don't need to worry about uncompressed size since it
		// is checked by the LZMA decoder.
		if (coder->compressed_size != 0)
			return LZMA_DATA_ERROR;

		coder->sequence = SEQ_CONTROL;
		break;
	}

	case SEQ_COPY: {
		// Copy from input to the dictionary as is.
		dict_write(dict, in, in_pos, in_size, &coder->compressed_size);
		if (coder->compressed_size != 0)
			return LZMA_OK;

		coder->sequence = SEQ_CONTROL;
		break;
	}

	default:
		assert(0);
		return LZMA_PROG_ERROR;
	}

	return LZMA_OK;
}


static void
lzma2_decoder_end(lzma_coder *coder, lzma_allocator *allocator)
{
	assert(coder->lzma.end == NULL);
	lzma_free(coder->lzma.coder, allocator);

	lzma_free(coder, allocator);

	return;
}


static lzma_ret
lzma2_decoder_init(lzma_lz_decoder *lz, lzma_allocator *allocator,
		const void *opt, lzma_lz_options *lz_options)
{
	if (lz->coder == NULL) {
		lz->coder = lzma_alloc(sizeof(lzma_coder), allocator);
		if (lz->coder == NULL)
			return LZMA_MEM_ERROR;

		lz->code = &lzma2_decode;
		lz->end = &lzma2_decoder_end;

		lz->coder->lzma = LZMA_LZ_DECODER_INIT;
	}

	const lzma_options_lzma *options = opt;

	lz->coder->sequence = SEQ_CONTROL;
	lz->coder->need_properties = true;
	lz->coder->need_dictionary_reset = options->preset_dict == NULL
			|| options->preset_dict_size == 0;

	return lzma_lzma_decoder_create(&lz->coder->lzma,
			allocator, options, lz_options);
}


extern lzma_ret
lzma_lzma2_decoder_init(lzma_next_coder *next, lzma_allocator *allocator,
		const lzma_filter_info *filters)
{
	// LZMA2 can only be the last filter in the chain. This is enforced
	// by the raw_decoder initialization.
	assert(filters[1].init == NULL);

	return lzma_lz_decoder_init(next, allocator, filters,
			&lzma2_decoder_init);
}


extern uint64_t
lzma_lzma2_decoder_memusage(const void *options)
{
	return sizeof(lzma_coder)
			+ lzma_lzma_decoder_memusage_nocheck(options);
}


extern lzma_ret
lzma_lzma2_props_decode(void **options, lzma_allocator *allocator,
		const uint8_t *props, size_t props_size)
{
	if (props_size != 1)
		return LZMA_OPTIONS_ERROR;

	// Check that reserved bits are unset.
	if (props[0] & 0xC0)
		return LZMA_OPTIONS_ERROR;

	// Decode the dictionary size.
	if (props[0] > 40)
		return LZMA_OPTIONS_ERROR;

	lzma_options_lzma *opt = lzma_alloc(
			sizeof(lzma_options_lzma), allocator);
	if (opt == NULL)
		return LZMA_MEM_ERROR;

	if (props[0] == 40) {
		opt->dict_size = UINT32_MAX;
	} else {
		opt->dict_size = 2 | (props[0] & 1);
		opt->dict_size <<= props[0] / 2 + 11;
	}

	opt->preset_dict = NULL;
	opt->preset_dict_size = 0;

	*options = opt;

	return LZMA_OK;
}

Man Man