config root man

Current Path : /usr/src/crypto/heimdal/doc/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //usr/src/crypto/heimdal/doc/setup.texi

@c $Id: setup.texi 22191 2007-12-06 17:26:30Z lha $

@node Setting up a realm, Applications, Building and Installing, Top

@chapter Setting up a realm

A
@cindex realm
realm is an administrative domain.  The name of a Kerberos realm is
usually the Internet domain name in uppercase.  Call your realm the same
as your Internet domain name if you do not have strong reasons for not
doing so.  It will make life easier for you and everyone else.

@menu
* Configuration file::
* Creating the database::
* Modifying the database::
* Checking the setup::
* keytabs::
* Serving Kerberos 4/524/kaserver::
* Remote administration::
* Password changing::
* Testing clients and servers::
* Slave Servers::
* Incremental propagation::
* Encryption types and salting::
* Cross realm::
* Transit policy::
* Setting up DNS::
* Using LDAP to store the database::
* Providing Kerberos credentials to servers and programs::
* Setting up PK-INIT::
@end menu

@node  Configuration file, Creating the database, Setting up a realm, Setting up a realm
@section Configuration file

To setup a realm you will first have to create a configuration file:
@file{/etc/krb5.conf}. The @file{krb5.conf} file can contain many
configuration options, some of which are described here.

There is a sample @file{krb5.conf} supplied with the distribution.

The configuration file is a hierarchical structure consisting of
sections, each containing a list of bindings (either variable
assignments or subsections). A section starts with
@samp{[@samp{section-name}]}.  A binding consists of a left hand side, an equal sign
(@samp{=}) and a right hand side (the left hand side tag must be
separated from the equal sign with some whitespace). Subsections have a
@samp{@{} as the first non-whitespace character after the equal sign. All
other bindings are treated as variable assignments. The value of a
variable extends to the end of the line.

@example
[section1]
        a-subsection = @{
                var = value1
                other-var = value with @{@}
                sub-sub-section = @{
                        var = 123
                @}
        @}
        var = some other value
[section2]
        var = yet another value
@end example

In this manual, names of sections and bindings will be given as strings
separated by slashes (@samp{/}). The @samp{other-var} variable will thus
be @samp{section1/a-subsection/other-var}.

For in-depth information about the contents of the configuration file, refer to
the @file{krb5.conf} manual page. Some of the more important sections
are briefly described here.

The @samp{libdefaults} section contains a list of library configuration
parameters, such as the default realm and the timeout for KDC
responses. The @samp{realms} section contains information about specific
realms, such as where they hide their KDC@. This section serves the same
purpose as the Kerberos 4 @file{krb.conf} file, but can contain more
information. Finally the @samp{domain_realm} section contains a list of
mappings from domains to realms, equivalent to the Kerberos 4
@file{krb.realms} file.

To continue with the realm setup, you will have to create a configuration file,
with contents similar to the following.

@example
[libdefaults]
        default_realm = MY.REALM
[realms]
        MY.REALM = @{
                kdc = my.kdc my.slave.kdc
                kdc = my.third.kdc
        @}
[domain_realm]
        .my.domain = MY.REALM

@end example

If you use a realm name equal to your domain name, you can omit the
@samp{libdefaults}, and @samp{domain_realm}, sections. If you have a DNS
SRV-record for your realm, or your Kerberos server has DNS CNAME
@samp{kerberos.my.realm}, you can omit the @samp{realms} section too.

@node Creating the database, Modifying the database, Configuration file, Setting up a realm
@section Creating the database

The database library will look for the database in the directory
@file{@value{dbdir}}, so you should probably create that directory.
Make sure the directory has restrictive permissions.

@example
# mkdir /var/heimdal
@end example

The keys of all the principals are stored in the database.  If you
choose to, these can be encrypted with a master key.  You do not have to
remember this key (or password), but just to enter it once and it will
be stored in a file (@file{/var/heimdal/m-key}).  If you want to have a
master key, run @samp{kstash} to create this master key:

@example
# kstash
Master key:
Verifying password - Master key:
@end example

If you want to generate a random master key you can use the
@kbd{--random-key} flag to kstash. This will make sure you have a good key
on which attackers can't do a dictionary attack.

If you have a master key, make sure you make a backup of your master
key file; without it backups of the database are of no use.

To initialise the database use the @command{kadmin} program, with the
@kbd{-l} option (to enable local database mode). First issue a
@kbd{init MY.REALM} command. This will create the database and insert
default principals for that realm. You can have more than one realm in
one database, so @samp{init} does not destroy any old database.

Before creating the database, @samp{init} will ask you some questions
about maximum ticket lifetimes.

After creating the database you should probably add yourself to it. You
do this with the @samp{add} command. It takes as argument the name of a
principal. The principal should contain a realm, so if you haven't set up
a default realm, you will need to explicitly include the realm.

@example
# kadmin -l
kadmin> init MY.REALM
Realm max ticket life [unlimited]:
Realm max renewable ticket life [unlimited]:
kadmin> add me
Max ticket life [unlimited]:
Max renewable life [unlimited]:
Attributes []:
Password:
Verifying password - Password:
@end example

Now start the KDC and try getting a ticket.

@example
# kdc &
# kinit me
me@@MY.REALMS's Password:
# klist
Credentials cache: /tmp/krb5cc_0
        Principal: me@@MY.REALM

  Issued           Expires          Principal
Aug 25 07:25:55  Aug 25 17:25:55  krbtgt/MY.REALM@@MY.REALM
@end example

If you are curious you can use the @samp{dump} command to list all the
entries in the database.  It should look something similar to the
following example (note that the entries here are truncated for
typographical reasons):

@smallexample
kadmin> dump
me@@MY.REALM 1:0:1:0b01d3cb7c293b57:-:0:7:8aec316b9d1629e3baf8 ...
kadmin/admin@@MY.REALM 1:0:1:e5c8a2675b37a443:-:0:7:cb913ebf85 ...
krbtgt/MY.REALM@@MY.REALM 1:0:1:52b53b61c875ce16:-:0:7:c8943be ...
kadmin/changepw@@MY.REALM 1:0:1:f48c8af2b340e9fb:-:0:7:e3e6088 ...
@end smallexample

@node Modifying the database, Checking the setup, Creating the database, Setting up a realm
@section Modifying the database

All modifications of principals are done with with kadmin.

A principal has several attributes and lifetimes associated with it.

Principals are added, renamed, modified, and deleted with the kadmin
commands @samp{add}, @samp{rename}, @samp{modify}, @samp{delete}.
Both interactive editing and command line flags can be used (use --help
to list the available options).

There are different kinds of types for the fields in the database;
attributes, absolute time times and relative times.

@subsection Attributes

When doing interactive editing, attributes are listed with @samp{?}.

The attributes are given in a comma (@samp{,}) separated list.
Attributes are removed from the list by prefixing them with @samp{-}.

@smallexample
kadmin> modify me
Max ticket life [1 day]:
Max renewable life [1 week]:
Principal expiration time [never]:
Password expiration time [never]:
Attributes [disallow-renewable]: requires-pre-auth,-disallow-renewable
kadmin> get me
            Principal: me@@MY.REALM
[...]
           Attributes: requires-pre-auth
@end smallexample

@subsection Absolute times

The format for absolute times are any of the following:

@smallexample
never
now
YYYY-mm-dd
YYYY-mm-dd HH:MM:SS
@end smallexample


@subsection Relative times

The format for relative times are any of the following combined:

@smallexample
N year
M month
O day
P hour
Q minute
R second
@end smallexample

@c Describe more of kadmin commands here...

@node Checking the setup, keytabs, Modifying the database, Setting up a realm
@section Checking the setup

There are two tools that can check the consistency of the Kerberos
configuration file and the Kerberos database.

The Kerberos configuration file is checked using
@command{verify_krb5_conf}. The tool checks for common errors, but
commonly there are several uncommon configuration entries that are
never added to the tool and thus generates ``unknown entry'' warnings.
This is usually nothing to worry about.

The database check is built into the kadmin tool. It will check for
common configuration error that will cause problems later. Common
check are for existence and flags on important principals. The
database check by run by the following command :

@example
kadmin check REALM.EXAMPLE.ORG
@end example

@node keytabs, Serving Kerberos 4/524/kaserver, Checking the setup, Setting up a realm
@section keytabs

To extract a service ticket from the database and put it in a keytab, you
need to first create the principal in the database with @samp{ank}
(using the @kbd{--random-key} flag to get a random key) and then
extract it with @samp{ext_keytab}.

@example
kadmin> add --random-key host/my.host.name
Max ticket life [unlimited]:
Max renewable life [unlimited]:
Attributes []:
kadmin> ext host/my.host.name
kadmin> exit
# ktutil list
Version  Type             Principal
     1   des-cbc-md5      host/my.host.name@@MY.REALM
     1   des-cbc-md4      host/my.host.name@@MY.REALM
     1   des-cbc-crc      host/my.host.name@@MY.REALM
     1   des3-cbc-sha1    host/my.host.name@@MY.REALM
@end example

@node Serving Kerberos 4/524/kaserver, Remote administration, keytabs, Setting up a realm
@section Serving Kerberos 4/524/kaserver

Heimdal can be configured to support 524, Kerberos 4 or kaserver. All
these services are turned off by default. Kerberos 4 is always
supported by the KDC, but the Kerberos 4 client support also depends
on Kerberos 4 support having been included at compile-time, using
@kbd{--with-krb4=dir}.

@subsection 524

524 is a service that allows the KDC to convert Kerberos 5 tickets to
Kerberos 4 tickets for backward compatibility. See also Using 2b
tokens with AFS in @xref{Things in search for a better place}.

524 can be turned on by adding this to the configuration file

@example
[kdc]
	enable-524 = yes
@end example

@subsection Kerberos 4

Kerberos 4 is the predecessor to to Kerberos 5. It only supports
single DES@. You should only enable Kerberos 4 support if you have
needs for compatibility with an installed base of Kerberos 4
clients/servers.

Kerberos 4 can be turned on by adding this to the configuration file

@example
[kdc]
	enable-kerberos4 = yes
@end example

@subsection kaserver

Kaserver is a Kerberos 4 that is used in AFS@.  The protocol has some
extra features over plain Kerberos 4, but like Kerberos 4, only uses
single DES@.

You should only enable Kaserver support if you have needs for
compatibility with an installed base of AFS machines.

Kaserver can be turned on by adding this to the configuration file

@example
[kdc]
	enable-kaserver = yes
@end example

@node Remote administration, Password changing, Serving Kerberos 4/524/kaserver, Setting up a realm
@section Remote administration

The administration server, @command{kadmind}, can be started by
@command{inetd} (which isn't recommended) or run as a normal daemon. If you
want to start it from @command{inetd} you should add a line similar to the
one below to your @file{/etc/inetd.conf}.

@example
kerberos-adm stream     tcp     nowait  root /usr/heimdal/libexec/kadmind kadmind
@end example

You might need to add @samp{kerberos-adm} to your @file{/etc/services}
as @samp{749/tcp}.

Access to the administration server is controlled by an ACL file,
(default @file{/var/heimdal/kadmind.acl}.) The file has the following
syntax:
@smallexample
principal       [priv1,priv2,...]       [glob-pattern]
@end smallexample

The matching is from top to bottom for matching principals (and if given,
glob-pattern).  When there is a match, the access rights of that line are
applied.

The privileges you can assign to a principal are: @samp{add},
@samp{change-password} (or @samp{cpw} for short), @samp{delete},
@samp{get}, @samp{list}, and @samp{modify}, or the special privilege
@samp{all}. All of these roughly correspond to the different commands
in @command{kadmin}.

If a @var{glob-pattern} is given on a line, it restricts the access
rights for the principal to only apply for subjects that match the
pattern.  The patterns are of the same type as those used in shell
globbing, see @url{none,,fnmatch(3)}.

In the example below @samp{lha/admin} can change every principal in the
database. @samp{jimmy/admin} can only modify principals that belong to
the realm @samp{E.KTH.SE}. @samp{mille/admin} is working at the
help desk, so he should only be able to change the passwords for single
component principals (ordinary users). He will not be able to change any
@samp{/admin} principal.

@example
lha/admin@@E.KTH.SE	all
jimmy/admin@@E.KTH.SE	all		*@@E.KTH.SE
jimmy/admin@@E.KTH.SE	all		*/*@@E.KTH.SE
mille/admin@@E.KTH.SE	change-password	*@@E.KTH.SE
@end example

@node Password changing, Testing clients and servers, Remote administration, Setting up a realm
@section Password changing

To allow users to change their passwords, you should run @command{kpasswdd}.
It is not run from @command{inetd}.

You might need to add @samp{kpasswd} to your @file{/etc/services} as
@samp{464/udp}.

@subsection Password quality assurance

It is important that users have good passwords, both to make it harder
to guess them and to avoid off-line attacks (although
pre-authentication provides some defence against off-line attacks).
To ensure that the users choose good passwords, you can enable
password quality controls in @command{kpasswdd} and @command{kadmind}.
The controls themselves are done in a shared library or an external
program that is used by @command{kpasswdd}.  To configure in these
controls, add lines similar to the following to your
@file{/etc/krb5.conf}:

@example
[password_quality]
	policies = external-check builtin:minimum-length module:policyname
	external_program = /bin/false
	policy_libraries = @var{library1.so} @var{library2.so}
@end example

In @samp{[password_quality]policies} the module name is optional if
the policy name is unique in all modules (members of
@samp{policy_libraries}).

The built-in polices are

@itemize @bullet

@item external-check

Executes the program specified by @samp{[password_quality]external_program}.

A number of key/value pairs are passed as input to the program, one per
line, ending with the string @samp{end}.  The key/value lines are of
the form
@example
principal: @var{principal}
new-password: @var{password}
@end example
where @var{password} is the password to check for the previous
@var{principal}.

If the external application approves the password, it should return
@samp{APPROVED} on standard out and exit with exit code 0.  If it
doesn't approve the password, an one line error message explaining the
problem should be returned on standard error and the application
should exit with exit code 0.  In case of a fatal error, the
application should, if possible, print an error message on standard
error and exit with a non-zero error code.

@item minimum-length

The minimum length password quality check reads the configuration file
stanza @samp{[password_quality]min_length} and requires the password
to be at least this length.

@item character-class

The character-class password quality check reads the configuration
file stanza @samp{[password_quality]min_classes}. The policy requires
the password to have characters from at least that many character
classes. Default value if not given is 3.

The four different characters classes are, uppercase, lowercase,
number, special characters.

@end itemize

If you want to write your own shared object to check password
policies, see the manual page @manpage{kadm5_pwcheck,3}.

Code for a password quality checking function that uses the cracklib
library can be found in @file{lib/kadm5/sample_password_check.c} in
the source code distribution.  It requires that the cracklib library
be built with the patch available at
@url{ftp://ftp.pdc.kth.se/pub/krb/src/cracklib.patch}.

A sample policy external program is included in
@file{lib/kadm5/check-cracklib.pl}.

If no password quality checking function is configured, the only check
performed is that the password is at least six characters long.

To check the password policy settings, use the command
@command{password-quality} in @command{kadmin} program. The password
verification is only performed locally, on the client.  It may be
convenient to set the environment variable @samp{KRB5_CONFIG} to point
to a test version of @file{krb5.conf} while you're testing the
@samp{[password_quality]} stanza that way.

@node Testing clients and servers, Slave Servers, Password changing, Setting up a realm
@section Testing clients and servers

Now you should be able to run all the clients and servers.  Refer to the
appropriate man pages for information on how to use them.

@node Slave Servers, Incremental propagation, Testing clients and servers, Setting up a realm
@section Slave servers, Incremental propagation, Testing clients and servers, Setting up a realm

It is desirable to have at least one backup (slave) server in case the
master server fails. It is possible to have any number of such slave
servers but more than three usually doesn't buy much more redundancy.

All Kerberos servers for a realm must have the same database so that
they present the same service to the users.  The
@pindex hprop
@command{hprop} program, running on the master, will propagate the database
to the slaves, running
@pindex hpropd
@command{hpropd} processes.

Every slave needs a database directory, the master key (if it was used
for the database) and a keytab with the principal
@samp{hprop/@var{hostname}}.  Add the principal with the
@pindex ktutil
@command{ktutil} command and start
@pindex hpropd
@command{hpropd}, as follows:

@example
slave# ktutil get -p foo/admin hprop/`hostname`
slave# mkdir /var/heimdal
slave# hpropd
@end example

The master will use the principal @samp{kadmin/hprop} to authenticate to
the slaves.  This principal should be added when running @kbd{kadmin -l
init} but if you do not have it in your database for whatever reason,
please add it with @kbd{kadmin -l add}.

Then run
@pindex hprop
@code{hprop} on the master:

@example
master# hprop slave
@end example

This was just an hands-on example to make sure that everything was
working properly.  Doing it manually is of course the wrong way, and to
automate this you will want to start
@pindex hpropd
@command{hpropd} from @command{inetd} on the slave(s) and regularly run
@pindex hprop
@command{hprop} on the master to regularly propagate the database.
Starting the propagation once an hour from @command{cron} is probably a
good idea.

@node Incremental propagation, Encryption types and salting, Slave Servers, Setting up a realm
@section Incremental propagation

There is also a newer, and still somewhat experimental, mechanism for
doing incremental propagation in Heimdal.  Instead of sending the whole
database regularly, it sends the changes as they happen on the master to
the slaves.  The master keeps track of all the changes by assigning a
version number to every change to the database.  The slaves know which
was the latest version they saw and in this way it can be determined if
they are in sync or not.  A log of all the changes is kept on the master,
and when a slave is at an older version than the oldest one in the
log, the whole database has to be sent.

Protocol-wise, all the slaves connect to the master and as a greeting
tell it the latest version that they have (@samp{IHAVE} message).  The
master then responds by sending all the changes between that version and
the current version at the master (a series of @samp{FORYOU} messages)
or the whole database in a @samp{TELLYOUEVERYTHING} message.  There is
also a keep-alive protocol that makes sure all slaves are up and running.

@subsection Configuring incremental propagation

The program that runs on the master is @command{ipropd-master} and all
clients run @command{ipropd-slave}.

Create the file @file{/var/heimdal/slaves} on the master containing all
the slaves that the database should be propagated to.  Each line contains
the full name of the principal (for example
@samp{iprop/hemligare.foo.se@@FOO.SE}).

You should already have @samp{iprop/tcp} defined as 2121, in your
@file{/etc/services}.  Otherwise, or if you need to use a different port
for some peculiar reason, you can use the @kbd{--port} option.  This is
useful when you have multiple realms to distribute from one server.

Then you need to create those principals that you added in the
configuration file.  Create one @samp{iprop/hostname} for the master and
for every slave.


@example
master# /usr/heimdal/sbin/ktutil get iprop/`hostname`
@end example

The next step is to start the @command{ipropd-master} process on the master
server.  The @command{ipropd-master} listens on the UNIX domain socket
@file{/var/heimdal/signal} to know when changes have been made to the
database so they can be propagated to the slaves.  There is also a
safety feature of testing the version number regularly (every 30
seconds) to see if it has been modified by some means that do not raise
this signal.  Then, start @command{ipropd-slave} on all the slaves:

@example
master# /usr/heimdal/libexec/ipropd-master &
slave#  /usr/heimdal/libexec/ipropd-slave master &
@end example

To manage the iprop log file you should use the @command{iprop-log}
command. With it you can dump, truncate and replay the logfile.

@node Encryption types and salting, Cross realm, Incremental propagation, Setting up a realm
@section Encryption types and salting
@cindex Salting
@cindex Encryption types

The encryption types that the KDC is going to assign by default is
possible to change. Since the keys used for user authentication is
salted the encryption types are described together with the salt
strings.

Salting is used to make it harder to pre-calculate all possible
keys. Using a salt increases the search space to make it almost
impossible to pre-calculate all keys. Salting is the process of mixing a
public string (the salt) with the password, then sending it through an
encryption type specific string-to-key function that will output the
fixed size encryption key.

In Kerberos 5 the salt is determined by the encryption type, except in
some special cases.

In @code{des} there is the Kerberos 4 salt
(none at all) or the afs-salt (using the cell (realm in
AFS lingo)).

In @code{arcfour} (the encryption type that Microsoft Windows 2000 uses)
there is no salt. This is to be compatible with NTLM keys in Windows
NT 4.

@code{[kadmin]default_keys} in @file{krb5.conf} controls
what salting to use.

The syntax of @code{[kadmin]default_keys} is
@samp{[etype:]salt-type[:salt-string]}. @samp{etype} is the encryption
type (des-cbc-crc, arcfour-hmac-md5, aes256-cts-hmac-sha1-96),
@code{salt-type} is the type of salt (pw-salt or afs3-salt), and the
salt-string is the string that will be used as salt (remember that if
the salt is appended/prepended, the empty salt "" is the same thing as
no salt at all).

Common types of salting include

@itemize @bullet
@item @code{v4} (or @code{des:pw-salt:})

The Kerberos 4 salting is using no salt at all. Reason there is colon
at the end of the salt string is that it makes the salt the empty
string (same as no salt).

@item @code{v5} (or @code{pw-salt})

@code{pw-salt} uses the default salt for each encryption type is
specified for. If the encryption type @samp{etype} isn't given, all
default encryption will be used.

@item @code{afs3-salt}

@code{afs3-salt} is the salt that is used with Transarc kaserver. It's
the cell name appended to the password.

@end itemize

@node Cross realm, Transit policy, Encryption types and salting, Setting up a realm
@section Cross realm
@cindex Cross realm

Suppose you reside in the realm @samp{MY.REALM}, how do you
authenticate to a server in @samp{OTHER.REALM}? Having valid tickets in
@samp{MY.REALM} allows you to communicate with Kerberised services in that
realm. However, the computer in the other realm does not have a secret
key shared with the Kerberos server in your realm.

It is possible to share keys between two realms that trust each
other. When a client program, such as @command{telnet} or @command{ssh},
finds that the other computer is in a different realm, it will try to
get a ticket granting ticket for that other realm, but from the local
Kerberos server. With that ticket granting ticket, it will then obtain
service tickets from the Kerberos server in the other realm.

For a two way trust between @samp{MY.REALM} and @samp{OTHER.REALM}
add the following principals to each realm. The principals should be
@samp{krbtgt/OTHER.REALM@@MY.REALM} and
@samp{krbtgt/MY.REALM@@OTHER.REALM} in @samp{MY.REALM}, and
@samp{krbtgt/MY.REALM@@OTHER.REALM} and
@samp{krbtgt/OTHER.REALM@@MY.REALM}in @samp{OTHER.REALM}.

In Kerberos 5 the trust can be configured to be one way. So that
users from @samp{MY.REALM} can authenticate to services in
@samp{OTHER.REALM}, but not the opposite. In the example above, the
@samp{krbtgt/MY.REALM@@OTHER.REALM} then should be removed.

The two principals must have the same key, key version number, and the
same set of encryption types. Remember to transfer the two keys in a
safe manner.

@example
vr$ klist
Credentials cache: FILE:/tmp/krb5cc_913.console
        Principal: lha@@E.KTH.SE

  Issued           Expires          Principal
May  3 13:55:52  May  3 23:55:54  krbtgt/E.KTH.SE@@E.KTH.SE

vr$ telnet -l lha hummel.it.su.se
Trying 2001:6b0:5:1095:250:fcff:fe24:dbf...
Connected to hummel.it.su.se.
Escape character is '^]'.
Waiting for encryption to be negotiated...
[ Trying mutual KERBEROS5 (host/hummel.it.su.se@@SU.SE)... ]
[ Kerberos V5 accepts you as ``lha@@E.KTH.SE'' ]
Encryption negotiated.
Last login: Sat May  3 14:11:47 from vr.l.nxs.se
hummel$ exit

vr$ klist
Credentials cache: FILE:/tmp/krb5cc_913.console
        Principal: lha@@E.KTH.SE

  Issued           Expires          Principal
May  3 13:55:52  May  3 23:55:54  krbtgt/E.KTH.SE@@E.KTH.SE
May  3 13:55:56  May  3 23:55:54  krbtgt/SU.SE@@E.KTH.SE
May  3 14:10:54  May  3 23:55:54  host/hummel.it.su.se@@SU.SE

@end example

@node Transit policy, Setting up DNS, Cross realm, Setting up a realm
@section Transit policy
@cindex Transit policy

If you want to use cross realm authentication through an intermediate
realm, it must be explicitly allowed by either the KDCs or the server
receiving the request. This is done in @file{krb5.conf} in the
@code{[capaths]} section.

When the ticket transits through a realm to another realm, the
destination realm adds its peer to the "transited-realms" field in the
ticket. The field is unordered, since there is no way to know if
know if one of the transited-realms changed the order of the list.

The syntax for @code{[capaths]} section:

@example
[capaths]
        CLIENT-REALM = @{
                SERVER-REALM = PERMITTED-CROSS-REALMS ...
        @}
@end example

The realm @code{STACKEN.KTH.SE} allows clients from @code{SU.SE} and
@code{DSV.SU.SE} to cross it. Since @code{STACKEN.KTH.SE} only has
direct cross realm setup with @code{KTH.SE}, and @code{DSV.SU.SE} only
has direct cross realm setup with @code{SU.SE} they need to use both
@code{SU.SE} and @code{KTH.SE} as transit realms.

@example
[capaths]
	SU.SE = @{
                    STACKEN.KTH.SE = KTH.SE
	@}
	DSV.SU.SE = @{
                    STACKEN.KTH.SE = SU.SE KTH.SE
	@}

@end example

The order of the @code{PERMITTED-CROSS-REALMS} is not important when
doing transit cross realm verification.

However, the order is important when the @code{[capaths]} section is used
to figure out the intermediate realm to go to when doing multi-realm
transit. When figuring out the next realm, the first realm of the list
of @code{PERMITTED-CROSS-REALMS} is chosen. This is done in both the
client kerberos library and the KDC.

@c To test the cross realm configuration, use:
@c    kmumble transit-check client server transit-realms ...

@node Setting up DNS, Using LDAP to store the database, Transit policy, Setting up a realm
@section Setting up DNS
@cindex Setting up DNS

@subsection Using DNS to find KDC

If there is information about where to find the KDC or kadmind for a
realm in the @file{krb5.conf} for a realm, that information will be
preferred, and DNS will not be queried.

Heimdal will try to use DNS to find the KDCs for a realm. First it
will try to find a @code{SRV} resource record (RR) for the realm. If no
SRV RRs are found, it will fall back to looking for an @code{A} RR for
a machine named kerberos.REALM, and then kerberos-1.REALM, etc

Adding this information to DNS minimises the client configuration (in
the common case, resulting in no configuration needed) and allows the
system administrator to change the number of KDCs and on what machines
they are running without caring about clients.

The downside of using DNS is that the client might be fooled to use the
wrong server if someone fakes DNS replies/data, but storing the IP
addresses of the KDC on all the clients makes it very hard to change
the infrastructure.

An example of the configuration for the realm @code{EXAMPLE.COM}:

@example

$ORIGIN example.com.
_kerberos._tcp          SRV     10 1 88 kerberos.example.com.
_kerberos._udp          SRV     10 1 88 kerberos.example.com.
_kerberos._tcp          SRV     10 1 88 kerberos-1.example.com.
_kerberos._udp          SRV     10 1 88 kerberos-1.example.com.
_kpasswd._udp           SRV     10 1 464 kerberos.example.com.
_kerberos-adm._tcp	SRV	10 1 749 kerberos.example.com.

@end example

More information about DNS SRV resource records can be found in
RFC-2782 (A DNS RR for specifying the location of services (DNS SRV)).

@subsection Using DNS to map hostname to Kerberos realm

Heimdal also supports a way to lookup a realm from a hostname. This to
minimise configuration needed on clients. Using this has the drawback
that clients can be redirected by an attacker to realms within the
same cross realm trust and made to believe they are talking to the
right server (since Kerberos authentication will succeed).

An example configuration that informs clients that for the realms
it.example.com and srv.example.com, they should use the realm
EXAMPLE.COM:

@example

$ORIGIN example.com.
_kerberos.it		TXT     "EXAMPLE.COM"
_kerberos.srv		TXT     "EXAMPLE.COM"

@end example

@node Using LDAP to store the database, Providing Kerberos credentials to servers and programs, Setting up DNS, Setting up a realm
@section Using LDAP to store the database
@cindex Using the LDAP backend

This document describes how to install the LDAP backend for
Heimdal. Note that before attempting to configure such an
installation, you should be aware of the implications of storing
private information (such as users' keys) in a directory service
primarily designed for public information. Nonetheless, with a
suitable authorisation policy, it is possible to set this up in a
secure fashion. A knowledge of LDAP, Kerberos, and C is necessary to
install this backend. The HDB schema was devised by Leif Johansson.

Requirements:

@itemize @bullet

@item
A current release of Heimdal, configured with
@code{--with-openldap=/usr/local} (adjust according to where you have
installed OpenLDAP).

You can verify that you manage to configure LDAP support by running
@file{kdc --builtin-hdb}, and checking that @samp{ldap:} is one entry
in the list.

Its also possible to configure the ldap backend as a shared module,
see option --hdb-openldap-module to configure.

@item
OpenLDAP 2.0.x. Configure OpenLDAP with @kbd{--enable-local} to enable the
local transport. (A patch to support SASL EXTERNAL authentication is
necessary in order to use OpenLDAP 2.1.x.)

@item
Add the hdb schema to the LDAP server, it's included in the source-tree
in @file{lib/hdb/hdb.schema}. Example from slapd.conf:

@example
include /usr/local/etc/openldap/schema/hdb.schema
@end example

@item
Configure the LDAP server ACLs to accept writes from clients over the
local transport. For example:

@example
access to *
        by dn.exact="uid=heimdal,dc=services,dc=example,dc=com" write
        ...

sasl-regexp "uidNumber=0\\\+gidNumber=.*,cn=peercred,cn=external,cn=auth"
	"uid=heimdal,dc=services,dc=example,dc=com"

@end example

The sasl-regexp is for mapping between the SASL/EXTERNAL and a user in
a tree.  The user that the key is mapped to should be have a
krb5Principal aux object with krb5PrincipalName set so that the
``creator'' and ``modifier'' is right in @file{kadmin}.

Another option is to create an admins group and add the dn to that
group.

Since Heimdal talks to the LDAP server over a UNIX domain socket, and
uses external sasl authentication, it's not possible to require
security layer quality (ssf in cyrus-sasl lingo). So that requirement
has to be turned off in OpenLDAP @command{slapd} configuration file
@file{slapd.conf}.

@example
sasl-secprops minssf=0
@end example

@item

Start @command{slapd} with the local listener (as well as the default TCP/IP
listener on port 389) as follows:

@example
    slapd -h "ldapi:/// ldap:///"
@end example

Note: These is a bug in @command{slapd} where it appears to corrupt the krb5Key
binary attribute on shutdown. This may be related to our use of the V3
schema definition syntax instead of the old UMich-style, V2 syntax.

@item
You should specify the distinguished name under which your
principals will be stored in @file{krb5.conf}. Also you need to
enter the path to the kadmin acl file:


@example
[kdc]
        database = @{
                dbname = ldap:ou=KerberosPrincipals,dc=example,dc=com
                hdb-ldap-structural-object = inetOrgPerson
                acl_file = /path/to/kadmind.acl
                mkey_file = /path/to/mkey
        @}
@end example

@samp{mkey_file} can be excluded if you feel that you trust your ldap
directory to have the raw keys inside it.  The
hdb-ldap-structural-object is not necessary if you do not need Samba
comatibility.



@item
Once you have built Heimdal and started the LDAP server, run kadmin
(as usual) to initialise the database. Note that the instructions for
stashing a master key are as per any Heimdal installation.

@example
kdc# kadmin -l
kadmin> init EXAMPLE.COM
Realm max ticket life [unlimited]:
Realm max renewable ticket life [unlimited]:
kadmin> ank lukeh
Max ticket life [1 day]:
Max renewable life [1 week]:
Principal expiration time [never]:
Password expiration time [never]:
Attributes []:
lukeh@@EXAMPLE.COM's Password:
Verifying password - lukeh@@EXAMPLE.COM's Password:
kadmin> exit
@end example

Verify that the principal database has indeed been stored in the
directory with the following command:

@example
kdc# ldapsearch -L -h localhost -D cn=manager \
 -w secret -b ou=KerberosPrincipals,dc=example,dc=com \
 'objectclass=krb5KDCEntry'
@end example

@item
Now consider adding indexes to the database to speed up the access, at
least theses should be added to slapd.conf.

@example
index	objectClass		eq
index	cn			eq,sub,pres
index	uid			eq,sub,pres
index	displayName		eq,sub,pres
index	krb5PrincipalName	eq
@end example

@end itemize

@subsection Troubleshooting guide

@url{https://sec.miljovern.no/bin/view/Info/TroubleshootingGuide}


@subsection Using Samba LDAP password database
@cindex Samba

@c @node Using Samba LDAP password database, Providing Kerberos credentials to servers and programs, Using LDAP to store the database, Setting up a realm
@c @section Using Samba LDAP password database

The Samba domain and the Kerberos realm can have different names since
arcfour's string to key functions principal/realm independent.  So now
will be your first and only chance name your Kerberos realm without
needing to deal with old configuration files.

First, you should set up Samba and get that working with LDAP backend.

Now you can proceed as in @xref{Using LDAP to store the database}.
Heimdal will pick up the Samba LDAP entries if they are in the same
search space as the Kerberos entries.

@node Providing Kerberos credentials to servers and programs, Setting up PK-INIT, Using LDAP to store the database, Setting up a realm
@section Providing Kerberos credentials to servers and programs

Some services require Kerberos credentials when they start to make
connections to other services or need to use them when they have started.

The easiest way to get tickets for a service is to store the key in a
keytab. Both ktutil get and kadmin ext can be used to get a
keytab. ktutil get is better in that way it changes the key/password
for the user. This is also the problem with ktutil. If ktutil is used
for the same service principal on several hosts, they keytab will only
be useful on the last host. In that case, run the extract command on
one host and then securely copy the keytab around to all other hosts
that need it.

@example
host# ktutil -k /etc/krb5-service.keytab \
      get -p lha/admin@@EXAMPLE.ORG service-principal@@EXAMPLE.ORG
lha/admin@@EXAMPLE.ORG's Password:
@end example

To get a Kerberos credential file for the service, use kinit in the
@kbd{--keytab} mode. This will not ask for a password but instead fetch the
key from the keytab.

@example
service@@host$ kinit --cache=/var/run/service_krb5_cache \
               --keytab=/etc/krb5-service.keytab \
       service-principal@@EXAMPLE.ORG
@end example

Long running services might need credentials longer then the
expiration time of the tickets. kinit can run in a mode that refreshes
the tickets before they expire. This is useful for services that write
into AFS and other distributed file systems using Kerberos. To run the
long running script, just append the program and arguments (if any)
after the principal. kinit will stop refreshing credentials and remove
the credentials when the script-to-start-service exits.

@example
service@@host$ kinit --cache=/var/run/service_krb5_cache \
       --keytab=/etc/krb5-service.keytab \
       service-principal@@EXAMPLE.ORG \
       script-to-start-service argument1 argument2
@end example


@node Setting up PK-INIT, , Providing Kerberos credentials to servers and programs, Setting up a realm
@section Setting up PK-INIT

PK-INIT is levering the existing PKI infrastructure to use
certificates to get the initial ticket, that is usually the krbtgt.

To use PK-INIT you must first have a PKI, so if you don't have one,
it is time to create it. Note that you should read the whole chapter
of the document to see the requirements on the CA software.

There needs to exist a mapping between the certificate and what
principals that certificate is allowed to use. There are several ways
to do this. The administrator can use a configuration file, storing
the principal in the SubjectAltName extension of the certificate, or store the
mapping in the principals entry in the kerberos database.

@section Certificates

This section documents the requirements on the KDC and client
certificates and the format used in the id-pkinit-san OtherName
extention.

@subsection KDC certificate

The certificate for the KDC have serveral requirements.

First the certificate should have an Extended Key Usage (EKU)
id-pkkdcekuoid (1.3.6.1.5.2.3.5) set. Second there must be a
subjectAltName otherName using oid id-pkinit-san (1.3.6.1.5.2.2) in
the type field and a DER encoded KRB5PrincipalName that matches the
name of the TGS of the target realm.

Both of these two requirements are not required by the standard to be
checked by the client if it have external information what the
certificate the KDC is supposed to be used. So it's in the interest of
minimum amount of configuration on the clients they should be included.

Remember that if the client would accept any certificate as the KDC's
certificate, the client could be fooled into trusting something that
isn't a KDC and thus expose the user to giving away information (like
password or other private information) that it is supposed to secret.

Also, if the certificate has a nameConstraints extention with a
Generalname with dNSName or iPAdress it must match the hostname or
adress of the KDC.

@subsection Client certificate

The client certificate may need to have a EKU id-pkekuoid
(1.3.6.1.5.2.3.4) set depending on the certifiate on the KDC.

It possible to store the principal (if allowed by the KDC) in the
certificate and thus delegate responsibility to do the mapping between
certificates and principals to the CA.

@subsubsection Using KRB5PrincipalName in id-pkinit-san

OtherName extention in the GeneralName is used to do the
mapping between certifiate and principal in the certifiate or storing
the krbtgt principal in the KDC certificate.

The principal is stored in a SubjectAltName in the certificate using
OtherName. The oid in the type is id-pkinit-san.

@example
id-pkinit-san OBJECT IDENTIFIER ::= @{ iso (1) org (3) dod (6)
internet (1) security (5) kerberosv5 (2) 2 @}
@end example

The data part of the OtherName is filled with the following DER
encoded ASN.1 structure:

@example
KRB5PrincipalName ::= SEQUENCE @{
	realm [0] Realm,
	principalName [1] PrincipalName
@}
@end example

where Realm and PrincipalName is defined by the Kerberos ASN.1 specification.

@section Naming certificate using hx509

hx509 is the X.509 software used in Heimdal to handle
certificates. hx509 uses different syntaxes to specify the different
formats the certificates are stored in and what formats they exist in.

There are several formats that can be used, PEM, embedded into PKCS12
files, embedded into PKCS11 devices and raw DER encoded certificates.
Below is a list of types to use.


@table @asis

@item DIR:

DIR is reading all certificates in a directory that is DER or PEM
formatted.

The main feature of DIR is that the directory is read on demand when
iterating over certificates, that way applictions can for some cases
avoid to store all certificates in memory. It's very useful for tests
that iterate over larger amount of certificates.

Syntax is:

@example
DIR:/path/to/der/files
@end example

@item FILE:

FILE: is used to have the lib pick up a certificate chain and a
private key. The file can be either a PEM (openssl) file or a raw DER
encoded certificate. If it's a PEM file it can contain several keys and
certificates and the code will try to match the private key and
certificate together.

Its useful to have one PEM file that contains all the trust anchors.

Syntax is:

@example
FILE:certificate.pem,private-key.key,other-cert.pem,....
@end example

@item PKCS11:

PKCS11: is used to handle smartcards via PKCS11 drivers, for example
soft-token, opensc, or muscle. The default is to use all slots on the
device/token.

Syntax is:

@example
PKCS11:shared-object.so
@end example

@item PKCS12:

PKCS12: is used to handle PKCS12 files. PKCS12 files commonly have the
extension pfx or p12.

Syntax is:

@example
PKCS12:/path/to/file.pfx
@end example

@end table

@section Configure the Kerberos software

First configure the client's trust anchors and what parameters to
verify, see subsection below how to do that. Now you can use kinit to
get yourself tickets. One example how that can look like is:

@example
$ kinit -C FILE:$HOME/.certs/lha.crt,$HOME/.certs/lha.key lha@@EXAMPLE.ORG
Enter your private key passphrase:
: lha@@nutcracker ; klist
Credentials cache: FILE:/tmp/krb5cc_19100a
        Principal: lha@@EXAMPLE.ORG

  Issued           Expires          Principal
Apr 20 02:08:08  Apr 20 12:08:08  krbtgt/EXAMPLE.ORG@@EXAMPLE.ORG
@end example

Using PKCS11 it can look like this instead:

@example
$ kinit -C PKCS11:/tmp/pkcs11/lib/soft-pkcs11.so lha@@EXAMPLE.ORG
PIN code for SoftToken (slot):
$ klist
Credentials cache: API:4
        Principal: lha@@EXAMPLE.ORG

  Issued           Expires          Principal
Mar 26 23:40:10  Mar 27 09:40:10  krbtgt/EXAMPLE.ORG@@EXAMPLE.ORG
@end example


Write about the kdc.

@section Configure the client

@example
[appdefaults]
	pkinit_anchors = FILE:/path/to/trust-anchors.pem

[realms]
        EXAMPLE.COM = @{
		pkinit_require_eku = true
		pkinit_require_krbtgt_otherName = true
		pkinit_win2k = no
		pkinit_win2k_require_binding = yes
	@}

@end example

@section Configure the KDC

@example
[kdc]
	enable-pkinit = yes
	pkinit_identity = FILE:/secure/kdc.crt,/secure/kdc.key
	pkinit_anchors = FILE:/path/to/trust-anchors.pem
	pkinit_pool = PKCS12:/path/to/useful-intermediate-certs.pfx
	pkinit_pool = FILE:/path/to/other-useful-intermediate-certs.pem
	pkinit_allow_proxy_certificate = false
	pkinit_win2k_require_binding = yes
@end example

@subsection Using pki-mapping file

Note that the file name is space sensitive.

@example
# cat /var/heimdal/pki-mapping
# comments starts with #
lha@@EXAMPLE.ORG:C=SE,O=Stockholm universitet,CN=Love,UID=lha
lha@@EXAMPLE.ORG:CN=Love,UID=lha
@end example

@subsection Using the Kerberos database

@section Use hxtool to create certificates

@subsection Generate certificates

First you need to generate a CA certificate, change the --subject to
something appropriate, the CA certificate will be valid for 10 years.

You need to change --subject in the command below.

@example
hxtool issue-certificate \
    --self-signed \
    --issue-ca \
    --generate-key=rsa \
    --subject="CN=CA,DC=test,DC=h5l,DC=se" \
    --lifetime=10years \
    --certificate="FILE:ca.pem"
@end example

The KDC needs to have a certificate, so generate a certificate of the
type ``pkinit-kdc'' and set the PK-INIT specifial SubjectAltName to the
name of the krbtgt of the realm.

You need to change --subject and --pk-init-principal in the command below.

@example
hxtool issue-certificate \
    --ca-certificate=FILE:ca.pem \
    --generate-key=rsa \
    --type="pkinit-kdc" \
    --pk-init-principal="krbtgt/TEST.H5L.SE@@TEST.H5L.SE" \
    --subject="uid=kdc,DC=test,DC=h5l,DC=se" \
    --certificate="FILE:kdc.pem"
@end example

The users also needs to have a certificate, so generate a certificate
of the type ``pkinit-client''. The client doesn't need to have the PK-INIT
SubjectAltName set, you can have the Subject DN in the ACL file
(pki-mapping) instead.

You need to change --subject and --pk-init-principal in the command below.

@example
hxtool issue-certificate \
    --ca-certificate=FILE:ca.pem \
    --generate-key=rsa \
    --type="pkinit-client" \
    --pk-init-principal="lha@@TEST.H5L.SE" \
    --subject="uid=lha,DC=test,DC=h5l,DC=se" \
    --certificate="FILE:user.pem"
@end example

@subsection Validate the certificate

hxtool also contains a tool that will validate certificates according to
rules from the PKIX document. These checks are not complete, but a good test
to check if you got all of the basic bits right in your certificates.

@example
hxtool validate FILE:user.pem
@end example

@section Use OpenSSL to create certificates

This section tries to give the CA owners hints how to create
certificates using OpenSSL (or CA software based on OpenSSL).

@subsection Using OpenSSL to create certificates with krb5PrincipalName

To make OpenSSL create certificates with krb5PrincipalName use
@file{openssl.cnf} as described below. To see a complete example of
creating client and KDC certificates, see the test-data generation
script @file{lib/hx509/data/gen-req.sh} in the source-tree. The
certicates it creates are used to test the PK-INIT functionality in
@file{tests/kdc/check-kdc.in}.

To use this example you have to use OpenSSL 0.9.8a or later.

@example

[user_certificate]
subjectAltName=otherName:1.3.6.1.5.2.2;SEQUENCE:princ_name

[princ_name]
realm = EXP:0, GeneralString:MY.REALM
principal_name = EXP:1, SEQUENCE:principal_seq

[principal_seq]
name_type = EXP:0, INTEGER:1
name_string = EXP:1, SEQUENCE:principals

[principals]
princ1 = GeneralString:userid

@end example

Command usage

@example
openssl x509 -extensions user_certificate
openssl ca -extensions user_certificate
@end example


@c --- ms certificate
@c
@c [ new_oids ]
@c msCertificateTemplateName       = 1.3.6.1.4.1.311.20.2
@c
@c
@c [ req_smartcard ]
@c keyUsage                = digitalSignature, keyEncipherment
@c extendedKeyUsage        = msSmartcardLogin, clientAuth
@c msCertificateTemplateName       = ASN1:BMP:SmartcardLogon
@c subjectAltName          = otherName:msUPN;UTF8:lukeh@dsg.padl.com
@c #subjectAltName         = email:copy


@section Using PK-INIT with Windows

@subsection Client configration

Clients using a Windows KDC with PK-INIT need configuration since
windows uses pre-standard format and this can't be autodetected.

The pkinit_win2k_require_binding option requires the reply for the KDC
to be of the new, secure, type that binds the request to reply. Before
clients should fake the reply from the KDC. To use this option you
have to apply a fix from Microsoft.

@example
[realms]
        MY.MS.REALM = @{
                pkinit_win2k = yes
                pkinit_win2k_require_binding = no
	@}
@end example

@subsection Certificates

The client certificates need to have the extended keyusage ``Microsoft
Smartcardlogin'' (openssl have the oid shortname msSmartcardLogin).

See Microsoft Knowledge Base Article - 281245 ``Guidelines for Enabling
Smart Card Logon with Third-Party Certification Authorities'' for a
more extensive description of how set setup an external CA to it
includes all information that will make a Windows KDC happy.

@subsection Configure Windows 2000 CA

To enable Microsoft Smartcardlogin> for certificates in your Windows
2000 CA, you want to look at Microsoft Knowledge Base Article -
313274 ``HOW TO: Configure a Certification Authority to Issue
Smart Card Certificates in Windows''.

Man Man