Current Path : /usr/src/crypto/heimdal/lib/asn1/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/crypto/heimdal/lib/asn1/check-gen.c |
/* * Copyright (c) 1999 - 2005 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <string.h> #include <err.h> #include <roken.h> #include <asn1-common.h> #include <asn1_err.h> #include <der.h> #include <krb5_asn1.h> #include <heim_asn1.h> #include <rfc2459_asn1.h> #include <test_asn1.h> #include "check-common.h" RCSID("$Id: check-gen.c 21539 2007-07-14 16:12:04Z lha $"); static char *lha_principal[] = { "lha" }; static char *lharoot_princ[] = { "lha", "root" }; static char *datan_princ[] = { "host", "nutcracker.e.kth.se" }; static char *nada_tgt_principal[] = { "krbtgt", "NADA.KTH.SE" }; #define IF_OPT_COMPARE(ac,bc,e) \ if (((ac)->e == NULL && (bc)->e != NULL) || (((ac)->e != NULL && (bc)->e == NULL))) return 1; if ((ab)->e) #define COMPARE_OPT_STRING(ac,bc,e) \ do { if (strcmp(*(ac)->e, *(bc)->e) != 0) return 1; } while(0) #define COMPARE_OPT_OCTECT_STRING(ac,bc,e) \ do { if ((ac)->e->length != (bc)->e->length || memcmp((ac)->e->data, (bc)->e->data, (ac)->e->length) != 0) return 1; } while(0) #define COMPARE_STRING(ac,bc,e) \ do { if (strcmp((ac)->e, (bc)->e) != 0) return 1; } while(0) #define COMPARE_INTEGER(ac,bc,e) \ do { if ((ac)->e != (bc)->e) return 1; } while(0) #define COMPARE_MEM(ac,bc,e,len) \ do { if (memcmp((ac)->e, (bc)->e,len) != 0) return 1; } while(0) static int cmp_principal (void *a, void *b) { Principal *pa = a; Principal *pb = b; int i; COMPARE_STRING(pa,pb,realm); COMPARE_INTEGER(pa,pb,name.name_type); COMPARE_INTEGER(pa,pb,name.name_string.len); for (i = 0; i < pa->name.name_string.len; i++) COMPARE_STRING(pa,pb,name.name_string.val[i]); return 0; } static int test_principal (void) { struct test_case tests[] = { { NULL, 29, "\x30\x1b\xa0\x10\x30\x0e\xa0\x03\x02\x01\x01\xa1\x07\x30\x05\x1b" "\x03\x6c\x68\x61\xa1\x07\x1b\x05\x53\x55\x2e\x53\x45" }, { NULL, 35, "\x30\x21\xa0\x16\x30\x14\xa0\x03\x02\x01\x01\xa1\x0d\x30\x0b\x1b" "\x03\x6c\x68\x61\x1b\x04\x72\x6f\x6f\x74\xa1\x07\x1b\x05\x53\x55" "\x2e\x53\x45" }, { NULL, 54, "\x30\x34\xa0\x26\x30\x24\xa0\x03\x02\x01\x03\xa1\x1d\x30\x1b\x1b" "\x04\x68\x6f\x73\x74\x1b\x13\x6e\x75\x74\x63\x72\x61\x63\x6b\x65" "\x72\x2e\x65\x2e\x6b\x74\x68\x2e\x73\x65\xa1\x0a\x1b\x08\x45\x2e" "\x4b\x54\x48\x2e\x53\x45" } }; Principal values[] = { { { KRB5_NT_PRINCIPAL, { 1, lha_principal } }, "SU.SE" }, { { KRB5_NT_PRINCIPAL, { 2, lharoot_princ } }, "SU.SE" }, { { KRB5_NT_SRV_HST, { 2, datan_princ } }, "E.KTH.SE" } }; int i, ret; int ntests = sizeof(tests) / sizeof(*tests); for (i = 0; i < ntests; ++i) { tests[i].val = &values[i]; asprintf (&tests[i].name, "Principal %d", i); } ret = generic_test (tests, ntests, sizeof(Principal), (generic_encode)encode_Principal, (generic_length)length_Principal, (generic_decode)decode_Principal, (generic_free)free_Principal, cmp_principal); for (i = 0; i < ntests; ++i) free (tests[i].name); return ret; } static int cmp_authenticator (void *a, void *b) { Authenticator *aa = a; Authenticator *ab = b; int i; COMPARE_INTEGER(aa,ab,authenticator_vno); COMPARE_STRING(aa,ab,crealm); COMPARE_INTEGER(aa,ab,cname.name_type); COMPARE_INTEGER(aa,ab,cname.name_string.len); for (i = 0; i < aa->cname.name_string.len; i++) COMPARE_STRING(aa,ab,cname.name_string.val[i]); return 0; } static int test_authenticator (void) { struct test_case tests[] = { { NULL, 63, "\x62\x3d\x30\x3b\xa0\x03\x02\x01\x05\xa1\x0a\x1b\x08" "\x45\x2e\x4b\x54\x48\x2e\x53\x45\xa2\x10\x30\x0e\xa0" "\x03\x02\x01\x01\xa1\x07\x30\x05\x1b\x03\x6c\x68\x61" "\xa4\x03\x02\x01\x0a\xa5\x11\x18\x0f\x31\x39\x37\x30" "\x30\x31\x30\x31\x30\x30\x30\x31\x33\x39\x5a" }, { NULL, 67, "\x62\x41\x30\x3f\xa0\x03\x02\x01\x05\xa1\x07\x1b\x05" "\x53\x55\x2e\x53\x45\xa2\x16\x30\x14\xa0\x03\x02\x01" "\x01\xa1\x0d\x30\x0b\x1b\x03\x6c\x68\x61\x1b\x04\x72" "\x6f\x6f\x74\xa4\x04\x02\x02\x01\x24\xa5\x11\x18\x0f" "\x31\x39\x37\x30\x30\x31\x30\x31\x30\x30\x31\x36\x33" "\x39\x5a" } }; Authenticator values[] = { { 5, "E.KTH.SE", { KRB5_NT_PRINCIPAL, { 1, lha_principal } }, NULL, 10, 99, NULL, NULL, NULL }, { 5, "SU.SE", { KRB5_NT_PRINCIPAL, { 2, lharoot_princ } }, NULL, 292, 999, NULL, NULL, NULL } }; int i, ret; int ntests = sizeof(tests) / sizeof(*tests); for (i = 0; i < ntests; ++i) { tests[i].val = &values[i]; asprintf (&tests[i].name, "Authenticator %d", i); } ret = generic_test (tests, ntests, sizeof(Authenticator), (generic_encode)encode_Authenticator, (generic_length)length_Authenticator, (generic_decode)decode_Authenticator, (generic_free)free_Authenticator, cmp_authenticator); for (i = 0; i < ntests; ++i) free(tests[i].name); return ret; } static int cmp_KRB_ERROR (void *a, void *b) { KRB_ERROR *aa = a; KRB_ERROR *ab = b; int i; COMPARE_INTEGER(aa,ab,pvno); COMPARE_INTEGER(aa,ab,msg_type); IF_OPT_COMPARE(aa,ab,ctime) { COMPARE_INTEGER(aa,ab,ctime); } IF_OPT_COMPARE(aa,ab,cusec) { COMPARE_INTEGER(aa,ab,cusec); } COMPARE_INTEGER(aa,ab,stime); COMPARE_INTEGER(aa,ab,susec); COMPARE_INTEGER(aa,ab,error_code); IF_OPT_COMPARE(aa,ab,crealm) { COMPARE_OPT_STRING(aa,ab,crealm); } #if 0 IF_OPT_COMPARE(aa,ab,cname) { COMPARE_OPT_STRING(aa,ab,cname); } #endif COMPARE_STRING(aa,ab,realm); COMPARE_INTEGER(aa,ab,sname.name_string.len); for (i = 0; i < aa->sname.name_string.len; i++) COMPARE_STRING(aa,ab,sname.name_string.val[i]); IF_OPT_COMPARE(aa,ab,e_text) { COMPARE_OPT_STRING(aa,ab,e_text); } IF_OPT_COMPARE(aa,ab,e_data) { /* COMPARE_OPT_OCTECT_STRING(aa,ab,e_data); */ } return 0; } static int test_krb_error (void) { struct test_case tests[] = { { NULL, 127, "\x7e\x7d\x30\x7b\xa0\x03\x02\x01\x05\xa1\x03\x02\x01\x1e\xa4\x11" "\x18\x0f\x32\x30\x30\x33\x31\x31\x32\x34\x30\x30\x31\x31\x31\x39" "\x5a\xa5\x05\x02\x03\x04\xed\xa5\xa6\x03\x02\x01\x1f\xa7\x0d\x1b" "\x0b\x4e\x41\x44\x41\x2e\x4b\x54\x48\x2e\x53\x45\xa8\x10\x30\x0e" "\xa0\x03\x02\x01\x01\xa1\x07\x30\x05\x1b\x03\x6c\x68\x61\xa9\x0d" "\x1b\x0b\x4e\x41\x44\x41\x2e\x4b\x54\x48\x2e\x53\x45\xaa\x20\x30" "\x1e\xa0\x03\x02\x01\x01\xa1\x17\x30\x15\x1b\x06\x6b\x72\x62\x74" "\x67\x74\x1b\x0b\x4e\x41\x44\x41\x2e\x4b\x54\x48\x2e\x53\x45", "KRB-ERROR Test 1" } }; int ntests = sizeof(tests) / sizeof(*tests); KRB_ERROR e1; PrincipalName lhaprincipalname = { 1, { 1, lha_principal } }; PrincipalName tgtprincipalname = { 1, { 2, nada_tgt_principal } }; char *realm = "NADA.KTH.SE"; e1.pvno = 5; e1.msg_type = 30; e1.ctime = NULL; e1.cusec = NULL; e1.stime = 1069632679; e1.susec = 322981; e1.error_code = 31; e1.crealm = &realm; e1.cname = &lhaprincipalname; e1.realm = "NADA.KTH.SE"; e1.sname = tgtprincipalname; e1.e_text = NULL; e1.e_data = NULL; tests[0].val = &e1; return generic_test (tests, ntests, sizeof(KRB_ERROR), (generic_encode)encode_KRB_ERROR, (generic_length)length_KRB_ERROR, (generic_decode)decode_KRB_ERROR, (generic_free)free_KRB_ERROR, cmp_KRB_ERROR); } static int cmp_Name (void *a, void *b) { Name *aa = a; Name *ab = b; COMPARE_INTEGER(aa,ab,element); return 0; } static int test_Name (void) { struct test_case tests[] = { { NULL, 35, "\x30\x21\x31\x1f\x30\x0b\x06\x03\x55\x04\x03\x13\x04\x4c\x6f\x76" "\x65\x30\x10\x06\x03\x55\x04\x07\x13\x09\x53\x54\x4f\x43\x4b\x48" "\x4f\x4c\x4d", "Name CN=Love+L=STOCKHOLM" }, { NULL, 35, "\x30\x21\x31\x1f\x30\x0b\x06\x03\x55\x04\x03\x13\x04\x4c\x6f\x76" "\x65\x30\x10\x06\x03\x55\x04\x07\x13\x09\x53\x54\x4f\x43\x4b\x48" "\x4f\x4c\x4d", "Name L=STOCKHOLM+CN=Love" } }; int ntests = sizeof(tests) / sizeof(*tests); Name n1, n2; RelativeDistinguishedName rdn1[1]; RelativeDistinguishedName rdn2[1]; AttributeTypeAndValue atv1[2]; AttributeTypeAndValue atv2[2]; unsigned cmp_CN[] = { 2, 5, 4, 3 }; unsigned cmp_L[] = { 2, 5, 4, 7 }; /* n1 */ n1.element = choice_Name_rdnSequence; n1.u.rdnSequence.val = rdn1; n1.u.rdnSequence.len = sizeof(rdn1)/sizeof(rdn1[0]); rdn1[0].val = atv1; rdn1[0].len = sizeof(atv1)/sizeof(atv1[0]); atv1[0].type.length = sizeof(cmp_CN)/sizeof(cmp_CN[0]); atv1[0].type.components = cmp_CN; atv1[0].value.element = choice_DirectoryString_printableString; atv1[0].value.u.printableString = "Love"; atv1[1].type.length = sizeof(cmp_L)/sizeof(cmp_L[0]); atv1[1].type.components = cmp_L; atv1[1].value.element = choice_DirectoryString_printableString; atv1[1].value.u.printableString = "STOCKHOLM"; /* n2 */ n2.element = choice_Name_rdnSequence; n2.u.rdnSequence.val = rdn2; n2.u.rdnSequence.len = sizeof(rdn2)/sizeof(rdn2[0]); rdn2[0].val = atv2; rdn2[0].len = sizeof(atv2)/sizeof(atv2[0]); atv2[0].type.length = sizeof(cmp_L)/sizeof(cmp_L[0]); atv2[0].type.components = cmp_L; atv2[0].value.element = choice_DirectoryString_printableString; atv2[0].value.u.printableString = "STOCKHOLM"; atv2[1].type.length = sizeof(cmp_CN)/sizeof(cmp_CN[0]); atv2[1].type.components = cmp_CN; atv2[1].value.element = choice_DirectoryString_printableString; atv2[1].value.u.printableString = "Love"; /* */ tests[0].val = &n1; tests[1].val = &n2; return generic_test (tests, ntests, sizeof(Name), (generic_encode)encode_Name, (generic_length)length_Name, (generic_decode)decode_Name, (generic_free)free_Name, cmp_Name); } static int cmp_KeyUsage (void *a, void *b) { KeyUsage *aa = a; KeyUsage *ab = b; return KeyUsage2int(*aa) != KeyUsage2int(*ab); } static int test_bit_string (void) { struct test_case tests[] = { { NULL, 4, "\x03\x02\x07\x80", "bitstring 1" }, { NULL, 4, "\x03\x02\x05\xa0", "bitstring 2" }, { NULL, 5, "\x03\x03\x07\x00\x80", "bitstring 3" }, { NULL, 3, "\x03\x01\x00", "bitstring 4" } }; int ntests = sizeof(tests) / sizeof(*tests); KeyUsage ku1, ku2, ku3, ku4; memset(&ku1, 0, sizeof(ku1)); ku1.digitalSignature = 1; tests[0].val = &ku1; memset(&ku2, 0, sizeof(ku2)); ku2.digitalSignature = 1; ku2.keyEncipherment = 1; tests[1].val = &ku2; memset(&ku3, 0, sizeof(ku3)); ku3.decipherOnly = 1; tests[2].val = &ku3; memset(&ku4, 0, sizeof(ku4)); tests[3].val = &ku4; return generic_test (tests, ntests, sizeof(KeyUsage), (generic_encode)encode_KeyUsage, (generic_length)length_KeyUsage, (generic_decode)decode_KeyUsage, (generic_free)free_KeyUsage, cmp_KeyUsage); } static int cmp_TESTLargeTag (void *a, void *b) { TESTLargeTag *aa = a; TESTLargeTag *ab = b; COMPARE_INTEGER(aa,ab,foo); return 0; } static int test_large_tag (void) { struct test_case tests[] = { { NULL, 8, "\x30\x06\xbf\x7f\x03\x02\x01\x01", "large tag 1" } }; int ntests = sizeof(tests) / sizeof(*tests); TESTLargeTag lt1; memset(<1, 0, sizeof(lt1)); lt1.foo = 1; tests[0].val = <1; return generic_test (tests, ntests, sizeof(TESTLargeTag), (generic_encode)encode_TESTLargeTag, (generic_length)length_TESTLargeTag, (generic_decode)decode_TESTLargeTag, (generic_free)free_TESTLargeTag, cmp_TESTLargeTag); } struct test_data { int ok; size_t len; size_t expected_len; void *data; }; static int check_tag_length(void) { struct test_data td[] = { { 1, 3, 3, "\x02\x01\x00"}, { 1, 3, 3, "\x02\x01\x7f"}, { 1, 4, 4, "\x02\x02\x00\x80"}, { 1, 4, 4, "\x02\x02\x01\x00"}, { 1, 4, 4, "\x02\x02\x02\x00"}, { 0, 3, 0, "\x02\x02\x00"}, { 0, 3, 0, "\x02\x7f\x7f"}, { 0, 4, 0, "\x02\x03\x00\x80"}, { 0, 4, 0, "\x02\x7f\x01\x00"}, { 0, 5, 0, "\x02\xff\x7f\x02\x00"} }; size_t sz; krb5uint32 values[] = {0, 127, 128, 256, 512, 0, 127, 128, 256, 512 }; krb5uint32 u; int i, ret, failed = 0; void *buf; for (i = 0; i < sizeof(td)/sizeof(td[0]); i++) { struct map_page *page; buf = map_alloc(OVERRUN, td[i].data, td[i].len, &page); ret = decode_krb5uint32(buf, td[i].len, &u, &sz); if (ret) { if (td[i].ok) { printf("failed with tag len test %d\n", i); failed = 1; } } else { if (td[i].ok == 0) { printf("failed with success for tag len test %d\n", i); failed = 1; } if (td[i].expected_len != sz) { printf("wrong expected size for tag test %d\n", i); failed = 1; } if (values[i] != u) { printf("wrong value for tag test %d\n", i); failed = 1; } } map_free(page, "test", "decode"); } return failed; } static int cmp_TESTChoice (void *a, void *b) { return 0; } static int test_choice (void) { struct test_case tests[] = { { NULL, 5, "\xa1\x03\x02\x01\x01", "large choice 1" }, { NULL, 5, "\xa2\x03\x02\x01\x02", "large choice 2" } }; int ret = 0, ntests = sizeof(tests) / sizeof(*tests); TESTChoice1 c1; TESTChoice1 c2_1; TESTChoice2 c2_2; memset(&c1, 0, sizeof(c1)); c1.element = choice_TESTChoice1_i1; c1.u.i1 = 1; tests[0].val = &c1; memset(&c2_1, 0, sizeof(c2_1)); c2_1.element = choice_TESTChoice1_i2; c2_1.u.i2 = 2; tests[1].val = &c2_1; ret += generic_test (tests, ntests, sizeof(TESTChoice1), (generic_encode)encode_TESTChoice1, (generic_length)length_TESTChoice1, (generic_decode)decode_TESTChoice1, (generic_free)free_TESTChoice1, cmp_TESTChoice); memset(&c2_2, 0, sizeof(c2_2)); c2_2.element = choice_TESTChoice2_asn1_ellipsis; c2_2.u.asn1_ellipsis.data = "\xa2\x03\x02\x01\x02"; c2_2.u.asn1_ellipsis.length = 5; tests[1].val = &c2_2; ret += generic_test (tests, ntests, sizeof(TESTChoice2), (generic_encode)encode_TESTChoice2, (generic_length)length_TESTChoice2, (generic_decode)decode_TESTChoice2, (generic_free)free_TESTChoice2, cmp_TESTChoice); return ret; } static int cmp_TESTImplicit (void *a, void *b) { TESTImplicit *aa = a; TESTImplicit *ab = b; COMPARE_INTEGER(aa,ab,ti1); COMPARE_INTEGER(aa,ab,ti2.foo); COMPARE_INTEGER(aa,ab,ti3); return 0; } /* UNIV CONS Sequence 14 CONTEXT PRIM 0 1 00 CONTEXT CONS 1 6 CONTEXT CONS 127 3 UNIV PRIM Integer 1 02 CONTEXT PRIM 2 1 03 */ static int test_implicit (void) { struct test_case tests[] = { { NULL, 16, "\x30\x0e\x80\x01\x00\xa1\x06\xbf" "\x7f\x03\x02\x01\x02\x82\x01\x03", "implicit 1" } }; int ret = 0, ntests = sizeof(tests) / sizeof(*tests); TESTImplicit c0; memset(&c0, 0, sizeof(c0)); c0.ti1 = 0; c0.ti2.foo = 2; c0.ti3 = 3; tests[0].val = &c0; ret += generic_test (tests, ntests, sizeof(TESTImplicit), (generic_encode)encode_TESTImplicit, (generic_length)length_TESTImplicit, (generic_decode)decode_TESTImplicit, (generic_free)free_TESTImplicit, cmp_TESTImplicit); #ifdef IMPLICIT_TAGGING_WORKS ret += generic_test (tests, ntests, sizeof(TESTImplicit2), (generic_encode)encode_TESTImplicit2, (generic_length)length_TESTImplicit2, (generic_decode)decode_TESTImplicit2, (generic_free)free_TESTImplicit2, cmp_TESTImplicit); #endif /* IMPLICIT_TAGGING_WORKS */ return ret; } static int cmp_TESTAlloc (void *a, void *b) { TESTAlloc *aa = a; TESTAlloc *ab = b; IF_OPT_COMPARE(aa,ab,tagless) { COMPARE_INTEGER(aa,ab,tagless->ai); } COMPARE_INTEGER(aa,ab,three); IF_OPT_COMPARE(aa,ab,tagless2) { COMPARE_OPT_OCTECT_STRING(aa, ab, tagless2); } return 0; } /* UNIV CONS Sequence 12 UNIV CONS Sequence 5 CONTEXT CONS 0 3 UNIV PRIM Integer 1 01 CONTEXT CONS 1 3 UNIV PRIM Integer 1 03 UNIV CONS Sequence 5 CONTEXT CONS 1 3 UNIV PRIM Integer 1 03 UNIV CONS Sequence 8 CONTEXT CONS 1 3 UNIV PRIM Integer 1 04 UNIV PRIM Integer 1 05 */ static int test_taglessalloc (void) { struct test_case tests[] = { { NULL, 14, "\x30\x0c\x30\x05\xa0\x03\x02\x01\x01\xa1\x03\x02\x01\x03", "alloc 1" }, { NULL, 7, "\x30\x05\xa1\x03\x02\x01\x03", "alloc 2" }, { NULL, 10, "\x30\x08\xa1\x03\x02\x01\x04\x02\x01\x05", "alloc 3" } }; int ret = 0, ntests = sizeof(tests) / sizeof(*tests); TESTAlloc c1, c2, c3; heim_any any3; memset(&c1, 0, sizeof(c1)); c1.tagless = ecalloc(1, sizeof(*c1.tagless)); c1.tagless->ai = 1; c1.three = 3; tests[0].val = &c1; memset(&c2, 0, sizeof(c2)); c2.tagless = NULL; c2.three = 3; tests[1].val = &c2; memset(&c3, 0, sizeof(c3)); c3.tagless = NULL; c3.three = 4; c3.tagless2 = &any3; any3.data = "\x02\x01\x05"; any3.length = 3; tests[2].val = &c3; ret += generic_test (tests, ntests, sizeof(TESTAlloc), (generic_encode)encode_TESTAlloc, (generic_length)length_TESTAlloc, (generic_decode)decode_TESTAlloc, (generic_free)free_TESTAlloc, cmp_TESTAlloc); free(c1.tagless); return ret; } static int check_fail_largetag(void) { struct test_case tests[] = { {NULL, 14, "\x30\x0c\xbf\x87\xff\xff\xff\xff\xff\x7f\x03\x02\x01\x01", "tag overflow"}, {NULL, 0, "", "empty buffer"}, {NULL, 7, "\x30\x05\xa1\x03\x02\x02\x01", "one too short" }, {NULL, 7, "\x30\x04\xa1\x03\x02\x02\x01" "two too short" }, {NULL, 7, "\x30\x03\xa1\x03\x02\x02\x01", "three too short" }, {NULL, 7, "\x30\x02\xa1\x03\x02\x02\x01", "four too short" }, {NULL, 7, "\x30\x01\xa1\x03\x02\x02\x01", "five too short" }, {NULL, 7, "\x30\x00\xa1\x03\x02\x02\x01", "six too short" }, {NULL, 7, "\x30\x05\xa1\x04\x02\x02\x01", "inner one too long" }, {NULL, 7, "\x30\x00\xa1\x02\x02\x02\x01", "inner one too short" }, {NULL, 8, "\x30\x05\xbf\x7f\x03\x02\x02\x01", "inner one too short"}, {NULL, 8, "\x30\x06\xbf\x64\x03\x02\x01\x01", "wrong tag"}, {NULL, 10, "\x30\x08\xbf\x9a\x9b\x38\x03\x02\x01\x01", "still wrong tag"} }; int ntests = sizeof(tests) / sizeof(*tests); return generic_decode_fail(tests, ntests, sizeof(TESTLargeTag), (generic_decode)decode_TESTLargeTag); } static int check_fail_sequence(void) { struct test_case tests[] = { {NULL, 0, "", "empty buffer"}, {NULL, 24, "\x30\x16\xa0\x03\x02\x01\x01\xa1\x08\x30\x06\xbf\x7f\x03\x02\x01\x01" "\x02\x01\x01\xa2\x03\x02\x01\x01" "missing one byte from the end, internal length ok"}, {NULL, 25, "\x30\x18\xa0\x03\x02\x01\x01\xa1\x08\x30\x06\xbf\x7f\x03\x02\x01\x01" "\x02\x01\x01\xa2\x03\x02\x01\x01", "inner length one byte too long"}, {NULL, 24, "\x30\x17\xa0\x03\x02\x01\x01\xa1\x08\x30\x06\xbf\x7f\x03\x02\x01" "\x01\x02\x01\x01\xa2\x03\x02\x01\x01", "correct buffer but missing one too short"} }; int ntests = sizeof(tests) / sizeof(*tests); return generic_decode_fail(tests, ntests, sizeof(TESTSeq), (generic_decode)decode_TESTSeq); } static int check_fail_choice(void) { struct test_case tests[] = { {NULL, 6, "\xa1\x02\x02\x01\x01", "one too short"}, {NULL, 6, "\xa1\x03\x02\x02\x01", "one too short inner"} }; int ntests = sizeof(tests) / sizeof(*tests); return generic_decode_fail(tests, ntests, sizeof(TESTChoice1), (generic_decode)decode_TESTChoice1); } static int check_seq(void) { TESTSeqOf seq; TESTInteger i; int ret; seq.val = NULL; seq.len = 0; ret = add_TESTSeqOf(&seq, &i); if (ret) { printf("failed adding\n"); goto out; } ret = add_TESTSeqOf(&seq, &i); if (ret) { printf("failed adding\n"); goto out; } ret = add_TESTSeqOf(&seq, &i); if (ret) { printf("failed adding\n"); goto out; } ret = add_TESTSeqOf(&seq, &i); if (ret) { printf("failed adding\n"); goto out; } ret = remove_TESTSeqOf(&seq, seq.len - 1); if (ret) { printf("failed removing\n"); goto out; } ret = remove_TESTSeqOf(&seq, 2); if (ret) { printf("failed removing\n"); goto out; } ret = remove_TESTSeqOf(&seq, 0); if (ret) { printf("failed removing\n"); goto out; } ret = remove_TESTSeqOf(&seq, 0); if (ret) { printf("failed removing\n"); goto out; } ret = remove_TESTSeqOf(&seq, 0); if (ret == 0) { printf("can remove from empty list"); return 1; } if (seq.len != 0) { printf("seq not empty!"); return 1; } free_TESTSeqOf(&seq); ret = 0; out: return ret; } #define test_seq_of(type, ok, ptr) \ { \ heim_octet_string os; \ size_t size; \ type decode; \ ASN1_MALLOC_ENCODE(type, os.data, os.length, ptr, &size, ret); \ if (ret) \ return ret; \ if (os.length != size) \ abort(); \ ret = decode_##type(os.data, os.length, &decode, &size); \ free(os.data); \ if (ret) { \ if (ok) \ return 1; \ } else { \ free_##type(&decode); \ if (!ok) \ return 1; \ if (size != 0) \ return 1; \ } \ return 0; \ } static int check_seq_of_size(void) { TESTInteger integers[4] = { 1, 2, 3, 4 }; int ret; { TESTSeqSizeOf1 ssof1f1 = { 1, integers }; TESTSeqSizeOf1 ssof1ok1 = { 2, integers }; TESTSeqSizeOf1 ssof1f2 = { 3, integers }; test_seq_of(TESTSeqSizeOf1, 0, &ssof1f1); test_seq_of(TESTSeqSizeOf1, 1, &ssof1ok1); test_seq_of(TESTSeqSizeOf1, 0, &ssof1f2); } { TESTSeqSizeOf2 ssof2f1 = { 0, NULL }; TESTSeqSizeOf2 ssof2ok1 = { 1, integers }; TESTSeqSizeOf2 ssof2ok2 = { 2, integers }; TESTSeqSizeOf2 ssof2f2 = { 3, integers }; test_seq_of(TESTSeqSizeOf2, 0, &ssof2f1); test_seq_of(TESTSeqSizeOf2, 1, &ssof2ok1); test_seq_of(TESTSeqSizeOf2, 1, &ssof2ok2); test_seq_of(TESTSeqSizeOf2, 0, &ssof2f2); } { TESTSeqSizeOf3 ssof3f1 = { 0, NULL }; TESTSeqSizeOf3 ssof3ok1 = { 1, integers }; TESTSeqSizeOf3 ssof3ok2 = { 2, integers }; test_seq_of(TESTSeqSizeOf3, 0, &ssof3f1); test_seq_of(TESTSeqSizeOf3, 1, &ssof3ok1); test_seq_of(TESTSeqSizeOf3, 1, &ssof3ok2); } { TESTSeqSizeOf4 ssof4ok1 = { 0, NULL }; TESTSeqSizeOf4 ssof4ok2 = { 1, integers }; TESTSeqSizeOf4 ssof4ok3 = { 2, integers }; TESTSeqSizeOf4 ssof4f1 = { 3, integers }; test_seq_of(TESTSeqSizeOf4, 1, &ssof4ok1); test_seq_of(TESTSeqSizeOf4, 1, &ssof4ok2); test_seq_of(TESTSeqSizeOf4, 1, &ssof4ok3); test_seq_of(TESTSeqSizeOf4, 0, &ssof4f1); } return 0; } int main(int argc, char **argv) { int ret = 0; ret += test_principal (); ret += test_authenticator(); ret += test_krb_error(); ret += test_Name(); ret += test_bit_string(); ret += check_tag_length(); ret += test_large_tag(); ret += test_choice(); ret += test_implicit(); ret += test_taglessalloc(); ret += check_fail_largetag(); ret += check_fail_sequence(); ret += check_fail_choice(); ret += check_seq(); ret += check_seq_of_size(); return ret; }