Current Path : /usr/src/crypto/openssl/crypto/rc2/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/crypto/openssl/crypto/rc2/rc2test.c |
/* crypto/rc2/rc2test.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* This has been a quickly hacked 'ideatest.c'. When I add tests for other * RC2 modes, more of the code will be uncommented. */ #include <stdio.h> #include <string.h> #include <stdlib.h> #include "../e_os.h" #ifdef OPENSSL_NO_RC2 int main(int argc, char *argv[]) { printf("No RC2 support\n"); return(0); } #else #include <openssl/rc2.h> static unsigned char RC2key[4][16]={ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01}, {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F}, }; static unsigned char RC2plain[4][8]={ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}, {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, }; static unsigned char RC2cipher[4][8]={ {0x1C,0x19,0x8A,0x83,0x8D,0xF0,0x28,0xB7}, {0x21,0x82,0x9C,0x78,0xA9,0xF9,0xC0,0x74}, {0x13,0xDB,0x35,0x17,0xD3,0x21,0x86,0x9E}, {0x50,0xDC,0x01,0x62,0xBD,0x75,0x7F,0x31}, }; /************/ #ifdef undef unsigned char k[16]={ 0x00,0x01,0x00,0x02,0x00,0x03,0x00,0x04, 0x00,0x05,0x00,0x06,0x00,0x07,0x00,0x08}; unsigned char in[8]={0x00,0x00,0x00,0x01,0x00,0x02,0x00,0x03}; unsigned char c[8]={0x11,0xFB,0xED,0x2B,0x01,0x98,0x6D,0xE5}; unsigned char out[80]; char *text="Hello to all people out there"; static unsigned char cfb_key[16]={ 0xe1,0xf0,0xc3,0xd2,0xa5,0xb4,0x87,0x96, 0x69,0x78,0x4b,0x5a,0x2d,0x3c,0x0f,0x1e, }; static unsigned char cfb_iv[80]={0x34,0x12,0x78,0x56,0xab,0x90,0xef,0xcd}; static unsigned char cfb_buf1[40],cfb_buf2[40],cfb_tmp[8]; #define CFB_TEST_SIZE 24 static unsigned char plain[CFB_TEST_SIZE]= { 0x4e,0x6f,0x77,0x20,0x69,0x73, 0x20,0x74,0x68,0x65,0x20,0x74, 0x69,0x6d,0x65,0x20,0x66,0x6f, 0x72,0x20,0x61,0x6c,0x6c,0x20 }; static unsigned char cfb_cipher64[CFB_TEST_SIZE]={ 0x59,0xD8,0xE2,0x65,0x00,0x58,0x6C,0x3F, 0x2C,0x17,0x25,0xD0,0x1A,0x38,0xB7,0x2A, 0x39,0x61,0x37,0xDC,0x79,0xFB,0x9F,0x45 /* 0xF9,0x78,0x32,0xB5,0x42,0x1A,0x6B,0x38, 0x9A,0x44,0xD6,0x04,0x19,0x43,0xC4,0xD9, 0x3D,0x1E,0xAE,0x47,0xFC,0xCF,0x29,0x0B,*/ }; /*static int cfb64_test(unsigned char *cfb_cipher);*/ static char *pt(unsigned char *p); #endif int main(int argc, char *argv[]) { int i,n,err=0; RC2_KEY key; unsigned char buf[8],buf2[8]; for (n=0; n<4; n++) { RC2_set_key(&key,16,&(RC2key[n][0]),0 /* or 1024 */); RC2_ecb_encrypt(&(RC2plain[n][0]),buf,&key,RC2_ENCRYPT); if (memcmp(&(RC2cipher[n][0]),buf,8) != 0) { printf("ecb rc2 error encrypting\n"); printf("got :"); for (i=0; i<8; i++) printf("%02X ",buf[i]); printf("\n"); printf("expected:"); for (i=0; i<8; i++) printf("%02X ",RC2cipher[n][i]); err=20; printf("\n"); } RC2_ecb_encrypt(buf,buf2,&key,RC2_DECRYPT); if (memcmp(&(RC2plain[n][0]),buf2,8) != 0) { printf("ecb RC2 error decrypting\n"); printf("got :"); for (i=0; i<8; i++) printf("%02X ",buf[i]); printf("\n"); printf("expected:"); for (i=0; i<8; i++) printf("%02X ",RC2plain[n][i]); printf("\n"); err=3; } } if (err == 0) printf("ecb RC2 ok\n"); #ifdef undef memcpy(iv,k,8); idea_cbc_encrypt((unsigned char *)text,out,strlen(text)+1,&key,iv,1); memcpy(iv,k,8); idea_cbc_encrypt(out,out,8,&dkey,iv,0); idea_cbc_encrypt(&(out[8]),&(out[8]),strlen(text)+1-8,&dkey,iv,0); if (memcmp(text,out,strlen(text)+1) != 0) { printf("cbc idea bad\n"); err=4; } else printf("cbc idea ok\n"); printf("cfb64 idea "); if (cfb64_test(cfb_cipher64)) { printf("bad\n"); err=5; } else printf("ok\n"); #endif #ifdef OPENSSL_SYS_NETWARE if (err) printf("ERROR: %d\n", err); #endif EXIT(err); return(err); } #ifdef undef static int cfb64_test(unsigned char *cfb_cipher) { IDEA_KEY_SCHEDULE eks,dks; int err=0,i,n; idea_set_encrypt_key(cfb_key,&eks); idea_set_decrypt_key(&eks,&dks); memcpy(cfb_tmp,cfb_iv,8); n=0; idea_cfb64_encrypt(plain,cfb_buf1,(long)12,&eks, cfb_tmp,&n,IDEA_ENCRYPT); idea_cfb64_encrypt(&(plain[12]),&(cfb_buf1[12]), (long)CFB_TEST_SIZE-12,&eks, cfb_tmp,&n,IDEA_ENCRYPT); if (memcmp(cfb_cipher,cfb_buf1,CFB_TEST_SIZE) != 0) { err=1; printf("idea_cfb64_encrypt encrypt error\n"); for (i=0; i<CFB_TEST_SIZE; i+=8) printf("%s\n",pt(&(cfb_buf1[i]))); } memcpy(cfb_tmp,cfb_iv,8); n=0; idea_cfb64_encrypt(cfb_buf1,cfb_buf2,(long)17,&eks, cfb_tmp,&n,IDEA_DECRYPT); idea_cfb64_encrypt(&(cfb_buf1[17]),&(cfb_buf2[17]), (long)CFB_TEST_SIZE-17,&dks, cfb_tmp,&n,IDEA_DECRYPT); if (memcmp(plain,cfb_buf2,CFB_TEST_SIZE) != 0) { err=1; printf("idea_cfb_encrypt decrypt error\n"); for (i=0; i<24; i+=8) printf("%s\n",pt(&(cfb_buf2[i]))); } return(err); } static char *pt(unsigned char *p) { static char bufs[10][20]; static int bnum=0; char *ret; int i; static char *f="0123456789ABCDEF"; ret= &(bufs[bnum++][0]); bnum%=10; for (i=0; i<8; i++) { ret[i*2]=f[(p[i]>>4)&0xf]; ret[i*2+1]=f[p[i]&0xf]; } ret[16]='\0'; return(ret); } #endif #endif