Current Path : /usr/src/lib/libc/rpc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/lib/libc/rpc/clnt_vc.c |
/* $NetBSD: clnt_vc.c,v 1.4 2000/07/14 08:40:42 fvdl Exp $ */ /* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ #if defined(LIBC_SCCS) && !defined(lint) static char *sccsid2 = "@(#)clnt_tcp.c 1.37 87/10/05 Copyr 1984 Sun Micro"; static char *sccsid = "@(#)clnt_tcp.c 2.2 88/08/01 4.0 RPCSRC"; static char sccsid3[] = "@(#)clnt_vc.c 1.19 89/03/16 Copyr 1988 Sun Micro"; #endif #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/lib/libc/rpc/clnt_vc.c 181344 2008-08-06 14:02:05Z dfr $"); /* * clnt_tcp.c, Implements a TCP/IP based, client side RPC. * * Copyright (C) 1984, Sun Microsystems, Inc. * * TCP based RPC supports 'batched calls'. * A sequence of calls may be batched-up in a send buffer. The rpc call * return immediately to the client even though the call was not necessarily * sent. The batching occurs if the results' xdr routine is NULL (0) AND * the rpc timeout value is zero (see clnt.h, rpc). * * Clients should NOT casually batch calls that in fact return results; that is, * the server side should be aware that a call is batched and not produce any * return message. Batched calls that produce many result messages can * deadlock (netlock) the client and the server.... * * Now go hang yourself. */ #include "namespace.h" #include "reentrant.h" #include <sys/types.h> #include <sys/poll.h> #include <sys/syslog.h> #include <sys/socket.h> #include <sys/un.h> #include <sys/uio.h> #include <arpa/inet.h> #include <assert.h> #include <err.h> #include <errno.h> #include <netdb.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <signal.h> #include <rpc/rpc.h> #include <rpc/rpcsec_gss.h> #include "un-namespace.h" #include "rpc_com.h" #include "mt_misc.h" #define MCALL_MSG_SIZE 24 struct cmessage { struct cmsghdr cmsg; struct cmsgcred cmcred; }; static enum clnt_stat clnt_vc_call(CLIENT *, rpcproc_t, xdrproc_t, void *, xdrproc_t, void *, struct timeval); static void clnt_vc_geterr(CLIENT *, struct rpc_err *); static bool_t clnt_vc_freeres(CLIENT *, xdrproc_t, void *); static void clnt_vc_abort(CLIENT *); static bool_t clnt_vc_control(CLIENT *, u_int, void *); static void clnt_vc_destroy(CLIENT *); static struct clnt_ops *clnt_vc_ops(void); static bool_t time_not_ok(struct timeval *); static int read_vc(void *, void *, int); static int write_vc(void *, void *, int); static int __msgwrite(int, void *, size_t); static int __msgread(int, void *, size_t); struct ct_data { int ct_fd; /* connection's fd */ bool_t ct_closeit; /* close it on destroy */ struct timeval ct_wait; /* wait interval in milliseconds */ bool_t ct_waitset; /* wait set by clnt_control? */ struct netbuf ct_addr; /* remote addr */ struct rpc_err ct_error; union { char ct_mcallc[MCALL_MSG_SIZE]; /* marshalled callmsg */ u_int32_t ct_mcalli; } ct_u; u_int ct_mpos; /* pos after marshal */ XDR ct_xdrs; /* XDR stream */ }; /* * This machinery implements per-fd locks for MT-safety. It is not * sufficient to do per-CLIENT handle locks for MT-safety because a * user may create more than one CLIENT handle with the same fd behind * it. Therfore, we allocate an array of flags (vc_fd_locks), protected * by the clnt_fd_lock mutex, and an array (vc_cv) of condition variables * similarly protected. Vc_fd_lock[fd] == 1 => a call is activte on some * CLIENT handle created for that fd. * The current implementation holds locks across the entire RPC and reply. * Yes, this is silly, and as soon as this code is proven to work, this * should be the first thing fixed. One step at a time. */ static int *vc_fd_locks; static cond_t *vc_cv; #define release_fd_lock(fd, mask) { \ mutex_lock(&clnt_fd_lock); \ vc_fd_locks[fd] = 0; \ mutex_unlock(&clnt_fd_lock); \ thr_sigsetmask(SIG_SETMASK, &(mask), (sigset_t *) NULL); \ cond_signal(&vc_cv[fd]); \ } static const char clnt_vc_errstr[] = "%s : %s"; static const char clnt_vc_str[] = "clnt_vc_create"; static const char clnt_read_vc_str[] = "read_vc"; static const char __no_mem_str[] = "out of memory"; /* * Create a client handle for a connection. * Default options are set, which the user can change using clnt_control()'s. * The rpc/vc package does buffering similar to stdio, so the client * must pick send and receive buffer sizes, 0 => use the default. * NB: fd is copied into a private area. * NB: The rpch->cl_auth is set null authentication. Caller may wish to * set this something more useful. * * fd should be an open socket */ CLIENT * clnt_vc_create(fd, raddr, prog, vers, sendsz, recvsz) int fd; /* open file descriptor */ const struct netbuf *raddr; /* servers address */ const rpcprog_t prog; /* program number */ const rpcvers_t vers; /* version number */ u_int sendsz; /* buffer recv size */ u_int recvsz; /* buffer send size */ { CLIENT *cl; /* client handle */ struct ct_data *ct = NULL; /* client handle */ struct timeval now; struct rpc_msg call_msg; static u_int32_t disrupt; sigset_t mask; sigset_t newmask; struct sockaddr_storage ss; socklen_t slen; struct __rpc_sockinfo si; if (disrupt == 0) disrupt = (u_int32_t)(long)raddr; cl = (CLIENT *)mem_alloc(sizeof (*cl)); ct = (struct ct_data *)mem_alloc(sizeof (*ct)); if ((cl == (CLIENT *)NULL) || (ct == (struct ct_data *)NULL)) { (void) syslog(LOG_ERR, clnt_vc_errstr, clnt_vc_str, __no_mem_str); rpc_createerr.cf_stat = RPC_SYSTEMERROR; rpc_createerr.cf_error.re_errno = errno; goto err; } ct->ct_addr.buf = NULL; sigfillset(&newmask); thr_sigsetmask(SIG_SETMASK, &newmask, &mask); mutex_lock(&clnt_fd_lock); if (vc_fd_locks == (int *) NULL) { int cv_allocsz, fd_allocsz; int dtbsize = __rpc_dtbsize(); fd_allocsz = dtbsize * sizeof (int); vc_fd_locks = (int *) mem_alloc(fd_allocsz); if (vc_fd_locks == (int *) NULL) { mutex_unlock(&clnt_fd_lock); thr_sigsetmask(SIG_SETMASK, &(mask), NULL); goto err; } else memset(vc_fd_locks, '\0', fd_allocsz); assert(vc_cv == (cond_t *) NULL); cv_allocsz = dtbsize * sizeof (cond_t); vc_cv = (cond_t *) mem_alloc(cv_allocsz); if (vc_cv == (cond_t *) NULL) { mem_free(vc_fd_locks, fd_allocsz); vc_fd_locks = (int *) NULL; mutex_unlock(&clnt_fd_lock); thr_sigsetmask(SIG_SETMASK, &(mask), NULL); goto err; } else { int i; for (i = 0; i < dtbsize; i++) cond_init(&vc_cv[i], 0, (void *) 0); } } else assert(vc_cv != (cond_t *) NULL); /* * XXX - fvdl connecting while holding a mutex? */ slen = sizeof ss; if (_getpeername(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) { if (errno != ENOTCONN) { rpc_createerr.cf_stat = RPC_SYSTEMERROR; rpc_createerr.cf_error.re_errno = errno; mutex_unlock(&clnt_fd_lock); thr_sigsetmask(SIG_SETMASK, &(mask), NULL); goto err; } if (_connect(fd, (struct sockaddr *)raddr->buf, raddr->len) < 0){ rpc_createerr.cf_stat = RPC_SYSTEMERROR; rpc_createerr.cf_error.re_errno = errno; mutex_unlock(&clnt_fd_lock); thr_sigsetmask(SIG_SETMASK, &(mask), NULL); goto err; } } mutex_unlock(&clnt_fd_lock); thr_sigsetmask(SIG_SETMASK, &(mask), NULL); if (!__rpc_fd2sockinfo(fd, &si)) goto err; ct->ct_closeit = FALSE; /* * Set up private data struct */ ct->ct_fd = fd; ct->ct_wait.tv_usec = 0; ct->ct_waitset = FALSE; ct->ct_addr.buf = malloc(raddr->maxlen); if (ct->ct_addr.buf == NULL) goto err; memcpy(ct->ct_addr.buf, raddr->buf, raddr->len); ct->ct_addr.len = raddr->maxlen; ct->ct_addr.maxlen = raddr->maxlen; /* * Initialize call message */ (void)gettimeofday(&now, NULL); call_msg.rm_xid = ((u_int32_t)++disrupt) ^ __RPC_GETXID(&now); call_msg.rm_direction = CALL; call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION; call_msg.rm_call.cb_prog = (u_int32_t)prog; call_msg.rm_call.cb_vers = (u_int32_t)vers; /* * pre-serialize the static part of the call msg and stash it away */ xdrmem_create(&(ct->ct_xdrs), ct->ct_u.ct_mcallc, MCALL_MSG_SIZE, XDR_ENCODE); if (! xdr_callhdr(&(ct->ct_xdrs), &call_msg)) { if (ct->ct_closeit) { (void)_close(fd); } goto err; } ct->ct_mpos = XDR_GETPOS(&(ct->ct_xdrs)); XDR_DESTROY(&(ct->ct_xdrs)); assert(ct->ct_mpos + sizeof(uint32_t) <= MCALL_MSG_SIZE); /* * Create a client handle which uses xdrrec for serialization * and authnone for authentication. */ cl->cl_ops = clnt_vc_ops(); cl->cl_private = ct; cl->cl_auth = authnone_create(); sendsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsz); recvsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsz); xdrrec_create(&(ct->ct_xdrs), sendsz, recvsz, cl->cl_private, read_vc, write_vc); return (cl); err: if (cl) { if (ct) { if (ct->ct_addr.len) mem_free(ct->ct_addr.buf, ct->ct_addr.len); mem_free(ct, sizeof (struct ct_data)); } if (cl) mem_free(cl, sizeof (CLIENT)); } return ((CLIENT *)NULL); } static enum clnt_stat clnt_vc_call(cl, proc, xdr_args, args_ptr, xdr_results, results_ptr, timeout) CLIENT *cl; rpcproc_t proc; xdrproc_t xdr_args; void *args_ptr; xdrproc_t xdr_results; void *results_ptr; struct timeval timeout; { struct ct_data *ct = (struct ct_data *) cl->cl_private; XDR *xdrs = &(ct->ct_xdrs); struct rpc_msg reply_msg; u_int32_t x_id; u_int32_t *msg_x_id = &ct->ct_u.ct_mcalli; /* yuk */ bool_t shipnow; int refreshes = 2; sigset_t mask, newmask; int rpc_lock_value; bool_t reply_stat; assert(cl != NULL); sigfillset(&newmask); thr_sigsetmask(SIG_SETMASK, &newmask, &mask); mutex_lock(&clnt_fd_lock); while (vc_fd_locks[ct->ct_fd]) cond_wait(&vc_cv[ct->ct_fd], &clnt_fd_lock); if (__isthreaded) rpc_lock_value = 1; else rpc_lock_value = 0; vc_fd_locks[ct->ct_fd] = rpc_lock_value; mutex_unlock(&clnt_fd_lock); if (!ct->ct_waitset) { /* If time is not within limits, we ignore it. */ if (time_not_ok(&timeout) == FALSE) ct->ct_wait = timeout; } shipnow = (xdr_results == NULL && timeout.tv_sec == 0 && timeout.tv_usec == 0) ? FALSE : TRUE; call_again: xdrs->x_op = XDR_ENCODE; ct->ct_error.re_status = RPC_SUCCESS; x_id = ntohl(--(*msg_x_id)); if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) { if ((! XDR_PUTBYTES(xdrs, ct->ct_u.ct_mcallc, ct->ct_mpos)) || (! XDR_PUTINT32(xdrs, &proc)) || (! AUTH_MARSHALL(cl->cl_auth, xdrs)) || (! (*xdr_args)(xdrs, args_ptr))) { if (ct->ct_error.re_status == RPC_SUCCESS) ct->ct_error.re_status = RPC_CANTENCODEARGS; (void)xdrrec_endofrecord(xdrs, TRUE); release_fd_lock(ct->ct_fd, mask); return (ct->ct_error.re_status); } } else { *(uint32_t *) &ct->ct_u.ct_mcallc[ct->ct_mpos] = htonl(proc); if (! __rpc_gss_wrap(cl->cl_auth, ct->ct_u.ct_mcallc, ct->ct_mpos + sizeof(uint32_t), xdrs, xdr_args, args_ptr)) { if (ct->ct_error.re_status == RPC_SUCCESS) ct->ct_error.re_status = RPC_CANTENCODEARGS; (void)xdrrec_endofrecord(xdrs, TRUE); release_fd_lock(ct->ct_fd, mask); return (ct->ct_error.re_status); } } if (! xdrrec_endofrecord(xdrs, shipnow)) { release_fd_lock(ct->ct_fd, mask); return (ct->ct_error.re_status = RPC_CANTSEND); } if (! shipnow) { release_fd_lock(ct->ct_fd, mask); return (RPC_SUCCESS); } /* * Hack to provide rpc-based message passing */ if (timeout.tv_sec == 0 && timeout.tv_usec == 0) { release_fd_lock(ct->ct_fd, mask); return(ct->ct_error.re_status = RPC_TIMEDOUT); } /* * Keep receiving until we get a valid transaction id */ xdrs->x_op = XDR_DECODE; while (TRUE) { reply_msg.acpted_rply.ar_verf = _null_auth; reply_msg.acpted_rply.ar_results.where = NULL; reply_msg.acpted_rply.ar_results.proc = (xdrproc_t)xdr_void; if (! xdrrec_skiprecord(xdrs)) { release_fd_lock(ct->ct_fd, mask); return (ct->ct_error.re_status); } /* now decode and validate the response header */ if (! xdr_replymsg(xdrs, &reply_msg)) { if (ct->ct_error.re_status == RPC_SUCCESS) continue; release_fd_lock(ct->ct_fd, mask); return (ct->ct_error.re_status); } if (reply_msg.rm_xid == x_id) break; } /* * process header */ _seterr_reply(&reply_msg, &(ct->ct_error)); if (ct->ct_error.re_status == RPC_SUCCESS) { if (! AUTH_VALIDATE(cl->cl_auth, &reply_msg.acpted_rply.ar_verf)) { ct->ct_error.re_status = RPC_AUTHERROR; ct->ct_error.re_why = AUTH_INVALIDRESP; } else { if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) { reply_stat = (*xdr_results)(xdrs, results_ptr); } else { reply_stat = __rpc_gss_unwrap(cl->cl_auth, xdrs, xdr_results, results_ptr); } if (! reply_stat) { if (ct->ct_error.re_status == RPC_SUCCESS) ct->ct_error.re_status = RPC_CANTDECODERES; } } /* free verifier ... */ if (reply_msg.acpted_rply.ar_verf.oa_base != NULL) { xdrs->x_op = XDR_FREE; (void)xdr_opaque_auth(xdrs, &(reply_msg.acpted_rply.ar_verf)); } } /* end successful completion */ else { /* maybe our credentials need to be refreshed ... */ if (refreshes-- && AUTH_REFRESH(cl->cl_auth, &reply_msg)) goto call_again; } /* end of unsuccessful completion */ release_fd_lock(ct->ct_fd, mask); return (ct->ct_error.re_status); } static void clnt_vc_geterr(cl, errp) CLIENT *cl; struct rpc_err *errp; { struct ct_data *ct; assert(cl != NULL); assert(errp != NULL); ct = (struct ct_data *) cl->cl_private; *errp = ct->ct_error; } static bool_t clnt_vc_freeres(cl, xdr_res, res_ptr) CLIENT *cl; xdrproc_t xdr_res; void *res_ptr; { struct ct_data *ct; XDR *xdrs; bool_t dummy; sigset_t mask; sigset_t newmask; assert(cl != NULL); ct = (struct ct_data *)cl->cl_private; xdrs = &(ct->ct_xdrs); sigfillset(&newmask); thr_sigsetmask(SIG_SETMASK, &newmask, &mask); mutex_lock(&clnt_fd_lock); while (vc_fd_locks[ct->ct_fd]) cond_wait(&vc_cv[ct->ct_fd], &clnt_fd_lock); xdrs->x_op = XDR_FREE; dummy = (*xdr_res)(xdrs, res_ptr); mutex_unlock(&clnt_fd_lock); thr_sigsetmask(SIG_SETMASK, &(mask), NULL); cond_signal(&vc_cv[ct->ct_fd]); return dummy; } /*ARGSUSED*/ static void clnt_vc_abort(cl) CLIENT *cl; { } static bool_t clnt_vc_control(cl, request, info) CLIENT *cl; u_int request; void *info; { struct ct_data *ct; void *infop = info; sigset_t mask; sigset_t newmask; int rpc_lock_value; assert(cl != NULL); ct = (struct ct_data *)cl->cl_private; sigfillset(&newmask); thr_sigsetmask(SIG_SETMASK, &newmask, &mask); mutex_lock(&clnt_fd_lock); while (vc_fd_locks[ct->ct_fd]) cond_wait(&vc_cv[ct->ct_fd], &clnt_fd_lock); if (__isthreaded) rpc_lock_value = 1; else rpc_lock_value = 0; vc_fd_locks[ct->ct_fd] = rpc_lock_value; mutex_unlock(&clnt_fd_lock); switch (request) { case CLSET_FD_CLOSE: ct->ct_closeit = TRUE; release_fd_lock(ct->ct_fd, mask); return (TRUE); case CLSET_FD_NCLOSE: ct->ct_closeit = FALSE; release_fd_lock(ct->ct_fd, mask); return (TRUE); default: break; } /* for other requests which use info */ if (info == NULL) { release_fd_lock(ct->ct_fd, mask); return (FALSE); } switch (request) { case CLSET_TIMEOUT: if (time_not_ok((struct timeval *)info)) { release_fd_lock(ct->ct_fd, mask); return (FALSE); } ct->ct_wait = *(struct timeval *)infop; ct->ct_waitset = TRUE; break; case CLGET_TIMEOUT: *(struct timeval *)infop = ct->ct_wait; break; case CLGET_SERVER_ADDR: (void) memcpy(info, ct->ct_addr.buf, (size_t)ct->ct_addr.len); break; case CLGET_FD: *(int *)info = ct->ct_fd; break; case CLGET_SVC_ADDR: /* The caller should not free this memory area */ *(struct netbuf *)info = ct->ct_addr; break; case CLSET_SVC_ADDR: /* set to new address */ release_fd_lock(ct->ct_fd, mask); return (FALSE); case CLGET_XID: /* * use the knowledge that xid is the * first element in the call structure * This will get the xid of the PREVIOUS call */ *(u_int32_t *)info = ntohl(*(u_int32_t *)(void *)&ct->ct_u.ct_mcalli); break; case CLSET_XID: /* This will set the xid of the NEXT call */ *(u_int32_t *)(void *)&ct->ct_u.ct_mcalli = htonl(*((u_int32_t *)info) + 1); /* increment by 1 as clnt_vc_call() decrements once */ break; case CLGET_VERS: /* * This RELIES on the information that, in the call body, * the version number field is the fifth field from the * begining of the RPC header. MUST be changed if the * call_struct is changed */ *(u_int32_t *)info = ntohl(*(u_int32_t *)(void *)(ct->ct_u.ct_mcallc + 4 * BYTES_PER_XDR_UNIT)); break; case CLSET_VERS: *(u_int32_t *)(void *)(ct->ct_u.ct_mcallc + 4 * BYTES_PER_XDR_UNIT) = htonl(*(u_int32_t *)info); break; case CLGET_PROG: /* * This RELIES on the information that, in the call body, * the program number field is the fourth field from the * begining of the RPC header. MUST be changed if the * call_struct is changed */ *(u_int32_t *)info = ntohl(*(u_int32_t *)(void *)(ct->ct_u.ct_mcallc + 3 * BYTES_PER_XDR_UNIT)); break; case CLSET_PROG: *(u_int32_t *)(void *)(ct->ct_u.ct_mcallc + 3 * BYTES_PER_XDR_UNIT) = htonl(*(u_int32_t *)info); break; default: release_fd_lock(ct->ct_fd, mask); return (FALSE); } release_fd_lock(ct->ct_fd, mask); return (TRUE); } static void clnt_vc_destroy(cl) CLIENT *cl; { struct ct_data *ct = (struct ct_data *) cl->cl_private; int ct_fd = ct->ct_fd; sigset_t mask; sigset_t newmask; assert(cl != NULL); ct = (struct ct_data *) cl->cl_private; sigfillset(&newmask); thr_sigsetmask(SIG_SETMASK, &newmask, &mask); mutex_lock(&clnt_fd_lock); while (vc_fd_locks[ct_fd]) cond_wait(&vc_cv[ct_fd], &clnt_fd_lock); if (ct->ct_closeit && ct->ct_fd != -1) { (void)_close(ct->ct_fd); } XDR_DESTROY(&(ct->ct_xdrs)); if (ct->ct_addr.buf) free(ct->ct_addr.buf); mem_free(ct, sizeof(struct ct_data)); mem_free(cl, sizeof(CLIENT)); mutex_unlock(&clnt_fd_lock); thr_sigsetmask(SIG_SETMASK, &(mask), NULL); cond_signal(&vc_cv[ct_fd]); } /* * Interface between xdr serializer and tcp connection. * Behaves like the system calls, read & write, but keeps some error state * around for the rpc level. */ static int read_vc(ctp, buf, len) void *ctp; void *buf; int len; { struct sockaddr sa; socklen_t sal; struct ct_data *ct = (struct ct_data *)ctp; struct pollfd fd; int milliseconds = (int)((ct->ct_wait.tv_sec * 1000) + (ct->ct_wait.tv_usec / 1000)); if (len == 0) return (0); fd.fd = ct->ct_fd; fd.events = POLLIN; for (;;) { switch (_poll(&fd, 1, milliseconds)) { case 0: ct->ct_error.re_status = RPC_TIMEDOUT; return (-1); case -1: if (errno == EINTR) continue; ct->ct_error.re_status = RPC_CANTRECV; ct->ct_error.re_errno = errno; return (-1); } break; } sal = sizeof(sa); if ((_getpeername(ct->ct_fd, &sa, &sal) == 0) && (sa.sa_family == AF_LOCAL)) { len = __msgread(ct->ct_fd, buf, (size_t)len); } else { len = _read(ct->ct_fd, buf, (size_t)len); } switch (len) { case 0: /* premature eof */ ct->ct_error.re_errno = ECONNRESET; ct->ct_error.re_status = RPC_CANTRECV; len = -1; /* it's really an error */ break; case -1: ct->ct_error.re_errno = errno; ct->ct_error.re_status = RPC_CANTRECV; break; } return (len); } static int write_vc(ctp, buf, len) void *ctp; void *buf; int len; { struct sockaddr sa; socklen_t sal; struct ct_data *ct = (struct ct_data *)ctp; int i, cnt; sal = sizeof(sa); if ((_getpeername(ct->ct_fd, &sa, &sal) == 0) && (sa.sa_family == AF_LOCAL)) { for (cnt = len; cnt > 0; cnt -= i, buf = (char *)buf + i) { if ((i = __msgwrite(ct->ct_fd, buf, (size_t)cnt)) == -1) { ct->ct_error.re_errno = errno; ct->ct_error.re_status = RPC_CANTSEND; return (-1); } } } else { for (cnt = len; cnt > 0; cnt -= i, buf = (char *)buf + i) { if ((i = _write(ct->ct_fd, buf, (size_t)cnt)) == -1) { ct->ct_error.re_errno = errno; ct->ct_error.re_status = RPC_CANTSEND; return (-1); } } } return (len); } static struct clnt_ops * clnt_vc_ops() { static struct clnt_ops ops; sigset_t mask, newmask; /* VARIABLES PROTECTED BY ops_lock: ops */ sigfillset(&newmask); thr_sigsetmask(SIG_SETMASK, &newmask, &mask); mutex_lock(&ops_lock); if (ops.cl_call == NULL) { ops.cl_call = clnt_vc_call; ops.cl_abort = clnt_vc_abort; ops.cl_geterr = clnt_vc_geterr; ops.cl_freeres = clnt_vc_freeres; ops.cl_destroy = clnt_vc_destroy; ops.cl_control = clnt_vc_control; } mutex_unlock(&ops_lock); thr_sigsetmask(SIG_SETMASK, &(mask), NULL); return (&ops); } /* * Make sure that the time is not garbage. -1 value is disallowed. * Note this is different from time_not_ok in clnt_dg.c */ static bool_t time_not_ok(t) struct timeval *t; { return (t->tv_sec <= -1 || t->tv_sec > 100000000 || t->tv_usec <= -1 || t->tv_usec > 1000000); } static int __msgread(sock, buf, cnt) int sock; void *buf; size_t cnt; { struct iovec iov[1]; struct msghdr msg; union { struct cmsghdr cmsg; char control[CMSG_SPACE(sizeof(struct cmsgcred))]; } cm; bzero((char *)&cm, sizeof(cm)); iov[0].iov_base = buf; iov[0].iov_len = cnt; msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_control = (caddr_t)&cm; msg.msg_controllen = CMSG_SPACE(sizeof(struct cmsgcred)); msg.msg_flags = 0; return(_recvmsg(sock, &msg, 0)); } static int __msgwrite(sock, buf, cnt) int sock; void *buf; size_t cnt; { struct iovec iov[1]; struct msghdr msg; union { struct cmsghdr cmsg; char control[CMSG_SPACE(sizeof(struct cmsgcred))]; } cm; bzero((char *)&cm, sizeof(cm)); iov[0].iov_base = buf; iov[0].iov_len = cnt; cm.cmsg.cmsg_type = SCM_CREDS; cm.cmsg.cmsg_level = SOL_SOCKET; cm.cmsg.cmsg_len = CMSG_LEN(sizeof(struct cmsgcred)); msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_control = (caddr_t)&cm; msg.msg_controllen = CMSG_SPACE(sizeof(struct cmsgcred)); msg.msg_flags = 0; return(_sendmsg(sock, &msg, 0)); }