Current Path : /usr/src/lib/libc/rpc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/lib/libc/rpc/svc.c |
/* $NetBSD: svc.c,v 1.21 2000/07/06 03:10:35 christos Exp $ */ /* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ #if defined(LIBC_SCCS) && !defined(lint) static char *sccsid2 = "@(#)svc.c 1.44 88/02/08 Copyr 1984 Sun Micro"; static char *sccsid = "@(#)svc.c 2.4 88/08/11 4.0 RPCSRC"; #endif #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/lib/libc/rpc/svc.c 235045 2012-05-05 00:28:08Z kib $"); /* * svc.c, Server-side remote procedure call interface. * * There are two sets of procedures here. The xprt routines are * for handling transport handles. The svc routines handle the * list of service routines. * * Copyright (C) 1984, Sun Microsystems, Inc. */ #include "namespace.h" #include "reentrant.h" #include <sys/types.h> #include <sys/poll.h> #include <assert.h> #include <errno.h> #include <stdlib.h> #include <string.h> #include <rpc/rpc.h> #ifdef PORTMAP #include <rpc/pmap_clnt.h> #endif /* PORTMAP */ #include "un-namespace.h" #include "rpc_com.h" #include "mt_misc.h" #define RQCRED_SIZE 400 /* this size is excessive */ #define SVC_VERSQUIET 0x0001 /* keep quiet about vers mismatch */ #define version_keepquiet(xp) (SVC_EXT(xp)->xp_flags & SVC_VERSQUIET) #define max(a, b) (a > b ? a : b) /* * The services list * Each entry represents a set of procedures (an rpc program). * The dispatch routine takes request structs and runs the * apropriate procedure. */ static struct svc_callout { struct svc_callout *sc_next; rpcprog_t sc_prog; rpcvers_t sc_vers; char *sc_netid; void (*sc_dispatch)(struct svc_req *, SVCXPRT *); } *svc_head; static struct svc_callout *svc_find(rpcprog_t, rpcvers_t, struct svc_callout **, char *); static void __xprt_do_unregister (SVCXPRT *xprt, bool_t dolock); /* *************** SVCXPRT related stuff **************** */ /* * Activate a transport handle. */ void xprt_register(xprt) SVCXPRT *xprt; { int sock; assert(xprt != NULL); sock = xprt->xp_fd; rwlock_wrlock(&svc_fd_lock); if (__svc_xports == NULL) { __svc_xports = (SVCXPRT **) mem_alloc(FD_SETSIZE * sizeof(SVCXPRT *)); if (__svc_xports == NULL) { rwlock_unlock(&svc_fd_lock); return; } memset(__svc_xports, '\0', FD_SETSIZE * sizeof(SVCXPRT *)); } if (sock < FD_SETSIZE) { __svc_xports[sock] = xprt; FD_SET(sock, &svc_fdset); svc_maxfd = max(svc_maxfd, sock); } rwlock_unlock(&svc_fd_lock); } void xprt_unregister(SVCXPRT *xprt) { __xprt_do_unregister(xprt, TRUE); } void __xprt_unregister_unlocked(SVCXPRT *xprt) { __xprt_do_unregister(xprt, FALSE); } /* * De-activate a transport handle. */ static void __xprt_do_unregister(xprt, dolock) SVCXPRT *xprt; bool_t dolock; { int sock; assert(xprt != NULL); sock = xprt->xp_fd; if (dolock) rwlock_wrlock(&svc_fd_lock); if ((sock < FD_SETSIZE) && (__svc_xports[sock] == xprt)) { __svc_xports[sock] = NULL; FD_CLR(sock, &svc_fdset); if (sock >= svc_maxfd) { for (svc_maxfd--; svc_maxfd>=0; svc_maxfd--) if (__svc_xports[svc_maxfd]) break; } } if (dolock) rwlock_unlock(&svc_fd_lock); } /* * Add a service program to the callout list. * The dispatch routine will be called when a rpc request for this * program number comes in. */ bool_t svc_reg(xprt, prog, vers, dispatch, nconf) SVCXPRT *xprt; const rpcprog_t prog; const rpcvers_t vers; void (*dispatch)(struct svc_req *, SVCXPRT *); const struct netconfig *nconf; { bool_t dummy; struct svc_callout *prev; struct svc_callout *s; struct netconfig *tnconf; char *netid = NULL; int flag = 0; /* VARIABLES PROTECTED BY svc_lock: s, prev, svc_head */ if (xprt->xp_netid) { netid = strdup(xprt->xp_netid); flag = 1; } else if (nconf && nconf->nc_netid) { netid = strdup(nconf->nc_netid); flag = 1; } else if ((tnconf = __rpcgettp(xprt->xp_fd)) != NULL) { netid = strdup(tnconf->nc_netid); flag = 1; freenetconfigent(tnconf); } /* must have been created with svc_raw_create */ if ((netid == NULL) && (flag == 1)) { return (FALSE); } rwlock_wrlock(&svc_lock); if ((s = svc_find(prog, vers, &prev, netid)) != NULL) { if (netid) free(netid); if (s->sc_dispatch == dispatch) goto rpcb_it; /* he is registering another xptr */ rwlock_unlock(&svc_lock); return (FALSE); } s = mem_alloc(sizeof (struct svc_callout)); if (s == NULL) { if (netid) free(netid); rwlock_unlock(&svc_lock); return (FALSE); } s->sc_prog = prog; s->sc_vers = vers; s->sc_dispatch = dispatch; s->sc_netid = netid; s->sc_next = svc_head; svc_head = s; if ((xprt->xp_netid == NULL) && (flag == 1) && netid) ((SVCXPRT *) xprt)->xp_netid = strdup(netid); rpcb_it: rwlock_unlock(&svc_lock); /* now register the information with the local binder service */ if (nconf) { /*LINTED const castaway*/ dummy = rpcb_set(prog, vers, (struct netconfig *) nconf, &((SVCXPRT *) xprt)->xp_ltaddr); return (dummy); } return (TRUE); } /* * Remove a service program from the callout list. */ void svc_unreg(prog, vers) const rpcprog_t prog; const rpcvers_t vers; { struct svc_callout *prev; struct svc_callout *s; /* unregister the information anyway */ (void) rpcb_unset(prog, vers, NULL); rwlock_wrlock(&svc_lock); while ((s = svc_find(prog, vers, &prev, NULL)) != NULL) { if (prev == NULL) { svc_head = s->sc_next; } else { prev->sc_next = s->sc_next; } s->sc_next = NULL; if (s->sc_netid) mem_free(s->sc_netid, sizeof (s->sc_netid) + 1); mem_free(s, sizeof (struct svc_callout)); } rwlock_unlock(&svc_lock); } /* ********************** CALLOUT list related stuff ************* */ #ifdef PORTMAP /* * Add a service program to the callout list. * The dispatch routine will be called when a rpc request for this * program number comes in. */ bool_t svc_register(xprt, prog, vers, dispatch, protocol) SVCXPRT *xprt; u_long prog; u_long vers; void (*dispatch)(struct svc_req *, SVCXPRT *); int protocol; { struct svc_callout *prev; struct svc_callout *s; assert(xprt != NULL); assert(dispatch != NULL); if ((s = svc_find((rpcprog_t)prog, (rpcvers_t)vers, &prev, NULL)) != NULL) { if (s->sc_dispatch == dispatch) goto pmap_it; /* he is registering another xptr */ return (FALSE); } s = mem_alloc(sizeof(struct svc_callout)); if (s == NULL) { return (FALSE); } s->sc_prog = (rpcprog_t)prog; s->sc_vers = (rpcvers_t)vers; s->sc_dispatch = dispatch; s->sc_next = svc_head; svc_head = s; pmap_it: /* now register the information with the local binder service */ if (protocol) { return (pmap_set(prog, vers, protocol, xprt->xp_port)); } return (TRUE); } /* * Remove a service program from the callout list. */ void svc_unregister(prog, vers) u_long prog; u_long vers; { struct svc_callout *prev; struct svc_callout *s; if ((s = svc_find((rpcprog_t)prog, (rpcvers_t)vers, &prev, NULL)) == NULL) return; if (prev == NULL) { svc_head = s->sc_next; } else { prev->sc_next = s->sc_next; } s->sc_next = NULL; mem_free(s, sizeof(struct svc_callout)); /* now unregister the information with the local binder service */ (void)pmap_unset(prog, vers); } #endif /* PORTMAP */ /* * Search the callout list for a program number, return the callout * struct. */ static struct svc_callout * svc_find(prog, vers, prev, netid) rpcprog_t prog; rpcvers_t vers; struct svc_callout **prev; char *netid; { struct svc_callout *s, *p; assert(prev != NULL); p = NULL; for (s = svc_head; s != NULL; s = s->sc_next) { if (((s->sc_prog == prog) && (s->sc_vers == vers)) && ((netid == NULL) || (s->sc_netid == NULL) || (strcmp(netid, s->sc_netid) == 0))) break; p = s; } *prev = p; return (s); } /* ******************* REPLY GENERATION ROUTINES ************ */ /* * Send a reply to an rpc request */ bool_t svc_sendreply(xprt, xdr_results, xdr_location) SVCXPRT *xprt; xdrproc_t xdr_results; void * xdr_location; { struct rpc_msg rply; assert(xprt != NULL); rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = SUCCESS; rply.acpted_rply.ar_results.where = xdr_location; rply.acpted_rply.ar_results.proc = xdr_results; return (SVC_REPLY(xprt, &rply)); } /* * No procedure error reply */ void svcerr_noproc(xprt) SVCXPRT *xprt; { struct rpc_msg rply; assert(xprt != NULL); rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = PROC_UNAVAIL; SVC_REPLY(xprt, &rply); } /* * Can't decode args error reply */ void svcerr_decode(xprt) SVCXPRT *xprt; { struct rpc_msg rply; assert(xprt != NULL); rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = GARBAGE_ARGS; SVC_REPLY(xprt, &rply); } /* * Some system error */ void svcerr_systemerr(xprt) SVCXPRT *xprt; { struct rpc_msg rply; assert(xprt != NULL); rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = SYSTEM_ERR; SVC_REPLY(xprt, &rply); } #if 0 /* * Tell RPC package to not complain about version errors to the client. This * is useful when revving broadcast protocols that sit on a fixed address. * There is really one (or should be only one) example of this kind of * protocol: the portmapper (or rpc binder). */ void __svc_versquiet_on(xprt) SVCXPRT *xprt; { SVC_EXT(xprt)->xp_flags |= SVC_VERSQUIET; } void __svc_versquiet_off(xprt) SVCXPRT *xprt; { SVC_EXT(xprt)->xp_flags &= ~SVC_VERSQUIET; } void svc_versquiet(xprt) SVCXPRT *xprt; { __svc_versquiet_on(xprt); } int __svc_versquiet_get(xprt) SVCXPRT *xprt; { return (SVC_EXT(xprt)->xp_flags & SVC_VERSQUIET); } #endif /* * Authentication error reply */ void svcerr_auth(xprt, why) SVCXPRT *xprt; enum auth_stat why; { struct rpc_msg rply; assert(xprt != NULL); rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_DENIED; rply.rjcted_rply.rj_stat = AUTH_ERROR; rply.rjcted_rply.rj_why = why; SVC_REPLY(xprt, &rply); } /* * Auth too weak error reply */ void svcerr_weakauth(xprt) SVCXPRT *xprt; { assert(xprt != NULL); svcerr_auth(xprt, AUTH_TOOWEAK); } /* * Program unavailable error reply */ void svcerr_noprog(xprt) SVCXPRT *xprt; { struct rpc_msg rply; assert(xprt != NULL); rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = PROG_UNAVAIL; SVC_REPLY(xprt, &rply); } /* * Program version mismatch error reply */ void svcerr_progvers(xprt, low_vers, high_vers) SVCXPRT *xprt; rpcvers_t low_vers; rpcvers_t high_vers; { struct rpc_msg rply; assert(xprt != NULL); rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = PROG_MISMATCH; rply.acpted_rply.ar_vers.low = (u_int32_t)low_vers; rply.acpted_rply.ar_vers.high = (u_int32_t)high_vers; SVC_REPLY(xprt, &rply); } /* * Allocate a new server transport structure. All fields are * initialized to zero and xp_p3 is initialized to point at an * extension structure to hold various flags and authentication * parameters. */ SVCXPRT * svc_xprt_alloc() { SVCXPRT *xprt; SVCXPRT_EXT *ext; xprt = mem_alloc(sizeof(SVCXPRT)); if (xprt == NULL) return (NULL); memset(xprt, 0, sizeof(SVCXPRT)); ext = mem_alloc(sizeof(SVCXPRT_EXT)); if (ext == NULL) { mem_free(xprt, sizeof(SVCXPRT)); return (NULL); } memset(ext, 0, sizeof(SVCXPRT_EXT)); xprt->xp_p3 = ext; ext->xp_auth.svc_ah_ops = &svc_auth_null_ops; return (xprt); } /* * Free a server transport structure. */ void svc_xprt_free(xprt) SVCXPRT *xprt; { mem_free(xprt->xp_p3, sizeof(SVCXPRT_EXT)); mem_free(xprt, sizeof(SVCXPRT)); } /* ******************* SERVER INPUT STUFF ******************* */ /* * Get server side input from some transport. * * Statement of authentication parameters management: * This function owns and manages all authentication parameters, specifically * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and * the "cooked" credentials (rqst->rq_clntcred). * However, this function does not know the structure of the cooked * credentials, so it make the following assumptions: * a) the structure is contiguous (no pointers), and * b) the cred structure size does not exceed RQCRED_SIZE bytes. * In all events, all three parameters are freed upon exit from this routine. * The storage is trivially management on the call stack in user land, but * is mallocated in kernel land. */ void svc_getreq(rdfds) int rdfds; { fd_set readfds; FD_ZERO(&readfds); readfds.fds_bits[0] = rdfds; svc_getreqset(&readfds); } void svc_getreqset(readfds) fd_set *readfds; { int bit, fd; fd_mask mask, *maskp; int sock; assert(readfds != NULL); maskp = readfds->fds_bits; for (sock = 0; sock < FD_SETSIZE; sock += NFDBITS) { for (mask = *maskp++; (bit = ffsl(mask)) != 0; mask ^= (1ul << (bit - 1))) { /* sock has input waiting */ fd = sock + bit - 1; svc_getreq_common(fd); } } } void svc_getreq_common(fd) int fd; { SVCXPRT *xprt; struct svc_req r; struct rpc_msg msg; int prog_found; rpcvers_t low_vers; rpcvers_t high_vers; enum xprt_stat stat; char cred_area[2*MAX_AUTH_BYTES + RQCRED_SIZE]; msg.rm_call.cb_cred.oa_base = cred_area; msg.rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]); r.rq_clntcred = &(cred_area[2*MAX_AUTH_BYTES]); rwlock_rdlock(&svc_fd_lock); xprt = __svc_xports[fd]; rwlock_unlock(&svc_fd_lock); if (xprt == NULL) /* But do we control sock? */ return; /* now receive msgs from xprtprt (support batch calls) */ do { if (SVC_RECV(xprt, &msg)) { /* now find the exported program and call it */ struct svc_callout *s; enum auth_stat why; r.rq_xprt = xprt; r.rq_prog = msg.rm_call.cb_prog; r.rq_vers = msg.rm_call.cb_vers; r.rq_proc = msg.rm_call.cb_proc; r.rq_cred = msg.rm_call.cb_cred; /* first authenticate the message */ if ((why = _authenticate(&r, &msg)) != AUTH_OK) { /* * RPCSEC_GSS uses this return code * for requests that form part of its * context establishment protocol and * should not be dispatched to the * application. */ if (why != RPCSEC_GSS_NODISPATCH) svcerr_auth(xprt, why); goto call_done; } /* now match message with a registered service*/ prog_found = FALSE; low_vers = (rpcvers_t) -1L; high_vers = (rpcvers_t) 0L; for (s = svc_head; s != NULL; s = s->sc_next) { if (s->sc_prog == r.rq_prog) { if (s->sc_vers == r.rq_vers) { (*s->sc_dispatch)(&r, xprt); goto call_done; } /* found correct version */ prog_found = TRUE; if (s->sc_vers < low_vers) low_vers = s->sc_vers; if (s->sc_vers > high_vers) high_vers = s->sc_vers; } /* found correct program */ } /* * if we got here, the program or version * is not served ... */ if (prog_found) svcerr_progvers(xprt, low_vers, high_vers); else svcerr_noprog(xprt); /* Fall through to ... */ } /* * Check if the xprt has been disconnected in a * recursive call in the service dispatch routine. * If so, then break. */ rwlock_rdlock(&svc_fd_lock); if (xprt != __svc_xports[fd]) { rwlock_unlock(&svc_fd_lock); break; } rwlock_unlock(&svc_fd_lock); call_done: if ((stat = SVC_STAT(xprt)) == XPRT_DIED){ SVC_DESTROY(xprt); break; } } while (stat == XPRT_MOREREQS); } void svc_getreq_poll(pfdp, pollretval) struct pollfd *pfdp; int pollretval; { int i; int fds_found; for (i = fds_found = 0; fds_found < pollretval; i++) { struct pollfd *p = &pfdp[i]; if (p->revents) { /* fd has input waiting */ fds_found++; /* * We assume that this function is only called * via someone _select()ing from svc_fdset or * _poll()ing from svc_pollset[]. Thus it's safe * to handle the POLLNVAL event by simply turning * the corresponding bit off in svc_fdset. The * svc_pollset[] array is derived from svc_fdset * and so will also be updated eventually. * * XXX Should we do an xprt_unregister() instead? */ if (p->revents & POLLNVAL) { rwlock_wrlock(&svc_fd_lock); FD_CLR(p->fd, &svc_fdset); rwlock_unlock(&svc_fd_lock); } else svc_getreq_common(p->fd); } } } bool_t rpc_control(int what, void *arg) { int val; switch (what) { case RPC_SVC_CONNMAXREC_SET: val = *(int *)arg; if (val <= 0) return FALSE; __svc_maxrec = val; return TRUE; case RPC_SVC_CONNMAXREC_GET: *(int *)arg = __svc_maxrec; return TRUE; default: break; } return FALSE; }