Current Path : /usr/src/lib/libcrypt/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/lib/libcrypt/crypt-sha512.c |
/* * Copyright (c) 2011 The FreeBSD Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Based on: * SHA512-based Unix crypt implementation. Released into the Public Domain by * Ulrich Drepper <drepper@redhat.com>. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/lib/libcrypt/crypt-sha512.c 221471 2011-05-05 01:09:42Z obrien $"); #include <sys/endian.h> #include <sys/param.h> #include <errno.h> #include <limits.h> #include <sha512.h> #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "crypt.h" /* Define our magic string to mark salt for SHA512 "encryption" replacement. */ static const char sha512_salt_prefix[] = "$6$"; /* Prefix for optional rounds specification. */ static const char sha512_rounds_prefix[] = "rounds="; /* Maximum salt string length. */ #define SALT_LEN_MAX 16 /* Default number of rounds if not explicitly specified. */ #define ROUNDS_DEFAULT 5000 /* Minimum number of rounds. */ #define ROUNDS_MIN 1000 /* Maximum number of rounds. */ #define ROUNDS_MAX 999999999 static char * crypt_sha512_r(const char *key, const char *salt, char *buffer, int buflen) { u_long srounds; int n; uint8_t alt_result[64], temp_result[64]; SHA512_CTX ctx, alt_ctx; size_t salt_len, key_len, cnt, rounds; char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp; const char *num; bool rounds_custom; copied_key = NULL; copied_salt = NULL; /* Default number of rounds. */ rounds = ROUNDS_DEFAULT; rounds_custom = false; /* Find beginning of salt string. The prefix should normally always * be present. Just in case it is not. */ if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0) /* Skip salt prefix. */ salt += sizeof(sha512_salt_prefix) - 1; if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1) == 0) { num = salt + sizeof(sha512_rounds_prefix) - 1; srounds = strtoul(num, &endp, 10); if (*endp == '$') { salt = endp + 1; rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); rounds_custom = true; } } salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); key_len = strlen(key); /* Prepare for the real work. */ SHA512_Init(&ctx); /* Add the key string. */ SHA512_Update(&ctx, key, key_len); /* The last part is the salt string. This must be at most 8 * characters and it ends at the first `$' character (for * compatibility with existing implementations). */ SHA512_Update(&ctx, salt, salt_len); /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The * final result will be added to the first context. */ SHA512_Init(&alt_ctx); /* Add key. */ SHA512_Update(&alt_ctx, key, key_len); /* Add salt. */ SHA512_Update(&alt_ctx, salt, salt_len); /* Add key again. */ SHA512_Update(&alt_ctx, key, key_len); /* Now get result of this (64 bytes) and add it to the other context. */ SHA512_Final(alt_result, &alt_ctx); /* Add for any character in the key one byte of the alternate sum. */ for (cnt = key_len; cnt > 64; cnt -= 64) SHA512_Update(&ctx, alt_result, 64); SHA512_Update(&ctx, alt_result, cnt); /* Take the binary representation of the length of the key and for * every 1 add the alternate sum, for every 0 the key. */ for (cnt = key_len; cnt > 0; cnt >>= 1) if ((cnt & 1) != 0) SHA512_Update(&ctx, alt_result, 64); else SHA512_Update(&ctx, key, key_len); /* Create intermediate result. */ SHA512_Final(alt_result, &ctx); /* Start computation of P byte sequence. */ SHA512_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < key_len; ++cnt) SHA512_Update(&alt_ctx, key, key_len); /* Finish the digest. */ SHA512_Final(temp_result, &alt_ctx); /* Create byte sequence P. */ cp = p_bytes = alloca(key_len); for (cnt = key_len; cnt >= 64; cnt -= 64) { memcpy(cp, temp_result, 64); cp += 64; } memcpy(cp, temp_result, cnt); /* Start computation of S byte sequence. */ SHA512_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) SHA512_Update(&alt_ctx, salt, salt_len); /* Finish the digest. */ SHA512_Final(temp_result, &alt_ctx); /* Create byte sequence S. */ cp = s_bytes = alloca(salt_len); for (cnt = salt_len; cnt >= 64; cnt -= 64) { memcpy(cp, temp_result, 64); cp += 64; } memcpy(cp, temp_result, cnt); /* Repeatedly run the collected hash value through SHA512 to burn CPU * cycles. */ for (cnt = 0; cnt < rounds; ++cnt) { /* New context. */ SHA512_Init(&ctx); /* Add key or last result. */ if ((cnt & 1) != 0) SHA512_Update(&ctx, p_bytes, key_len); else SHA512_Update(&ctx, alt_result, 64); /* Add salt for numbers not divisible by 3. */ if (cnt % 3 != 0) SHA512_Update(&ctx, s_bytes, salt_len); /* Add key for numbers not divisible by 7. */ if (cnt % 7 != 0) SHA512_Update(&ctx, p_bytes, key_len); /* Add key or last result. */ if ((cnt & 1) != 0) SHA512_Update(&ctx, alt_result, 64); else SHA512_Update(&ctx, p_bytes, key_len); /* Create intermediate result. */ SHA512_Final(alt_result, &ctx); } /* Now we can construct the result string. It consists of three * parts. */ cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen)); buflen -= sizeof(sha512_salt_prefix) - 1; if (rounds_custom) { n = snprintf(cp, MAX(0, buflen), "%s%zu$", sha512_rounds_prefix, rounds); cp += n; buflen -= n; } cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len)); buflen -= MIN((size_t)MAX(0, buflen), salt_len); if (buflen > 0) { *cp++ = '$'; --buflen; } b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4, &buflen, &cp); b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4, &buflen, &cp); b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4, &buflen, &cp); b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4, &buflen, &cp); b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4, &buflen, &cp); b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4, &buflen, &cp); b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4, &buflen, &cp); b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4, &buflen, &cp); b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4, &buflen, &cp); b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4, &buflen, &cp); b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4, &buflen, &cp); b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4, &buflen, &cp); b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4, &buflen, &cp); b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4, &buflen, &cp); b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4, &buflen, &cp); b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4, &buflen, &cp); b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4, &buflen, &cp); b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4, &buflen, &cp); b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4, &buflen, &cp); b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4, &buflen, &cp); b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4, &buflen, &cp); b64_from_24bit(0, 0, alt_result[63], 2, &buflen, &cp); if (buflen <= 0) { errno = ERANGE; buffer = NULL; } else *cp = '\0'; /* Terminate the string. */ /* Clear the buffer for the intermediate result so that people * attaching to processes or reading core dumps cannot get any * information. We do it in this way to clear correct_words[] inside * the SHA512 implementation as well. */ SHA512_Init(&ctx); SHA512_Final(alt_result, &ctx); memset(temp_result, '\0', sizeof(temp_result)); memset(p_bytes, '\0', key_len); memset(s_bytes, '\0', salt_len); memset(&ctx, '\0', sizeof(ctx)); memset(&alt_ctx, '\0', sizeof(alt_ctx)); if (copied_key != NULL) memset(copied_key, '\0', key_len); if (copied_salt != NULL) memset(copied_salt, '\0', salt_len); return buffer; } /* This entry point is equivalent to crypt(3). */ char * crypt_sha512(const char *key, const char *salt) { /* We don't want to have an arbitrary limit in the size of the * password. We can compute an upper bound for the size of the * result in advance and so we can prepare the buffer we pass to * `crypt_sha512_r'. */ static char *buffer; static int buflen; int needed; char *new_buffer; needed = (sizeof(sha512_salt_prefix) - 1 + sizeof(sha512_rounds_prefix) + 9 + 1 + strlen(salt) + 1 + 86 + 1); if (buflen < needed) { new_buffer = (char *)realloc(buffer, needed); if (new_buffer == NULL) return NULL; buffer = new_buffer; buflen = needed; } return crypt_sha512_r(key, salt, buffer, buflen); } #ifdef TEST static const struct { const char *input; const char result[64]; } tests[] = { /* Test vectors from FIPS 180-2: appendix C.1. */ { "abc", "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31" "\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a" "\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd" "\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f" }, /* Test vectors from FIPS 180-2: appendix C.2. */ { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", "\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f" "\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18" "\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a" "\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09" }, /* Test vectors from the NESSIE project. */ { "", "\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07" "\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce" "\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f" "\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e" }, { "a", "\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2" "\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53" "\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46" "\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75" }, { "message digest", "\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51" "\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33" "\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20" "\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c" }, { "abcdefghijklmnopqrstuvwxyz", "\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81" "\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29" "\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59" "\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1" }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16" "\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35" "\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0" "\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45" }, { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93" "\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4" "\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab" "\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94" }, { "123456789012345678901234567890123456789012345678901234567890" "12345678901234567890", "\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95" "\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a" "\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1" "\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43" } }; #define ntests (sizeof (tests) / sizeof (tests[0])) static const struct { const char *salt; const char *input; const char *expected; } tests2[] = { { "$6$saltstring", "Hello world!", "$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu" "esI68u4OTLiBFdcbYEdFCoEOfaS35inz1" }, { "$6$rounds=10000$saltstringsaltstring", "Hello world!", "$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb" "HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v." }, { "$6$rounds=5000$toolongsaltstring", "This is just a test", "$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ" "zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0" }, { "$6$rounds=1400$anotherlongsaltstring", "a very much longer text to encrypt. This one even stretches over more" "than one line.", "$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP" "vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1" }, { "$6$rounds=77777$short", "we have a short salt string but not a short password", "$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g" "ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0" }, { "$6$rounds=123456$asaltof16chars..", "a short string", "$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc" "elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1" }, { "$6$rounds=10$roundstoolow", "the minimum number is still observed", "$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x" "hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX." }, }; #define ntests2 (sizeof (tests2) / sizeof (tests2[0])) int main(void) { SHA512_CTX ctx; uint8_t sum[64]; int result = 0; int i, cnt; for (cnt = 0; cnt < (int)ntests; ++cnt) { SHA512_Init(&ctx); SHA512_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input)); SHA512_Final(sum, &ctx); if (memcmp(tests[cnt].result, sum, 64) != 0) { printf("test %d run %d failed\n", cnt, 1); result = 1; } SHA512_Init(&ctx); for (i = 0; tests[cnt].input[i] != '\0'; ++i) SHA512_Update(&ctx, &tests[cnt].input[i], 1); SHA512_Final(sum, &ctx); if (memcmp(tests[cnt].result, sum, 64) != 0) { printf("test %d run %d failed\n", cnt, 2); result = 1; } } /* Test vector from FIPS 180-2: appendix C.3. */ char buf[1000]; memset(buf, 'a', sizeof(buf)); SHA512_Init(&ctx); for (i = 0; i < 1000; ++i) SHA512_Update(&ctx, buf, sizeof(buf)); SHA512_Final(sum, &ctx); static const char expected[64] = "\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63" "\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb" "\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b" "\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b"; if (memcmp(expected, sum, 64) != 0) { printf("test %d failed\n", cnt); result = 1; } for (cnt = 0; cnt < ntests2; ++cnt) { char *cp = crypt_sha512(tests2[cnt].input, tests2[cnt].salt); if (strcmp(cp, tests2[cnt].expected) != 0) { printf("test %d: expected \"%s\", got \"%s\"\n", cnt, tests2[cnt].expected, cp); result = 1; } } if (result == 0) puts("all tests OK"); return result; } #endif /* TEST */