Current Path : /usr/src/lib/libkse/thread/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/lib/libkse/thread/thr_private.h |
/* * Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Private thread definitions for the uthread kernel. * * $FreeBSD: release/9.1.0/lib/libkse/thread/thr_private.h 174689 2007-12-16 23:29:57Z deischen $ */ #ifndef _THR_PRIVATE_H #define _THR_PRIVATE_H /* * Include files. */ #include <setjmp.h> #include <signal.h> #include <stdio.h> #include <sys/queue.h> #include <sys/types.h> #include <sys/time.h> #include <sys/cdefs.h> #include <sys/kse.h> #include <sched.h> #include <ucontext.h> #include <unistd.h> #include <pthread.h> #include <pthread_np.h> #ifndef LIBTHREAD_DB #include "lock.h" #include "pthread_md.h" #endif /* * Evaluate the storage class specifier. */ #ifdef GLOBAL_PTHREAD_PRIVATE #define SCLASS #define SCLASS_PRESET(x...) = x #else #define SCLASS extern #define SCLASS_PRESET(x...) #endif /* * Kernel fatal error handler macro. */ #define PANIC(string) _thr_exit(__FILE__, __LINE__, string) /* Output debug messages like this: */ #ifdef STDOUT_FILENO #define stdout_debug(...) _thread_printf(STDOUT_FILENO, __VA_ARGS__) #endif #ifdef STDERR_FILENO #define stderr_debug(...) _thread_printf(STDERR_FILENO, __VA_ARGS__) #endif #define DBG_MUTEX 0x0001 #define DBG_SIG 0x0002 #define DBG_INFO_DUMP 0x0004 #ifdef _PTHREADS_INVARIANTS #define THR_ASSERT(cond, msg) do { \ if (!(cond)) \ PANIC(msg); \ } while (0) #else #define THR_ASSERT(cond, msg) #endif /* * State change macro without scheduling queue change: */ #define THR_SET_STATE(thrd, newstate) do { \ (thrd)->state = newstate; \ (thrd)->fname = __FILE__; \ (thrd)->lineno = __LINE__; \ } while (0) #define TIMESPEC_ADD(dst, src, val) \ do { \ (dst)->tv_sec = (src)->tv_sec + (val)->tv_sec; \ (dst)->tv_nsec = (src)->tv_nsec + (val)->tv_nsec; \ if ((dst)->tv_nsec >= 1000000000) { \ (dst)->tv_sec++; \ (dst)->tv_nsec -= 1000000000; \ } \ } while (0) #define TIMESPEC_SUB(dst, src, val) \ do { \ (dst)->tv_sec = (src)->tv_sec - (val)->tv_sec; \ (dst)->tv_nsec = (src)->tv_nsec - (val)->tv_nsec; \ if ((dst)->tv_nsec < 0) { \ (dst)->tv_sec--; \ (dst)->tv_nsec += 1000000000; \ } \ } while (0) /* * Priority queues. * * XXX It'd be nice if these were contained in uthread_priority_queue.[ch]. */ typedef struct pq_list { TAILQ_HEAD(, pthread) pl_head; /* list of threads at this priority */ TAILQ_ENTRY(pq_list) pl_link; /* link for queue of priority lists */ int pl_prio; /* the priority of this list */ int pl_queued; /* is this in the priority queue */ } pq_list_t; typedef struct pq_queue { TAILQ_HEAD(, pq_list) pq_queue; /* queue of priority lists */ pq_list_t *pq_lists; /* array of all priority lists */ int pq_size; /* number of priority lists */ #define PQF_ACTIVE 0x0001 int pq_flags; int pq_threads; } pq_queue_t; /* * Each KSEG has a scheduling queue. For now, threads that exist in their * own KSEG (system scope) will get a full priority queue. In the future * this can be optimized for the single thread per KSEG case. */ struct sched_queue { pq_queue_t sq_runq; TAILQ_HEAD(, pthread) sq_waitq; /* waiting in userland */ }; typedef struct kse_thr_mailbox *kse_critical_t; struct kse_group; #define MAX_KSE_LOCKLEVEL 5 struct kse { /* -- location and order specific items for gdb -- */ struct kcb *k_kcb; struct pthread *k_curthread; /* current thread */ struct kse_group *k_kseg; /* parent KSEG */ struct sched_queue *k_schedq; /* scheduling queue */ /* -- end of location and order specific items -- */ TAILQ_ENTRY(kse) k_qe; /* KSE list link entry */ TAILQ_ENTRY(kse) k_kgqe; /* KSEG's KSE list entry */ /* * Items that are only modified by the kse, or that otherwise * don't need to be locked when accessed */ struct lock k_lock; struct lockuser k_lockusers[MAX_KSE_LOCKLEVEL]; int k_locklevel; stack_t k_stack; int k_flags; #define KF_STARTED 0x0001 /* kernel kse created */ #define KF_INITIALIZED 0x0002 /* initialized on 1st upcall */ #define KF_TERMINATED 0x0004 /* kse is terminated */ #define KF_IDLE 0x0008 /* kse is idle */ #define KF_SWITCH 0x0010 /* thread switch in UTS */ int k_error; /* syscall errno in critical */ int k_cpu; /* CPU ID when bound */ int k_sigseqno; /* signal buffered count */ }; #define KSE_SET_IDLE(kse) ((kse)->k_flags |= KF_IDLE) #define KSE_CLEAR_IDLE(kse) ((kse)->k_flags &= ~KF_IDLE) #define KSE_IS_IDLE(kse) (((kse)->k_flags & KF_IDLE) != 0) #define KSE_SET_SWITCH(kse) ((kse)->k_flags |= KF_SWITCH) #define KSE_CLEAR_SWITCH(kse) ((kse)->k_flags &= ~KF_SWITCH) #define KSE_IS_SWITCH(kse) (((kse)->k_flags & KF_SWITCH) != 0) /* * Each KSE group contains one or more KSEs in which threads can run. * At least for now, there is one scheduling queue per KSE group; KSEs * within the same KSE group compete for threads from the same scheduling * queue. A scope system thread has one KSE in one KSE group; the group * does not use its scheduling queue. */ struct kse_group { TAILQ_HEAD(, kse) kg_kseq; /* list of KSEs in group */ TAILQ_HEAD(, pthread) kg_threadq; /* list of threads in group */ TAILQ_ENTRY(kse_group) kg_qe; /* link entry */ struct sched_queue kg_schedq; /* scheduling queue */ struct lock kg_lock; int kg_threadcount; /* # of assigned threads */ int kg_ksecount; /* # of assigned KSEs */ int kg_idle_kses; int kg_flags; #define KGF_SINGLE_THREAD 0x0001 /* scope system kse group */ #define KGF_SCHEDQ_INITED 0x0002 /* has an initialized schedq */ }; /* * Add/remove threads from a KSE's scheduling queue. * For now the scheduling queue is hung off the KSEG. */ #define KSEG_THRQ_ADD(kseg, thr) \ do { \ TAILQ_INSERT_TAIL(&(kseg)->kg_threadq, thr, kle);\ (kseg)->kg_threadcount++; \ } while (0) #define KSEG_THRQ_REMOVE(kseg, thr) \ do { \ TAILQ_REMOVE(&(kseg)->kg_threadq, thr, kle); \ (kseg)->kg_threadcount--; \ } while (0) /* * Lock acquire and release for KSEs. */ #define KSE_LOCK_ACQUIRE(kse, lck) \ do { \ if ((kse)->k_locklevel < MAX_KSE_LOCKLEVEL) { \ (kse)->k_locklevel++; \ _lock_acquire((lck), \ &(kse)->k_lockusers[(kse)->k_locklevel - 1], 0); \ } \ else \ PANIC("Exceeded maximum lock level"); \ } while (0) #define KSE_LOCK_RELEASE(kse, lck) \ do { \ if ((kse)->k_locklevel > 0) { \ _lock_release((lck), \ &(kse)->k_lockusers[(kse)->k_locklevel - 1]); \ (kse)->k_locklevel--; \ } \ } while (0) /* * Lock our own KSEG. */ #define KSE_LOCK(curkse) \ KSE_LOCK_ACQUIRE(curkse, &(curkse)->k_kseg->kg_lock) #define KSE_UNLOCK(curkse) \ KSE_LOCK_RELEASE(curkse, &(curkse)->k_kseg->kg_lock) /* * Lock a potentially different KSEG. */ #define KSE_SCHED_LOCK(curkse, kseg) \ KSE_LOCK_ACQUIRE(curkse, &(kseg)->kg_lock) #define KSE_SCHED_UNLOCK(curkse, kseg) \ KSE_LOCK_RELEASE(curkse, &(kseg)->kg_lock) /* * Waiting queue manipulation macros (using pqe link): */ #define KSE_WAITQ_REMOVE(kse, thrd) \ do { \ if (((thrd)->flags & THR_FLAGS_IN_WAITQ) != 0) { \ TAILQ_REMOVE(&(kse)->k_schedq->sq_waitq, thrd, pqe); \ (thrd)->flags &= ~THR_FLAGS_IN_WAITQ; \ } \ } while (0) #define KSE_WAITQ_INSERT(kse, thrd) kse_waitq_insert(thrd) #define KSE_WAITQ_FIRST(kse) TAILQ_FIRST(&(kse)->k_schedq->sq_waitq) #define KSE_WAKEUP(kse) kse_wakeup(&(kse)->k_kcb->kcb_kmbx) /* * TailQ initialization values. */ #define TAILQ_INITIALIZER { NULL, NULL } /* * lock initialization values. */ #define LCK_INITIALIZER { NULL, NULL, LCK_DEFAULT } struct pthread_mutex { /* * Lock for accesses to this structure. */ struct lock m_lock; enum pthread_mutextype m_type; int m_protocol; TAILQ_HEAD(mutex_head, pthread) m_queue; struct pthread *m_owner; long m_flags; int m_count; int m_refcount; /* * Used for priority inheritence and protection. * * m_prio - For priority inheritence, the highest active * priority (threads locking the mutex inherit * this priority). For priority protection, the * ceiling priority of this mutex. * m_saved_prio - mutex owners inherited priority before * taking the mutex, restored when the owner * unlocks the mutex. */ int m_prio; int m_saved_prio; /* * Link for list of all mutexes a thread currently owns. */ TAILQ_ENTRY(pthread_mutex) m_qe; }; /* * Flags for mutexes. */ #define MUTEX_FLAGS_PRIVATE 0x01 #define MUTEX_FLAGS_INITED 0x02 #define MUTEX_FLAGS_BUSY 0x04 /* * Static mutex initialization values. */ #define PTHREAD_MUTEX_STATIC_INITIALIZER \ { LCK_INITIALIZER, PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, \ TAILQ_INITIALIZER, NULL, MUTEX_FLAGS_PRIVATE, 0, 0, 0, 0, \ TAILQ_INITIALIZER } struct pthread_mutex_attr { enum pthread_mutextype m_type; int m_protocol; int m_ceiling; long m_flags; }; #define PTHREAD_MUTEXATTR_STATIC_INITIALIZER \ { PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, 0, MUTEX_FLAGS_PRIVATE } /* * Condition variable definitions. */ enum pthread_cond_type { COND_TYPE_FAST, COND_TYPE_MAX }; struct pthread_cond { /* * Lock for accesses to this structure. */ struct lock c_lock; enum pthread_cond_type c_type; TAILQ_HEAD(cond_head, pthread) c_queue; struct pthread_mutex *c_mutex; long c_flags; long c_seqno; }; struct pthread_cond_attr { enum pthread_cond_type c_type; long c_flags; }; struct pthread_barrier { pthread_mutex_t b_lock; pthread_cond_t b_cond; int b_count; int b_waiters; int b_generation; }; struct pthread_barrierattr { int pshared; }; struct pthread_spinlock { volatile int s_lock; pthread_t s_owner; }; /* * Flags for condition variables. */ #define COND_FLAGS_PRIVATE 0x01 #define COND_FLAGS_INITED 0x02 #define COND_FLAGS_BUSY 0x04 /* * Static cond initialization values. */ #define PTHREAD_COND_STATIC_INITIALIZER \ { LCK_INITIALIZER, COND_TYPE_FAST, TAILQ_INITIALIZER, \ NULL, NULL, 0, 0 } /* * Cleanup definitions. */ struct pthread_cleanup { struct pthread_cleanup *next; void (*routine) (void *); void *routine_arg; int onstack; }; #define THR_CLEANUP_PUSH(td, func, arg) { \ struct pthread_cleanup __cup; \ \ __cup.routine = func; \ __cup.routine_arg = arg; \ __cup.onstack = 1; \ __cup.next = (td)->cleanup; \ (td)->cleanup = &__cup; #define THR_CLEANUP_POP(td, exec) \ (td)->cleanup = __cup.next; \ if ((exec) != 0) \ __cup.routine(__cup.routine_arg); \ } struct pthread_atfork { TAILQ_ENTRY(pthread_atfork) qe; void (*prepare)(void); void (*parent)(void); void (*child)(void); }; struct pthread_attr { int sched_policy; int sched_inherit; int sched_interval; int prio; int suspend; #define THR_STACK_USER 0x100 /* 0xFF reserved for <pthread.h> */ #define THR_SIGNAL_THREAD 0x200 /* This is a signal thread */ int flags; void *arg_attr; void (*cleanup_attr) (void *); void *stackaddr_attr; size_t stacksize_attr; size_t guardsize_attr; }; /* * Thread creation state attributes. */ #define THR_CREATE_RUNNING 0 #define THR_CREATE_SUSPENDED 1 /* * Miscellaneous definitions. */ #define THR_STACK32_DEFAULT (1 * 1024 * 1024) #define THR_STACK64_DEFAULT (2 * 1024 * 1024) /* * Maximum size of initial thread's stack. This perhaps deserves to be larger * than the stacks of other threads, since many applications are likely to run * almost entirely on this stack. */ #define THR_STACK32_INITIAL (2 * 1024 * 1024) #define THR_STACK64_INITIAL (4 * 1024 * 1024) /* * Define the different priority ranges. All applications have thread * priorities constrained within 0-31. The threads library raises the * priority when delivering signals in order to ensure that signal * delivery happens (from the POSIX spec) "as soon as possible". * In the future, the threads library will also be able to map specific * threads into real-time (cooperating) processes or kernel threads. * The RT and SIGNAL priorities will be used internally and added to * thread base priorities so that the scheduling queue can handle both * normal and RT priority threads with and without signal handling. * * The approach taken is that, within each class, signal delivery * always has priority over thread execution. */ #define THR_DEFAULT_PRIORITY 15 #define THR_MIN_PRIORITY 0 #define THR_MAX_PRIORITY 31 /* 0x1F */ #define THR_SIGNAL_PRIORITY 32 /* 0x20 */ #define THR_RT_PRIORITY 64 /* 0x40 */ #define THR_FIRST_PRIORITY THR_MIN_PRIORITY #define THR_LAST_PRIORITY \ (THR_MAX_PRIORITY + THR_SIGNAL_PRIORITY + THR_RT_PRIORITY) #define THR_BASE_PRIORITY(prio) ((prio) & THR_MAX_PRIORITY) /* * Clock resolution in microseconds. */ #define CLOCK_RES_USEC 10000 /* * Time slice period in microseconds. */ #define TIMESLICE_USEC 20000 /* * XXX - Define a thread-safe macro to get the current time of day * which is updated at regular intervals by something. * * For now, we just make the system call to get the time. */ #define KSE_GET_TOD(curkse, tsp) \ do { \ *tsp = (curkse)->k_kcb->kcb_kmbx.km_timeofday; \ if ((tsp)->tv_sec == 0) \ clock_gettime(CLOCK_REALTIME, tsp); \ } while (0) struct pthread_rwlockattr { int pshared; }; struct pthread_rwlock { pthread_mutex_t lock; /* monitor lock */ pthread_cond_t read_signal; pthread_cond_t write_signal; int state; /* 0 = idle >0 = # of readers -1 = writer */ int blocked_writers; }; /* * Thread states. */ enum pthread_state { PS_RUNNING, PS_LOCKWAIT, PS_MUTEX_WAIT, PS_COND_WAIT, PS_SLEEP_WAIT, PS_SIGSUSPEND, PS_SIGWAIT, PS_JOIN, PS_SUSPENDED, PS_DEAD, PS_DEADLOCK, PS_STATE_MAX }; struct sigwait_data { sigset_t *waitset; siginfo_t *siginfo; /* used to save siginfo for sigwaitinfo() */ }; union pthread_wait_data { pthread_mutex_t mutex; pthread_cond_t cond; struct lock *lock; struct sigwait_data *sigwait; }; /* * Define a continuation routine that can be used to perform a * transfer of control: */ typedef void (*thread_continuation_t) (void *); /* * This stores a thread's state prior to running a signal handler. * It is used when a signal is delivered to a thread blocked in * userland. If the signal handler returns normally, the thread's * state is restored from here. */ struct pthread_sigframe { int psf_valid; int psf_flags; int psf_cancelflags; int psf_interrupted; int psf_timeout; int psf_signo; enum pthread_state psf_state; union pthread_wait_data psf_wait_data; struct timespec psf_wakeup_time; sigset_t psf_sigset; sigset_t psf_sigmask; int psf_seqno; thread_continuation_t psf_continuation; }; struct join_status { struct pthread *thread; void *ret; int error; }; struct pthread_specific_elem { void *data; int seqno; }; typedef void (*const_key_destructor_t)(const void *); typedef void (*key_destructor_t)(void *); struct pthread_key { volatile int allocated; volatile int count; int seqno; key_destructor_t destructor; }; #define MAX_THR_LOCKLEVEL 5 /* * Thread structure. */ struct pthread { /* Thread control block */ struct tcb *tcb; /* * Magic value to help recognize a valid thread structure * from an invalid one: */ #define THR_MAGIC ((u_int32_t) 0xd09ba115) u_int32_t magic; char *name; u_int64_t uniqueid; /* for gdb */ /* Queue entry for list of all threads: */ TAILQ_ENTRY(pthread) tle; /* link for all threads in process */ TAILQ_ENTRY(pthread) kle; /* link for all threads in KSE/KSEG */ /* Queue entry for GC lists: */ TAILQ_ENTRY(pthread) gcle; /* Hash queue entry */ LIST_ENTRY(pthread) hle; /* * Lock for accesses to this thread structure. */ struct lock lock; struct lockuser lockusers[MAX_THR_LOCKLEVEL]; int locklevel; kse_critical_t critical[MAX_KSE_LOCKLEVEL]; struct kse *kse; struct kse_group *kseg; /* * Thread start routine, argument, stack pointer and thread * attributes. */ void *(*start_routine)(void *); void *arg; struct pthread_attr attr; int active; /* thread running */ int blocked; /* thread blocked in kernel */ int need_switchout; /* * Used for tracking delivery of signal handlers. */ siginfo_t *siginfo; thread_continuation_t sigbackout; /* * Cancelability flags - the lower 2 bits are used by cancel * definitions in pthread.h */ #define THR_AT_CANCEL_POINT 0x0004 #define THR_CANCELLING 0x0008 #define THR_CANCEL_NEEDED 0x0010 int cancelflags; thread_continuation_t continuation; /* * The thread's base and pending signal masks. The active * signal mask is stored in the thread's context (in mailbox). */ sigset_t sigmask; sigset_t sigpend; sigset_t *oldsigmask; volatile int check_pending; int refcount; /* Thread state: */ enum pthread_state state; volatile int lock_switch; /* * Number of microseconds accumulated by this thread when * time slicing is active. */ long slice_usec; /* * Time to wake up thread. This is used for sleeping threads and * for any operation which may time out (such as select). */ struct timespec wakeup_time; /* TRUE if operation has timed out. */ int timeout; /* * Error variable used instead of errno. The function __error() * returns a pointer to this. */ int error; /* * The joiner is the thread that is joining to this thread. The * join status keeps track of a join operation to another thread. */ struct pthread *joiner; struct join_status join_status; /* * The current thread can belong to only one scheduling queue at * a time (ready or waiting queue). It can also belong to: * * o A queue of threads waiting for a mutex * o A queue of threads waiting for a condition variable * * It is possible for a thread to belong to more than one of the * above queues if it is handling a signal. A thread may only * enter a mutex or condition variable queue when it is not * being called from a signal handler. If a thread is a member * of one of these queues when a signal handler is invoked, it * must be removed from the queue before invoking the handler * and then added back to the queue after return from the handler. * * Use pqe for the scheduling queue link (both ready and waiting), * sqe for synchronization (mutex, condition variable, and join) * queue links, and qe for all other links. */ TAILQ_ENTRY(pthread) pqe; /* priority, wait queues link */ TAILQ_ENTRY(pthread) sqe; /* synchronization queue link */ /* Wait data. */ union pthread_wait_data data; /* * Set to TRUE if a blocking operation was * interrupted by a signal: */ int interrupted; /* * Set to non-zero when this thread has entered a critical * region. We allow for recursive entries into critical regions. */ int critical_count; /* * Set to TRUE if this thread should yield after leaving a * critical region to check for signals, messages, etc. */ int critical_yield; int sflags; #define THR_FLAGS_IN_SYNCQ 0x0001 /* Miscellaneous flags; only set with scheduling lock held. */ int flags; #define THR_FLAGS_PRIVATE 0x0001 #define THR_FLAGS_IN_WAITQ 0x0002 /* in waiting queue using pqe link */ #define THR_FLAGS_IN_RUNQ 0x0004 /* in run queue using pqe link */ #define THR_FLAGS_EXITING 0x0008 /* thread is exiting */ #define THR_FLAGS_SUSPENDED 0x0010 /* thread is suspended */ /* Thread list flags; only set with thread list lock held. */ #define TLFLAGS_GC_SAFE 0x0001 /* thread safe for cleaning */ #define TLFLAGS_IN_TDLIST 0x0002 /* thread in all thread list */ #define TLFLAGS_IN_GCLIST 0x0004 /* thread in gc list */ int tlflags; /* * Base priority is the user setable and retrievable priority * of the thread. It is only affected by explicit calls to * set thread priority and upon thread creation via a thread * attribute or default priority. */ char base_priority; /* * Inherited priority is the priority a thread inherits by * taking a priority inheritence or protection mutex. It * is not affected by base priority changes. Inherited * priority defaults to and remains 0 until a mutex is taken * that is being waited on by any other thread whose priority * is non-zero. */ char inherited_priority; /* * Active priority is always the maximum of the threads base * priority and inherited priority. When there is a change * in either the base or inherited priority, the active * priority must be recalculated. */ char active_priority; /* Number of priority ceiling or protection mutexes owned. */ int priority_mutex_count; /* Number rwlocks rdlocks held. */ int rdlock_count; /* * Queue of currently owned mutexes. */ TAILQ_HEAD(, pthread_mutex) mutexq; void *ret; struct pthread_specific_elem *specific; int specific_data_count; /* Alternative stack for sigaltstack() */ stack_t sigstk; /* * Current locks bitmap for rtld. */ int rtld_bits; /* Cleanup handlers Link List */ struct pthread_cleanup *cleanup; const char *fname; /* Ptr to source file name */ int lineno; /* Source line number. */ }; /* * Critical regions can also be detected by looking at the threads * current lock level. Ensure these macros increment and decrement * the lock levels such that locks can not be held with a lock level * of 0. */ #define THR_IN_CRITICAL(thrd) \ (((thrd)->locklevel > 0) || \ ((thrd)->critical_count > 0)) #define THR_YIELD_CHECK(thrd) \ do { \ if (!THR_IN_CRITICAL(thrd)) { \ if (__predict_false(_libkse_debug)) \ _thr_debug_check_yield(thrd); \ if ((thrd)->critical_yield != 0) \ _thr_sched_switch(thrd); \ if ((thrd)->check_pending != 0) \ _thr_sig_check_pending(thrd); \ } \ } while (0) #define THR_LOCK_ACQUIRE(thrd, lck) \ do { \ if ((thrd)->locklevel < MAX_THR_LOCKLEVEL) { \ THR_DEACTIVATE_LAST_LOCK(thrd); \ (thrd)->locklevel++; \ _lock_acquire((lck), \ &(thrd)->lockusers[(thrd)->locklevel - 1], \ (thrd)->active_priority); \ } else \ PANIC("Exceeded maximum lock level"); \ } while (0) #define THR_LOCK_RELEASE(thrd, lck) \ do { \ if ((thrd)->locklevel > 0) { \ _lock_release((lck), \ &(thrd)->lockusers[(thrd)->locklevel - 1]); \ (thrd)->locklevel--; \ THR_ACTIVATE_LAST_LOCK(thrd); \ if ((thrd)->locklevel == 0) \ THR_YIELD_CHECK(thrd); \ } \ } while (0) #define THR_ACTIVATE_LAST_LOCK(thrd) \ do { \ if ((thrd)->locklevel > 0) \ _lockuser_setactive( \ &(thrd)->lockusers[(thrd)->locklevel - 1], 1); \ } while (0) #define THR_DEACTIVATE_LAST_LOCK(thrd) \ do { \ if ((thrd)->locklevel > 0) \ _lockuser_setactive( \ &(thrd)->lockusers[(thrd)->locklevel - 1], 0); \ } while (0) /* * For now, threads will have their own lock separate from their * KSE scheduling lock. */ #define THR_LOCK(thr) THR_LOCK_ACQUIRE(thr, &(thr)->lock) #define THR_UNLOCK(thr) THR_LOCK_RELEASE(thr, &(thr)->lock) #define THR_THREAD_LOCK(curthrd, thr) THR_LOCK_ACQUIRE(curthrd, &(thr)->lock) #define THR_THREAD_UNLOCK(curthrd, thr) THR_LOCK_RELEASE(curthrd, &(thr)->lock) /* * Priority queue manipulation macros (using pqe link). We use * the thread's kseg link instead of the kse link because a thread * does not (currently) have a statically assigned kse. */ #define THR_RUNQ_INSERT_HEAD(thrd) \ _pq_insert_head(&(thrd)->kseg->kg_schedq.sq_runq, thrd) #define THR_RUNQ_INSERT_TAIL(thrd) \ _pq_insert_tail(&(thrd)->kseg->kg_schedq.sq_runq, thrd) #define THR_RUNQ_REMOVE(thrd) \ _pq_remove(&(thrd)->kseg->kg_schedq.sq_runq, thrd) /* * Macros to insert/remove threads to the all thread list and * the gc list. */ #define THR_LIST_ADD(thrd) do { \ if (((thrd)->tlflags & TLFLAGS_IN_TDLIST) == 0) { \ TAILQ_INSERT_HEAD(&_thread_list, thrd, tle); \ _thr_hash_add(thrd); \ (thrd)->tlflags |= TLFLAGS_IN_TDLIST; \ } \ } while (0) #define THR_LIST_REMOVE(thrd) do { \ if (((thrd)->tlflags & TLFLAGS_IN_TDLIST) != 0) { \ TAILQ_REMOVE(&_thread_list, thrd, tle); \ _thr_hash_remove(thrd); \ (thrd)->tlflags &= ~TLFLAGS_IN_TDLIST; \ } \ } while (0) #define THR_GCLIST_ADD(thrd) do { \ if (((thrd)->tlflags & TLFLAGS_IN_GCLIST) == 0) { \ TAILQ_INSERT_HEAD(&_thread_gc_list, thrd, gcle);\ (thrd)->tlflags |= TLFLAGS_IN_GCLIST; \ _gc_count++; \ } \ } while (0) #define THR_GCLIST_REMOVE(thrd) do { \ if (((thrd)->tlflags & TLFLAGS_IN_GCLIST) != 0) { \ TAILQ_REMOVE(&_thread_gc_list, thrd, gcle); \ (thrd)->tlflags &= ~TLFLAGS_IN_GCLIST; \ _gc_count--; \ } \ } while (0) #define GC_NEEDED() (atomic_load_acq_int(&_gc_count) >= 5) /* * Locking the scheduling queue for another thread uses that thread's * KSEG lock. */ #define THR_SCHED_LOCK(curthr, thr) do { \ (curthr)->critical[(curthr)->locklevel] = _kse_critical_enter(); \ (curthr)->locklevel++; \ KSE_SCHED_LOCK((curthr)->kse, (thr)->kseg); \ } while (0) #define THR_SCHED_UNLOCK(curthr, thr) do { \ KSE_SCHED_UNLOCK((curthr)->kse, (thr)->kseg); \ (curthr)->locklevel--; \ _kse_critical_leave((curthr)->critical[(curthr)->locklevel]); \ } while (0) /* Take the scheduling lock with the intent to call the scheduler. */ #define THR_LOCK_SWITCH(curthr) do { \ (void)_kse_critical_enter(); \ KSE_SCHED_LOCK((curthr)->kse, (curthr)->kseg); \ } while (0) #define THR_UNLOCK_SWITCH(curthr) do { \ KSE_SCHED_UNLOCK((curthr)->kse, (curthr)->kseg);\ } while (0) #define THR_CRITICAL_ENTER(thr) (thr)->critical_count++ #define THR_CRITICAL_LEAVE(thr) do { \ (thr)->critical_count--; \ if (((thr)->critical_yield != 0) && \ ((thr)->critical_count == 0)) { \ (thr)->critical_yield = 0; \ _thr_sched_switch(thr); \ } \ } while (0) #define THR_IS_ACTIVE(thrd) \ ((thrd)->kse != NULL) && ((thrd)->kse->k_curthread == (thrd)) #define THR_IN_SYNCQ(thrd) (((thrd)->sflags & THR_FLAGS_IN_SYNCQ) != 0) #define THR_IS_SUSPENDED(thrd) \ (((thrd)->state == PS_SUSPENDED) || \ (((thrd)->flags & THR_FLAGS_SUSPENDED) != 0)) #define THR_IS_EXITING(thrd) (((thrd)->flags & THR_FLAGS_EXITING) != 0) #define DBG_CAN_RUN(thrd) (((thrd)->tcb->tcb_tmbx.tm_dflags & \ TMDF_SUSPEND) == 0) extern int __isthreaded; static inline int _kse_isthreaded(void) { return (__isthreaded != 0); } /* * Global variables for the pthread kernel. */ SCLASS void *_usrstack SCLASS_PRESET(NULL); SCLASS struct kse *_kse_initial SCLASS_PRESET(NULL); SCLASS struct pthread *_thr_initial SCLASS_PRESET(NULL); /* For debugger */ SCLASS int _libkse_debug SCLASS_PRESET(0); SCLASS int _thread_activated SCLASS_PRESET(0); SCLASS int _thread_scope_system SCLASS_PRESET(0); /* List of all threads: */ SCLASS TAILQ_HEAD(, pthread) _thread_list SCLASS_PRESET(TAILQ_HEAD_INITIALIZER(_thread_list)); /* List of threads needing GC: */ SCLASS TAILQ_HEAD(, pthread) _thread_gc_list SCLASS_PRESET(TAILQ_HEAD_INITIALIZER(_thread_gc_list)); SCLASS int _thread_active_threads SCLASS_PRESET(1); SCLASS TAILQ_HEAD(atfork_head, pthread_atfork) _thr_atfork_list; SCLASS pthread_mutex_t _thr_atfork_mutex; /* Default thread attributes: */ SCLASS struct pthread_attr _pthread_attr_default SCLASS_PRESET({ SCHED_RR, 0, TIMESLICE_USEC, THR_DEFAULT_PRIORITY, THR_CREATE_RUNNING, PTHREAD_CREATE_JOINABLE, NULL, NULL, NULL, /* stacksize */0, /* guardsize */0 }); /* Default mutex attributes: */ SCLASS struct pthread_mutex_attr _pthread_mutexattr_default SCLASS_PRESET({PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, 0, 0 }); /* Default condition variable attributes: */ SCLASS struct pthread_cond_attr _pthread_condattr_default SCLASS_PRESET({COND_TYPE_FAST, 0}); /* Clock resolution in usec. */ SCLASS int _clock_res_usec SCLASS_PRESET(CLOCK_RES_USEC); /* Array of signal actions for this process: */ SCLASS struct sigaction _thread_sigact[_SIG_MAXSIG]; /* * Lock for above count of dummy handlers and for the process signal * mask and pending signal sets. */ SCLASS struct lock _thread_signal_lock; /* Pending signals and mask for this process: */ SCLASS sigset_t _thr_proc_sigpending; SCLASS siginfo_t _thr_proc_siginfo[_SIG_MAXSIG]; SCLASS pid_t _thr_pid SCLASS_PRESET(0); /* Garbage collector lock. */ SCLASS struct lock _gc_lock; SCLASS int _gc_check SCLASS_PRESET(0); SCLASS int _gc_count SCLASS_PRESET(0); SCLASS struct lock _mutex_static_lock; SCLASS struct lock _rwlock_static_lock; SCLASS struct lock _keytable_lock; SCLASS struct lock _thread_list_lock; SCLASS size_t _thr_guard_default; SCLASS size_t _thr_stack_default; SCLASS size_t _thr_stack_initial; SCLASS int _thr_page_size; SCLASS pthread_t _thr_sig_daemon; SCLASS int _thr_debug_flags SCLASS_PRESET(0); /* Undefine the storage class and preset specifiers: */ #undef SCLASS #undef SCLASS_PRESET /* * Function prototype definitions. */ __BEGIN_DECLS int _cond_reinit(pthread_cond_t *); struct kse *_kse_alloc(struct pthread *, int sys_scope); kse_critical_t _kse_critical_enter(void); void _kse_critical_leave(kse_critical_t); int _kse_in_critical(void); void _kse_free(struct pthread *, struct kse *); void _kse_init(void); struct kse_group *_kseg_alloc(struct pthread *); void _kse_lock_wait(struct lock *, struct lockuser *lu); void _kse_lock_wakeup(struct lock *, struct lockuser *lu); void _kse_single_thread(struct pthread *); int _kse_setthreaded(int); void _kseg_free(struct kse_group *); int _mutex_cv_lock(pthread_mutex_t *); int _mutex_cv_unlock(pthread_mutex_t *); void _mutex_notify_priochange(struct pthread *, struct pthread *, int); int _mutex_reinit(struct pthread_mutex *); void _mutex_unlock_private(struct pthread *); void _libpthread_init(struct pthread *); int _pq_alloc(struct pq_queue *, int, int); void _pq_free(struct pq_queue *); int _pq_init(struct pq_queue *); void _pq_remove(struct pq_queue *pq, struct pthread *); void _pq_insert_head(struct pq_queue *pq, struct pthread *); void _pq_insert_tail(struct pq_queue *pq, struct pthread *); struct pthread *_pq_first(struct pq_queue *pq); struct pthread *_pq_first_debug(struct pq_queue *pq); void *_pthread_getspecific(pthread_key_t); int _pthread_key_create(pthread_key_t *, void (*) (void *)); int _pthread_key_delete(pthread_key_t); int _pthread_mutex_destroy(pthread_mutex_t *); int _pthread_mutex_init(pthread_mutex_t *, const pthread_mutexattr_t *); int _pthread_mutex_lock(pthread_mutex_t *); int _pthread_mutex_trylock(pthread_mutex_t *); int _pthread_mutex_unlock(pthread_mutex_t *); int _pthread_mutexattr_init(pthread_mutexattr_t *); int _pthread_mutexattr_destroy(pthread_mutexattr_t *); int _pthread_mutexattr_settype(pthread_mutexattr_t *, int); int _pthread_once(pthread_once_t *, void (*) (void)); int _pthread_rwlock_init(pthread_rwlock_t *, const pthread_rwlockattr_t *); int _pthread_rwlock_destroy (pthread_rwlock_t *); struct pthread *_pthread_self(void); int _pthread_setspecific(pthread_key_t, const void *); void _pthread_yield(void); void _pthread_cleanup_push(void (*routine) (void *), void *routine_arg); void _pthread_cleanup_pop(int execute); struct pthread *_thr_alloc(struct pthread *); void _thr_exit(const char *, int, const char *) __dead2; void _thr_exit_cleanup(void); void _thr_lock_wait(struct lock *lock, struct lockuser *lu); void _thr_lock_wakeup(struct lock *lock, struct lockuser *lu); void _thr_mutex_reinit(pthread_mutex_t *); int _thr_ref_add(struct pthread *, struct pthread *, int); void _thr_ref_delete(struct pthread *, struct pthread *); void _thr_rtld_init(void); void _thr_rtld_fini(void); int _thr_schedule_add(struct pthread *, struct pthread *); void _thr_schedule_remove(struct pthread *, struct pthread *); void _thr_setrunnable(struct pthread *curthread, struct pthread *thread); struct kse_mailbox *_thr_setrunnable_unlocked(struct pthread *thread); struct kse_mailbox *_thr_sig_add(struct pthread *, int, siginfo_t *); void _thr_sig_dispatch(struct kse *, int, siginfo_t *); int _thr_stack_alloc(struct pthread_attr *); void _thr_stack_free(struct pthread_attr *); void _thr_exit_cleanup(void); void _thr_free(struct pthread *, struct pthread *); void _thr_gc(struct pthread *); void _thr_panic_exit(char *, int, char *); void _thread_cleanupspecific(void); void _thread_dump_info(void); void _thread_printf(int, const char *, ...); void _thr_sched_switch(struct pthread *); void _thr_sched_switch_unlocked(struct pthread *); void _thr_set_timeout(const struct timespec *); void _thr_seterrno(struct pthread *, int); void _thr_sig_handler(int, siginfo_t *, void *); void _thr_sig_check_pending(struct pthread *); void _thr_sig_rundown(struct pthread *, ucontext_t *); void _thr_sig_send(struct pthread *pthread, int sig); void _thr_sigframe_restore(struct pthread *thread, struct pthread_sigframe *psf); void _thr_spinlock_init(void); void _thr_cancel_enter(struct pthread *); void _thr_cancel_leave(struct pthread *, int); int _thr_setconcurrency(int new_level); int _thr_setmaxconcurrency(void); void _thr_critical_enter(struct pthread *); void _thr_critical_leave(struct pthread *); int _thr_start_sig_daemon(void); int _thr_getprocsig(int sig, siginfo_t *siginfo); int _thr_getprocsig_unlocked(int sig, siginfo_t *siginfo); void _thr_signal_init(void); void _thr_signal_deinit(void); void _thr_hash_add(struct pthread *); void _thr_hash_remove(struct pthread *); struct pthread *_thr_hash_find(struct pthread *); void _thr_finish_cancellation(void *arg); int _thr_sigonstack(void *sp); void _thr_debug_check_yield(struct pthread *); /* * Aliases for _pthread functions. Should be called instead of * originals if PLT replocation is unwanted at runtme. */ int _thr_cond_broadcast(pthread_cond_t *); int _thr_cond_signal(pthread_cond_t *); int _thr_cond_wait(pthread_cond_t *, pthread_mutex_t *); int _thr_mutex_lock(pthread_mutex_t *); int _thr_mutex_unlock(pthread_mutex_t *); int _thr_rwlock_rdlock (pthread_rwlock_t *); int _thr_rwlock_wrlock (pthread_rwlock_t *); int _thr_rwlock_unlock (pthread_rwlock_t *); /* #include <sys/aio.h> */ #ifdef _SYS_AIO_H_ int __sys_aio_suspend(const struct aiocb * const[], int, const struct timespec *); #endif /* #include <fcntl.h> */ #ifdef _SYS_FCNTL_H_ int __sys_fcntl(int, int, ...); int __sys_open(const char *, int, ...); #endif /* #include <sys/ioctl.h> */ #ifdef _SYS_IOCTL_H_ int __sys_ioctl(int, unsigned long, ...); #endif /* #inclde <sched.h> */ #ifdef _SCHED_H_ int __sys_sched_yield(void); #endif /* #include <signal.h> */ #ifdef _SIGNAL_H_ int __sys_kill(pid_t, int); int __sys_sigaction(int, const struct sigaction *, struct sigaction *); int __sys_sigpending(sigset_t *); int __sys_sigprocmask(int, const sigset_t *, sigset_t *); int __sys_sigsuspend(const sigset_t *); int __sys_sigreturn(ucontext_t *); int __sys_sigaltstack(const struct sigaltstack *, struct sigaltstack *); #endif /* #include <sys/socket.h> */ #ifdef _SYS_SOCKET_H_ int __sys_accept(int, struct sockaddr *, socklen_t *); int __sys_connect(int, const struct sockaddr *, socklen_t); int __sys_sendfile(int, int, off_t, size_t, struct sf_hdtr *, off_t *, int); #endif /* #include <sys/uio.h> */ #ifdef _SYS_UIO_H_ ssize_t __sys_readv(int, const struct iovec *, int); ssize_t __sys_writev(int, const struct iovec *, int); #endif /* #include <time.h> */ #ifdef _TIME_H_ int __sys_nanosleep(const struct timespec *, struct timespec *); #endif /* #include <unistd.h> */ #ifdef _UNISTD_H_ int __sys_close(int); int __sys_execve(const char *, char * const *, char * const *); int __sys_fork(void); int __sys_fsync(int); pid_t __sys_getpid(void); int __sys_select(int, fd_set *, fd_set *, fd_set *, struct timeval *); ssize_t __sys_read(int, void *, size_t); ssize_t __sys_write(int, const void *, size_t); void __sys_exit(int); int __sys_sigwait(const sigset_t *, int *); int __sys_sigtimedwait(const sigset_t *, siginfo_t *, const struct timespec *); #endif /* #include <poll.h> */ #ifdef _SYS_POLL_H_ int __sys_poll(struct pollfd *, unsigned, int); #endif /* #include <sys/mman.h> */ #ifdef _SYS_MMAN_H_ int __sys_msync(void *, size_t, int); #endif static __inline int _thr_dump_enabled(void) { return ((_thr_debug_flags & DBG_INFO_DUMP) != 0); } #endif /* !_THR_PRIVATE_H */