Current Path : /usr/src/lib/libkvm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/lib/libkvm/kvm_proc.c |
/*- * Copyright (c) 1989, 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software developed by the Computer Systems * Engineering group at Lawrence Berkeley Laboratory under DARPA contract * BG 91-66 and contributed to Berkeley. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #if defined(LIBC_SCCS) && !defined(lint) static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; #endif /* LIBC_SCCS and not lint */ #endif #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/lib/libkvm/kvm_proc.c 231550 2012-02-12 07:52:14Z trociny $"); /* * Proc traversal interface for kvm. ps and w are (probably) the exclusive * users of this code, so we've factored it out into a separate module. * Thus, we keep this grunge out of the other kvm applications (i.e., * most other applications are interested only in open/close/read/nlist). */ #include <sys/param.h> #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ #include <sys/ucred.h> #include <sys/queue.h> #include <sys/_lock.h> #include <sys/_mutex.h> #include <sys/_task.h> #include <sys/cpuset.h> #include <sys/user.h> #include <sys/proc.h> #define _WANT_PRISON /* make jail.h give us 'struct prison' */ #include <sys/jail.h> #include <sys/exec.h> #include <sys/stat.h> #include <sys/sysent.h> #include <sys/ioctl.h> #include <sys/tty.h> #include <sys/file.h> #include <sys/conf.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <nlist.h> #include <kvm.h> #include <sys/sysctl.h> #include <limits.h> #include <memory.h> #include <paths.h> #include "kvm_private.h" #define KREAD(kd, addr, obj) \ (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) static int ticks; static int hz; static uint64_t cpu_tick_frequency; /* * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is * read/initialized before this function is ever called. */ static uint64_t cputick2usec(uint64_t tick) { if (cpu_tick_frequency == 0) return (0); if (tick > 18446744073709551) /* floor(2^64 / 1000) */ return (tick / (cpu_tick_frequency / 1000000)); else if (tick > 18446744073709) /* floor(2^64 / 1000000) */ return ((tick * 1000) / (cpu_tick_frequency / 1000)); else return ((tick * 1000000) / cpu_tick_frequency); } /* * Read proc's from memory file into buffer bp, which has space to hold * at most maxcnt procs. */ static int kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, struct kinfo_proc *bp, int maxcnt) { int cnt = 0; struct kinfo_proc kinfo_proc, *kp; struct pgrp pgrp; struct session sess; struct cdev t_cdev; struct tty tty; struct vmspace vmspace; struct sigacts sigacts; #if 0 struct pstats pstats; #endif struct ucred ucred; struct prison pr; struct thread mtd; struct proc proc; struct proc pproc; struct sysentvec sysent; char svname[KI_EMULNAMELEN]; kp = &kinfo_proc; kp->ki_structsize = sizeof(kinfo_proc); /* * Loop on the processes. this is completely broken because we need to be * able to loop on the threads and merge the ones that are the same process some how. */ for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { memset(kp, 0, sizeof *kp); if (KREAD(kd, (u_long)p, &proc)) { _kvm_err(kd, kd->program, "can't read proc at %p", p); return (-1); } if (proc.p_state != PRS_ZOMBIE) { if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), &mtd)) { _kvm_err(kd, kd->program, "can't read thread at %p", TAILQ_FIRST(&proc.p_threads)); return (-1); } } if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { kp->ki_ruid = ucred.cr_ruid; kp->ki_svuid = ucred.cr_svuid; kp->ki_rgid = ucred.cr_rgid; kp->ki_svgid = ucred.cr_svgid; kp->ki_cr_flags = ucred.cr_flags; if (ucred.cr_ngroups > KI_NGROUPS) { kp->ki_ngroups = KI_NGROUPS; kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; } else kp->ki_ngroups = ucred.cr_ngroups; kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups, kp->ki_ngroups * sizeof(gid_t)); kp->ki_uid = ucred.cr_uid; if (ucred.cr_prison != NULL) { if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { _kvm_err(kd, kd->program, "can't read prison at %p", ucred.cr_prison); return (-1); } kp->ki_jid = pr.pr_id; } } switch(what & ~KERN_PROC_INC_THREAD) { case KERN_PROC_GID: if (kp->ki_groups[0] != (gid_t)arg) continue; break; case KERN_PROC_PID: if (proc.p_pid != (pid_t)arg) continue; break; case KERN_PROC_RGID: if (kp->ki_rgid != (gid_t)arg) continue; break; case KERN_PROC_UID: if (kp->ki_uid != (uid_t)arg) continue; break; case KERN_PROC_RUID: if (kp->ki_ruid != (uid_t)arg) continue; break; } /* * We're going to add another proc to the set. If this * will overflow the buffer, assume the reason is because * nprocs (or the proc list) is corrupt and declare an error. */ if (cnt >= maxcnt) { _kvm_err(kd, kd->program, "nprocs corrupt"); return (-1); } /* * gather kinfo_proc */ kp->ki_paddr = p; kp->ki_addr = 0; /* XXX uarea */ /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ kp->ki_args = proc.p_args; kp->ki_tracep = proc.p_tracevp; kp->ki_textvp = proc.p_textvp; kp->ki_fd = proc.p_fd; kp->ki_vmspace = proc.p_vmspace; if (proc.p_sigacts != NULL) { if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { _kvm_err(kd, kd->program, "can't read sigacts at %p", proc.p_sigacts); return (-1); } kp->ki_sigignore = sigacts.ps_sigignore; kp->ki_sigcatch = sigacts.ps_sigcatch; } #if 0 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { _kvm_err(kd, kd->program, "can't read stats at %x", proc.p_stats); return (-1); } kp->ki_start = pstats.p_start; /* * XXX: The times here are probably zero and need * to be calculated from the raw data in p_rux and * p_crux. */ kp->ki_rusage = pstats.p_ru; kp->ki_childstime = pstats.p_cru.ru_stime; kp->ki_childutime = pstats.p_cru.ru_utime; /* Some callers want child-times in a single value */ timeradd(&kp->ki_childstime, &kp->ki_childutime, &kp->ki_childtime); } #endif if (proc.p_oppid) kp->ki_ppid = proc.p_oppid; else if (proc.p_pptr) { if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { _kvm_err(kd, kd->program, "can't read pproc at %p", proc.p_pptr); return (-1); } kp->ki_ppid = pproc.p_pid; } else kp->ki_ppid = 0; if (proc.p_pgrp == NULL) goto nopgrp; if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { _kvm_err(kd, kd->program, "can't read pgrp at %p", proc.p_pgrp); return (-1); } kp->ki_pgid = pgrp.pg_id; kp->ki_jobc = pgrp.pg_jobc; if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { _kvm_err(kd, kd->program, "can't read session at %p", pgrp.pg_session); return (-1); } kp->ki_sid = sess.s_sid; (void)memcpy(kp->ki_login, sess.s_login, sizeof(kp->ki_login)); kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; if (sess.s_leader == p) kp->ki_kiflag |= KI_SLEADER; if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { _kvm_err(kd, kd->program, "can't read tty at %p", sess.s_ttyp); return (-1); } if (tty.t_dev != NULL) { if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { _kvm_err(kd, kd->program, "can't read cdev at %p", tty.t_dev); return (-1); } #if 0 kp->ki_tdev = t_cdev.si_udev; #else kp->ki_tdev = NODEV; #endif } if (tty.t_pgrp != NULL) { if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { _kvm_err(kd, kd->program, "can't read tpgrp at %p", tty.t_pgrp); return (-1); } kp->ki_tpgid = pgrp.pg_id; } else kp->ki_tpgid = -1; if (tty.t_session != NULL) { if (KREAD(kd, (u_long)tty.t_session, &sess)) { _kvm_err(kd, kd->program, "can't read session at %p", tty.t_session); return (-1); } kp->ki_tsid = sess.s_sid; } } else { nopgrp: kp->ki_tdev = NODEV; } if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) (void)kvm_read(kd, (u_long)mtd.td_wmesg, kp->ki_wmesg, WMESGLEN); (void)kvm_read(kd, (u_long)proc.p_vmspace, (char *)&vmspace, sizeof(vmspace)); kp->ki_size = vmspace.vm_map.size; /* * Approximate the kernel's method of calculating * this field. */ #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap); kp->ki_swrss = vmspace.vm_swrss; kp->ki_tsize = vmspace.vm_tsize; kp->ki_dsize = vmspace.vm_dsize; kp->ki_ssize = vmspace.vm_ssize; switch (what & ~KERN_PROC_INC_THREAD) { case KERN_PROC_PGRP: if (kp->ki_pgid != (pid_t)arg) continue; break; case KERN_PROC_SESSION: if (kp->ki_sid != (pid_t)arg) continue; break; case KERN_PROC_TTY: if ((proc.p_flag & P_CONTROLT) == 0 || kp->ki_tdev != (dev_t)arg) continue; break; } if (proc.p_comm[0] != 0) strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, sizeof(sysent)); (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, sizeof(svname)); if (svname[0] != 0) strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); if ((proc.p_state != PRS_ZOMBIE) && (mtd.td_blocked != 0)) { kp->ki_kiflag |= KI_LOCKBLOCK; if (mtd.td_lockname) (void)kvm_read(kd, (u_long)mtd.td_lockname, kp->ki_lockname, LOCKNAMELEN); kp->ki_lockname[LOCKNAMELEN] = 0; } kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime); kp->ki_pid = proc.p_pid; kp->ki_siglist = proc.p_siglist; SIGSETOR(kp->ki_siglist, mtd.td_siglist); kp->ki_sigmask = mtd.td_sigmask; kp->ki_xstat = proc.p_xstat; kp->ki_acflag = proc.p_acflag; kp->ki_lock = proc.p_lock; if (proc.p_state != PRS_ZOMBIE) { kp->ki_swtime = (ticks - proc.p_swtick) / hz; kp->ki_flag = proc.p_flag; kp->ki_sflag = 0; kp->ki_nice = proc.p_nice; kp->ki_traceflag = proc.p_traceflag; if (proc.p_state == PRS_NORMAL) { if (TD_ON_RUNQ(&mtd) || TD_CAN_RUN(&mtd) || TD_IS_RUNNING(&mtd)) { kp->ki_stat = SRUN; } else if (mtd.td_state == TDS_INHIBITED) { if (P_SHOULDSTOP(&proc)) { kp->ki_stat = SSTOP; } else if ( TD_IS_SLEEPING(&mtd)) { kp->ki_stat = SSLEEP; } else if (TD_ON_LOCK(&mtd)) { kp->ki_stat = SLOCK; } else { kp->ki_stat = SWAIT; } } } else { kp->ki_stat = SIDL; } /* Stuff from the thread */ kp->ki_pri.pri_level = mtd.td_priority; kp->ki_pri.pri_native = mtd.td_base_pri; kp->ki_lastcpu = mtd.td_lastcpu; kp->ki_wchan = mtd.td_wchan; if (mtd.td_name[0] != 0) strlcpy(kp->ki_tdname, mtd.td_name, MAXCOMLEN); kp->ki_oncpu = mtd.td_oncpu; if (mtd.td_name[0] != '\0') strlcpy(kp->ki_tdname, mtd.td_name, sizeof(kp->ki_tdname)); kp->ki_pctcpu = 0; kp->ki_rqindex = 0; } else { kp->ki_stat = SZOMB; } bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); ++bp; ++cnt; } return (cnt); } /* * Build proc info array by reading in proc list from a crash dump. * Return number of procs read. maxcnt is the max we will read. */ static int kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, u_long a_zombproc, int maxcnt) { struct kinfo_proc *bp = kd->procbase; int acnt, zcnt; struct proc *p; if (KREAD(kd, a_allproc, &p)) { _kvm_err(kd, kd->program, "cannot read allproc"); return (-1); } acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); if (acnt < 0) return (acnt); if (KREAD(kd, a_zombproc, &p)) { _kvm_err(kd, kd->program, "cannot read zombproc"); return (-1); } zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); if (zcnt < 0) zcnt = 0; return (acnt + zcnt); } struct kinfo_proc * kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) { int mib[4], st, nprocs; size_t size, osize; int temp_op; if (kd->procbase != 0) { free((void *)kd->procbase); /* * Clear this pointer in case this call fails. Otherwise, * kvm_close() will free it again. */ kd->procbase = 0; } if (ISALIVE(kd)) { size = 0; mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = op; mib[3] = arg; temp_op = op & ~KERN_PROC_INC_THREAD; st = sysctl(mib, temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 3 : 4, NULL, &size, NULL, 0); if (st == -1) { _kvm_syserr(kd, kd->program, "kvm_getprocs"); return (0); } /* * We can't continue with a size of 0 because we pass * it to realloc() (via _kvm_realloc()), and passing 0 * to realloc() results in undefined behavior. */ if (size == 0) { /* * XXX: We should probably return an invalid, * but non-NULL, pointer here so any client * program trying to dereference it will * crash. However, _kvm_freeprocs() calls * free() on kd->procbase if it isn't NULL, * and free()'ing a junk pointer isn't good. * Then again, _kvm_freeprocs() isn't used * anywhere . . . */ kd->procbase = _kvm_malloc(kd, 1); goto liveout; } do { size += size / 10; kd->procbase = (struct kinfo_proc *) _kvm_realloc(kd, kd->procbase, size); if (kd->procbase == 0) return (0); osize = size; st = sysctl(mib, temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 3 : 4, kd->procbase, &size, NULL, 0); } while (st == -1 && errno == ENOMEM && size == osize); if (st == -1) { _kvm_syserr(kd, kd->program, "kvm_getprocs"); return (0); } /* * We have to check the size again because sysctl() * may "round up" oldlenp if oldp is NULL; hence it * might've told us that there was data to get when * there really isn't any. */ if (size > 0 && kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { _kvm_err(kd, kd->program, "kinfo_proc size mismatch (expected %zu, got %d)", sizeof(struct kinfo_proc), kd->procbase->ki_structsize); return (0); } liveout: nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; } else { struct nlist nl[7], *p; nl[0].n_name = "_nprocs"; nl[1].n_name = "_allproc"; nl[2].n_name = "_zombproc"; nl[3].n_name = "_ticks"; nl[4].n_name = "_hz"; nl[5].n_name = "_cpu_tick_frequency"; nl[6].n_name = 0; if (kvm_nlist(kd, nl) != 0) { for (p = nl; p->n_type != 0; ++p) ; _kvm_err(kd, kd->program, "%s: no such symbol", p->n_name); return (0); } if (KREAD(kd, nl[0].n_value, &nprocs)) { _kvm_err(kd, kd->program, "can't read nprocs"); return (0); } if (KREAD(kd, nl[3].n_value, &ticks)) { _kvm_err(kd, kd->program, "can't read ticks"); return (0); } if (KREAD(kd, nl[4].n_value, &hz)) { _kvm_err(kd, kd->program, "can't read hz"); return (0); } if (KREAD(kd, nl[5].n_value, &cpu_tick_frequency)) { _kvm_err(kd, kd->program, "can't read cpu_tick_frequency"); return (0); } size = nprocs * sizeof(struct kinfo_proc); kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); if (kd->procbase == 0) return (0); nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, nl[2].n_value, nprocs); #ifdef notdef size = nprocs * sizeof(struct kinfo_proc); (void)realloc(kd->procbase, size); #endif } *cnt = nprocs; return (kd->procbase); } void _kvm_freeprocs(kvm_t *kd) { if (kd->procbase) { free(kd->procbase); kd->procbase = 0; } } void * _kvm_realloc(kvm_t *kd, void *p, size_t n) { void *np = (void *)realloc(p, n); if (np == 0) { free(p); _kvm_err(kd, kd->program, "out of memory"); } return (np); } /* * Get the command args or environment. */ static char ** kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr) { int oid[4]; int i; size_t bufsz; static int buflen; static char *buf, *p; static char **bufp; static int argc; if (!ISALIVE(kd)) { _kvm_err(kd, kd->program, "cannot read user space from dead kernel"); return (0); } if (nchr == 0 || nchr > ARG_MAX) nchr = ARG_MAX; if (buflen == 0) { buf = malloc(nchr); if (buf == NULL) { _kvm_err(kd, kd->program, "cannot allocate memory"); return (0); } buflen = nchr; argc = 32; bufp = malloc(sizeof(char *) * argc); } else if (nchr > buflen) { p = realloc(buf, nchr); if (p != NULL) { buf = p; buflen = nchr; } } oid[0] = CTL_KERN; oid[1] = KERN_PROC; oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; oid[3] = kp->ki_pid; bufsz = buflen; if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) { /* * If the supplied buf is too short to hold the requested * value the sysctl returns with ENOMEM. The buf is filled * with the truncated value and the returned bufsz is equal * to the requested len. */ if (errno != ENOMEM || bufsz != (size_t)buflen) return (0); buf[bufsz - 1] = '\0'; errno = 0; } else if (bufsz == 0) { return (0); } i = 0; p = buf; do { bufp[i++] = p; p += strlen(p) + 1; if (i >= argc) { argc += argc; bufp = realloc(bufp, sizeof(char *) * argc); } } while (p < buf + bufsz); bufp[i++] = 0; return (bufp); } char ** kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) { return (kvm_argv(kd, kp, 0, nchr)); } char ** kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) { return (kvm_argv(kd, kp, 1, nchr)); }