Current Path : /usr/src/lib/libmemstat/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/lib/libmemstat/memstat_malloc.c |
/*- * Copyright (c) 2005 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: release/9.1.0/lib/libmemstat/memstat_malloc.c 224569 2011-08-01 09:43:35Z pluknet $ */ #include <sys/cdefs.h> #include <sys/param.h> #include <sys/malloc.h> #include <sys/sysctl.h> #include <err.h> #include <errno.h> #include <kvm.h> #include <nlist.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "memstat.h" #include "memstat_internal.h" static struct nlist namelist[] = { #define X_KMEMSTATISTICS 0 { .n_name = "_kmemstatistics" }, #define X_MP_MAXCPUS 1 { .n_name = "_mp_maxcpus" }, { .n_name = "" }, }; /* * Extract malloc(9) statistics from the running kernel, and store all memory * type information in the passed list. For each type, check the list for an * existing entry with the right name/allocator -- if present, update that * entry. Otherwise, add a new entry. On error, the entire list will be * cleared, as entries will be in an inconsistent state. * * To reduce the level of work for a list that starts empty, we keep around a * hint as to whether it was empty when we began, so we can avoid searching * the list for entries to update. Updates are O(n^2) due to searching for * each entry before adding it. */ int memstat_sysctl_malloc(struct memory_type_list *list, int flags) { struct malloc_type_stream_header *mtshp; struct malloc_type_header *mthp; struct malloc_type_stats *mtsp; struct memory_type *mtp; int count, hint_dontsearch, i, j, maxcpus; char *buffer, *p; size_t size; hint_dontsearch = LIST_EMPTY(&list->mtl_list); /* * Query the number of CPUs, number of malloc types so that we can * guess an initial buffer size. We loop until we succeed or really * fail. Note that the value of maxcpus we query using sysctl is not * the version we use when processing the real data -- that is read * from the header. */ retry: size = sizeof(maxcpus); if (sysctlbyname("kern.smp.maxcpus", &maxcpus, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } if (size != sizeof(maxcpus)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } size = sizeof(count); if (sysctlbyname("kern.malloc_count", &count, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; return (-1); } if (size != sizeof(count)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } size = sizeof(*mthp) + count * (sizeof(*mthp) + sizeof(*mtsp) * maxcpus); buffer = malloc(size); if (buffer == NULL) { list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } if (sysctlbyname("kern.malloc_stats", buffer, &size, NULL, 0) < 0) { /* * XXXRW: ENOMEM is an ambiguous return, we should bound the * number of loops, perhaps. */ if (errno == ENOMEM) { free(buffer); goto retry; } if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } if (size == 0) { free(buffer); return (0); } if (size < sizeof(*mtshp)) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } p = buffer; mtshp = (struct malloc_type_stream_header *)p; p += sizeof(*mtshp); if (mtshp->mtsh_version != MALLOC_TYPE_STREAM_VERSION) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } /* * For the remainder of this function, we are quite trusting about * the layout of structures and sizes, since we've determined we have * a matching version and acceptable CPU count. */ maxcpus = mtshp->mtsh_maxcpus; count = mtshp->mtsh_count; for (i = 0; i < count; i++) { mthp = (struct malloc_type_header *)p; p += sizeof(*mthp); if (hint_dontsearch == 0) { mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, mthp->mth_name); } else mtp = NULL; if (mtp == NULL) mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC, mthp->mth_name, maxcpus); if (mtp == NULL) { _memstat_mtl_empty(list); free(buffer); list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } /* * Reset the statistics on a current node. */ _memstat_mt_reset_stats(mtp, maxcpus); for (j = 0; j < maxcpus; j++) { mtsp = (struct malloc_type_stats *)p; p += sizeof(*mtsp); /* * Sumarize raw statistics across CPUs into coalesced * statistics. */ mtp->mt_memalloced += mtsp->mts_memalloced; mtp->mt_memfreed += mtsp->mts_memfreed; mtp->mt_numallocs += mtsp->mts_numallocs; mtp->mt_numfrees += mtsp->mts_numfrees; mtp->mt_sizemask |= mtsp->mts_size; /* * Copies of per-CPU statistics. */ mtp->mt_percpu_alloc[j].mtp_memalloced = mtsp->mts_memalloced; mtp->mt_percpu_alloc[j].mtp_memfreed = mtsp->mts_memfreed; mtp->mt_percpu_alloc[j].mtp_numallocs = mtsp->mts_numallocs; mtp->mt_percpu_alloc[j].mtp_numfrees = mtsp->mts_numfrees; mtp->mt_percpu_alloc[j].mtp_sizemask = mtsp->mts_size; } /* * Derived cross-CPU statistics. */ mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; } free(buffer); return (0); } static int kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size, size_t offset) { ssize_t ret; ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address, size); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != size) return (MEMSTAT_ERROR_KVM_SHORTREAD); return (0); } static int kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen) { ssize_t ret; int i; for (i = 0; i < buflen; i++) { ret = kvm_read(kvm, __DECONST(unsigned long, kvm_pointer) + i, &(buffer[i]), sizeof(char)); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != sizeof(char)) return (MEMSTAT_ERROR_KVM_SHORTREAD); if (buffer[i] == '\0') return (0); } /* Truncate. */ buffer[i-1] = '\0'; return (0); } static int kread_symbol(kvm_t *kvm, int index, void *address, size_t size, size_t offset) { ssize_t ret; ret = kvm_read(kvm, namelist[index].n_value + offset, address, size); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != size) return (MEMSTAT_ERROR_KVM_SHORTREAD); return (0); } int memstat_kvm_malloc(struct memory_type_list *list, void *kvm_handle) { struct memory_type *mtp; void *kmemstatistics; int hint_dontsearch, j, mp_maxcpus, ret; char name[MEMTYPE_MAXNAME]; struct malloc_type_stats *mts, *mtsp; struct malloc_type_internal *mtip; struct malloc_type type, *typep; kvm_t *kvm; kvm = (kvm_t *)kvm_handle; hint_dontsearch = LIST_EMPTY(&list->mtl_list); if (kvm_nlist(kvm, namelist) != 0) { list->mtl_error = MEMSTAT_ERROR_KVM; return (-1); } if (namelist[X_KMEMSTATISTICS].n_type == 0 || namelist[X_KMEMSTATISTICS].n_value == 0) { list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL; return (-1); } ret = kread_symbol(kvm, X_MP_MAXCPUS, &mp_maxcpus, sizeof(mp_maxcpus), 0); if (ret != 0) { list->mtl_error = ret; return (-1); } ret = kread_symbol(kvm, X_KMEMSTATISTICS, &kmemstatistics, sizeof(kmemstatistics), 0); if (ret != 0) { list->mtl_error = ret; return (-1); } mts = malloc(sizeof(struct malloc_type_stats) * mp_maxcpus); if (mts == NULL) { list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } for (typep = kmemstatistics; typep != NULL; typep = type.ks_next) { ret = kread(kvm, typep, &type, sizeof(type), 0); if (ret != 0) { _memstat_mtl_empty(list); free(mts); list->mtl_error = ret; return (-1); } ret = kread_string(kvm, (void *)type.ks_shortdesc, name, MEMTYPE_MAXNAME); if (ret != 0) { _memstat_mtl_empty(list); free(mts); list->mtl_error = ret; return (-1); } /* * Since our compile-time value for MAXCPU may differ from the * kernel's, we populate our own array. */ mtip = type.ks_handle; ret = kread(kvm, mtip->mti_stats, mts, mp_maxcpus * sizeof(struct malloc_type_stats), 0); if (ret != 0) { _memstat_mtl_empty(list); free(mts); list->mtl_error = ret; return (-1); } if (hint_dontsearch == 0) { mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, name); } else mtp = NULL; if (mtp == NULL) mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC, name, mp_maxcpus); if (mtp == NULL) { _memstat_mtl_empty(list); free(mts); list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } /* * This logic is replicated from kern_malloc.c, and should * be kept in sync. */ _memstat_mt_reset_stats(mtp, mp_maxcpus); for (j = 0; j < mp_maxcpus; j++) { mtsp = &mts[j]; mtp->mt_memalloced += mtsp->mts_memalloced; mtp->mt_memfreed += mtsp->mts_memfreed; mtp->mt_numallocs += mtsp->mts_numallocs; mtp->mt_numfrees += mtsp->mts_numfrees; mtp->mt_sizemask |= mtsp->mts_size; mtp->mt_percpu_alloc[j].mtp_memalloced = mtsp->mts_memalloced; mtp->mt_percpu_alloc[j].mtp_memfreed = mtsp->mts_memfreed; mtp->mt_percpu_alloc[j].mtp_numallocs = mtsp->mts_numallocs; mtp->mt_percpu_alloc[j].mtp_numfrees = mtsp->mts_numfrees; mtp->mt_percpu_alloc[j].mtp_sizemask = mtsp->mts_size; } mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; } return (0); }