Current Path : /usr/src/lib/msun/ld80/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/lib/msun/ld80/k_sinl.c |
/* From: @(#)k_sin.c 1.3 95/01/18 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/lib/msun/ld80/k_sinl.c 176357 2008-02-17 07:32:14Z das $"); /* * ld80 version of k_sin.c. See ../src/k_sin.c for most comments. */ #include "math_private.h" static const double half = 0.5; /* * Domain [-0.7854, 0.7854], range ~[-1.89e-22, 1.915e-22] * |sin(x)/x - s(x)| < 2**-72.1 * * See ../ld80/k_cosl.c for more details about the polynomial. */ #if defined(__amd64__) || defined(__i386__) /* Long double constants are slow on these arches, and broken on i386. */ static const volatile double S1hi = -0.16666666666666666, /* -0x15555555555555.0p-55 */ S1lo = -9.2563760475949941e-18; /* -0x15580000000000.0p-109 */ #define S1 ((long double)S1hi + S1lo) #else static const long double S1 = -0.166666666666666666671L; /* -0xaaaaaaaaaaaaaaab.0p-66 */ #endif static const double S2 = 0.0083333333333333332, /* 0x11111111111111.0p-59 */ S3 = -0.00019841269841269427, /* -0x1a01a01a019f81.0p-65 */ S4 = 0.0000027557319223597490, /* 0x171de3a55560f7.0p-71 */ S5 = -0.000000025052108218074604, /* -0x1ae64564f16cad.0p-78 */ S6 = 1.6059006598854211e-10, /* 0x161242b90243b5.0p-85 */ S7 = -7.6429779983024564e-13, /* -0x1ae42ebd1b2e00.0p-93 */ S8 = 2.6174587166648325e-15; /* 0x179372ea0b3f64.0p-101 */ long double __kernel_sinl(long double x, long double y, int iy) { long double z,r,v; z = x*x; v = z*x; r = S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*S8))))); if(iy==0) return x+v*(S1+z*r); else return x-((z*(half*y-v*r)-y)-v*S1); }