Current Path : /usr/src/sys/boot/ofw/libofw/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/boot/ofw/libofw/ofw_disk.c |
/*- * Copyright (C) 2000 Benno Rice. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/boot/ofw/libofw/ofw_disk.c 237091 2012-06-14 19:55:19Z marius $"); /* * Disk I/O routines using Open Firmware */ #include <sys/param.h> #include <netinet/in.h> #include <machine/stdarg.h> #include <stand.h> #include "bootstrap.h" #include "libofw.h" static int ofwd_init(void); static int ofwd_strategy(void *devdata, int flag, daddr_t dblk, size_t size, char *buf, size_t *rsize); static int ofwd_open(struct open_file *f, ...); static int ofwd_close(struct open_file *f); static int ofwd_ioctl(struct open_file *f, u_long cmd, void *data); static void ofwd_print(int verbose); struct devsw ofwdisk = { "block", DEVT_DISK, ofwd_init, ofwd_strategy, ofwd_open, ofwd_close, ofwd_ioctl, ofwd_print }; /* * We're not guaranteed to be able to open a device more than once and there * is no OFW standard method to determine whether a device is already opened. * Opening a device multiple times simultaneously happens to work with most * OFW block device drivers but triggers a trap with at least the driver for * the on-board controllers of Sun Fire V100 and Ultra 1. Upper layers and MI * code expect to be able to open a device more than once however. Given that * different partitions of the same device might be opened at the same time as * done by ZFS, we can't generally just keep track of the opened devices and * reuse the instance handle when asked to open an already opened device. So * the best we can do is to cache the lastly used device path and close and * open devices in ofwd_strategy() as needed. */ static struct ofw_devdesc *kdp; static int ofwd_init(void) { return (0); } static int ofwd_strategy(void *devdata, int flag __unused, daddr_t dblk, size_t size, char *buf, size_t *rsize) { struct ofw_devdesc *dp = (struct ofw_devdesc *)devdata; daddr_t pos; int n; if (dp != kdp) { if (kdp != NULL) { #if !defined(__powerpc__) OF_close(kdp->d_handle); #endif kdp = NULL; } if ((dp->d_handle = OF_open(dp->d_path)) == -1) return (ENOENT); kdp = dp; } pos = dblk * 512; do { if (OF_seek(dp->d_handle, pos) < 0) return (EIO); n = OF_read(dp->d_handle, buf, size); if (n < 0 && n != -2) return (EIO); } while (n == -2); *rsize = size; return (0); } static int ofwd_open(struct open_file *f, ...) { struct ofw_devdesc *dp; va_list vl; va_start(vl, f); dp = va_arg(vl, struct ofw_devdesc *); va_end(vl); if (dp != kdp) { if (kdp != NULL) { OF_close(kdp->d_handle); kdp = NULL; } if ((dp->d_handle = OF_open(dp->d_path)) == -1) { printf("%s: Could not open %s\n", __func__, dp->d_path); return (ENOENT); } kdp = dp; } return (0); } static int ofwd_close(struct open_file *f) { struct ofw_devdesc *dev = f->f_devdata; if (dev == kdp) { #if !defined(__powerpc__) OF_close(dev->d_handle); #endif kdp = NULL; } return (0); } static int ofwd_ioctl(struct open_file *f __unused, u_long cmd __unused, void *data __unused) { return (EINVAL); } static void ofwd_print(int verbose __unused) { }