Current Path : /usr/src/sys/contrib/octeon-sdk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/contrib/octeon-sdk/cvmx-usbd.c |
/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * @file * * "cvmx-usbd.c" defines a set of low level USB functions to help * developers create Octeon USB devices for various operating * systems. These functions provide a generic API to the Octeon * USB blocks, hiding the internal hardware specific * operations. * * <hr>$Revision: 32636 $<hr> */ #ifdef CVMX_BUILD_FOR_LINUX_KERNEL #include <asm/octeon/cvmx.h> #include <asm/octeon/cvmx-clock.h> #include <asm/octeon/cvmx-sysinfo.h> #include <asm/octeon/cvmx-usbnx-defs.h> #include <asm/octeon/cvmx-usbcx-defs.h> #include <asm/octeon/cvmx-usbd.h> #include <asm/octeon/cvmx-swap.h> #include <asm/octeon/cvmx-helper.h> #include <asm/octeon/cvmx-helper-board.h> #else #include "cvmx.h" #include "cvmx-clock.h" #include "cvmx-sysinfo.h" #include "cvmx-usbd.h" #include "cvmx-swap.h" #include "cvmx-helper.h" #include "cvmx-helper-board.h" #endif #define ULL unsigned long long /** * @INTERNAL * Read a USB 32bit CSR. It performs the necessary address swizzle for 32bit * CSRs. * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param address 64bit address to read * * @return Result of the read */ static inline uint32_t __cvmx_usbd_read_csr32(cvmx_usbd_state_t *usb, uint64_t address) { uint32_t result = cvmx_read64_uint32(address ^ 4); return result; } /** * @INTERNAL * Write a USB 32bit CSR. It performs the necessary address swizzle for 32bit * CSRs. * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param address 64bit address to write * @param value Value to write */ static inline void __cvmx_usbd_write_csr32(cvmx_usbd_state_t *usb, uint64_t address, uint32_t value) { cvmx_write64_uint32(address ^ 4, value); cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index)); } /** * @INTERNAL * Calls the user supplied callback when an event happens. * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param reason Reason for the callback * @param endpoint_num * Endpoint number * @param bytes_transferred * Bytes transferred */ static void __cvmx_usbd_callback(cvmx_usbd_state_t *usb, cvmx_usbd_callback_t reason, int endpoint_num, int bytes_transferred) { if (usb->callback[reason]) { if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Calling callback reason=%d endpoint=%d bytes=%d func=%p data=%p\n", __FUNCTION__, reason, endpoint_num, bytes_transferred, usb->callback[reason], usb->callback_data[reason]); usb->callback[reason](reason, endpoint_num, bytes_transferred, usb->callback_data[reason]); } else { if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: No callback for reason=%d endpoint=%d bytes=%d\n", __FUNCTION__, reason, endpoint_num, bytes_transferred); } } /** * @INTERNAL * Perform USB device mode initialization after a reset completes. * This should be called after USBC0/1_GINTSTS[USBRESET] and * corresponds to section 22.6.1.1, "Initialization on USB Reset", * in the manual. * * @param usb USB device state populated by * cvmx_usbd_initialize(). * * @return Zero or negative on error. */ static int __cvmx_usbd_device_reset_complete(cvmx_usbd_state_t *usb) { cvmx_usbcx_ghwcfg2_t usbcx_ghwcfg2; cvmx_usbcx_ghwcfg3_t usbcx_ghwcfg3; cvmx_usbcx_doepmsk_t usbcx_doepmsk; cvmx_usbcx_diepmsk_t usbcx_diepmsk; cvmx_usbcx_daintmsk_t usbc_daintmsk; cvmx_usbcx_gnptxfsiz_t gnptxfsiz; int fifo_space; int i; if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Processing reset\n", __FUNCTION__); usbcx_ghwcfg2.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_GHWCFG2(usb->index)); usbcx_ghwcfg3.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_GHWCFG3(usb->index)); /* Set up the data FIFO RAM for each of the FIFOs */ fifo_space = usbcx_ghwcfg3.s.dfifodepth; /* Start at the top of the FIFO and assign space for each periodic fifo */ for (i=usbcx_ghwcfg2.s.numdeveps; i>0; i--) { cvmx_usbcx_dptxfsizx_t siz; siz.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DPTXFSIZX(i, usb->index)); fifo_space -= siz.s.dptxfsize; siz.s.dptxfstaddr = fifo_space; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DPTXFSIZX(i, usb->index), siz.u32); } /* Assign half the leftover space to the non periodic tx fifo */ gnptxfsiz.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index)); gnptxfsiz.s.nptxfdep = fifo_space / 2; fifo_space -= gnptxfsiz.s.nptxfdep; gnptxfsiz.s.nptxfstaddr = fifo_space; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), gnptxfsiz.u32); /* Assign the remain space to the RX fifo */ __cvmx_usbd_write_csr32(usb, CVMX_USBCX_GRXFSIZ(usb->index), fifo_space); /* Unmask the common endpoint interrupts */ usbcx_doepmsk.u32 = 0; usbcx_doepmsk.s.setupmsk = 1; usbcx_doepmsk.s.epdisbldmsk = 1; usbcx_doepmsk.s.xfercomplmsk = 1; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DOEPMSK(usb->index), usbcx_doepmsk.u32); usbcx_diepmsk.u32 = 0; usbcx_diepmsk.s.epdisbldmsk = 1; usbcx_diepmsk.s.xfercomplmsk = 1; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DIEPMSK(usb->index), usbcx_diepmsk.u32); usbc_daintmsk.u32 = 0; usbc_daintmsk.s.inepmsk = -1; usbc_daintmsk.s.outepmsk = -1; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DAINTMSK(usb->index), usbc_daintmsk.u32); /* Set all endpoints to NAK */ for (i=0; i<usbcx_ghwcfg2.s.numdeveps+1; i++) { cvmx_usbcx_doepctlx_t usbc_doepctl; usbc_doepctl.u32 = 0; usbc_doepctl.s.snak = 1; usbc_doepctl.s.usbactep = 1; usbc_doepctl.s.mps = (i==0) ? 0 : 64; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DOEPCTLX(i, usb->index), usbc_doepctl.u32); } return 0; } /** * Initialize a USB port for use. This must be called before any * other access to the Octeon USB port is made. The port starts * off in the disabled state. * * @param usb Pointer to an empty cvmx_usbd_state_t structure * that will be populated by the initialize call. * This structure is then passed to all other USB * functions. * @param usb_port_number * Which Octeon USB port to initialize. * @param flags Flags to control hardware initialization. See * cvmx_usbd_initialize_flags_t for the flag * definitions. Some flags are mandatory. * * @return Zero or a negative on error. */ int cvmx_usbd_initialize(cvmx_usbd_state_t *usb, int usb_port_number, cvmx_usbd_initialize_flags_t flags) { cvmx_usbnx_clk_ctl_t usbn_clk_ctl; cvmx_usbnx_usbp_ctl_status_t usbn_usbp_ctl_status; if (cvmx_unlikely(flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Called\n", __FUNCTION__); memset(usb, 0, sizeof(usb)); usb->init_flags = flags; usb->index = usb_port_number; /* Try to determine clock type automatically */ if ((usb->init_flags & (CVMX_USBD_INITIALIZE_FLAGS_CLOCK_XO_XI | CVMX_USBD_INITIALIZE_FLAGS_CLOCK_XO_GND)) == 0) { if (__cvmx_helper_board_usb_get_clock_type() == USB_CLOCK_TYPE_CRYSTAL_12) usb->init_flags |= CVMX_USBD_INITIALIZE_FLAGS_CLOCK_XO_XI; /* Only 12 MHZ crystals are supported */ else usb->init_flags |= CVMX_USBD_INITIALIZE_FLAGS_CLOCK_XO_GND; } if (usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_CLOCK_XO_GND) { /* Check for auto ref clock frequency */ if (!(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_CLOCK_MHZ_MASK)) switch (__cvmx_helper_board_usb_get_clock_type()) { case USB_CLOCK_TYPE_REF_12: usb->init_flags |= CVMX_USBD_INITIALIZE_FLAGS_CLOCK_12MHZ; break; case USB_CLOCK_TYPE_REF_24: usb->init_flags |= CVMX_USBD_INITIALIZE_FLAGS_CLOCK_24MHZ; break; case USB_CLOCK_TYPE_REF_48: default: usb->init_flags |= CVMX_USBD_INITIALIZE_FLAGS_CLOCK_48MHZ; break; } } /* Power On Reset and PHY Initialization */ /* 1. Wait for DCOK to assert (nothing to do) */ /* 2a. Write USBN0/1_CLK_CTL[POR] = 1 and USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0 */ usbn_clk_ctl.u64 = cvmx_read_csr(CVMX_USBNX_CLK_CTL(usb->index)); usbn_clk_ctl.s.por = 1; usbn_clk_ctl.s.hrst = 0; usbn_clk_ctl.s.prst = 0; usbn_clk_ctl.s.hclk_rst = 0; usbn_clk_ctl.s.enable = 0; /* 2b. Select the USB reference clock/crystal parameters by writing appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON] */ if (usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_CLOCK_XO_GND) { /* The USB port uses 12/24/48MHz 2.5V board clock source at USB_XO. USB_XI should be tied to GND. Most Octeon evaluation boards require this setting */ if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) { usbn_clk_ctl.cn31xx.p_rclk = 1; /* From CN31XX,CN30XX manual */ usbn_clk_ctl.cn31xx.p_xenbn = 0; } else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) usbn_clk_ctl.cn56xx.p_rtype = 2; /* From CN56XX,CN50XX manual */ else usbn_clk_ctl.cn52xx.p_rtype = 1; /* From CN52XX manual */ switch (usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) { case CVMX_USBD_INITIALIZE_FLAGS_CLOCK_12MHZ: usbn_clk_ctl.s.p_c_sel = 0; break; case CVMX_USBD_INITIALIZE_FLAGS_CLOCK_24MHZ: usbn_clk_ctl.s.p_c_sel = 1; break; case CVMX_USBD_INITIALIZE_FLAGS_CLOCK_48MHZ: usbn_clk_ctl.s.p_c_sel = 2; break; } } else { /* The USB port uses a 12MHz crystal as clock source at USB_XO and USB_XI */ if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) { usbn_clk_ctl.cn31xx.p_rclk = 1; /* From CN31XX,CN30XX manual */ usbn_clk_ctl.cn31xx.p_xenbn = 1; } else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) usbn_clk_ctl.cn56xx.p_rtype = 0; /* From CN56XX,CN50XX manual */ else usbn_clk_ctl.cn52xx.p_rtype = 0; /* From CN52XX manual */ usbn_clk_ctl.s.p_c_sel = 0; } /* 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down such that USB is as close as possible to 125Mhz */ { int divisor = (cvmx_clock_get_rate(CVMX_CLOCK_CORE)+125000000-1)/125000000; if (divisor < 4) /* Lower than 4 doesn't seem to work properly */ divisor = 4; usbn_clk_ctl.s.divide = divisor; usbn_clk_ctl.s.divide2 = 0; } cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */ usbn_clk_ctl.s.hclk_rst = 1; cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */ cvmx_wait(64); /* 3. Program the power-on reset field in the USBN clock-control register: USBN_CLK_CTL[POR] = 0 */ usbn_clk_ctl.s.por = 0; cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); /* 4. Wait 1 ms for PHY clock to start */ cvmx_wait_usec(1000); /* 5. Program the Reset input from automatic test equipment field in the USBP control and status register: USBN_USBP_CTL_STATUS[ATE_RESET] = 1 */ usbn_usbp_ctl_status.u64 = cvmx_read_csr(CVMX_USBNX_USBP_CTL_STATUS(usb->index)); usbn_usbp_ctl_status.s.ate_reset = 1; cvmx_write_csr(CVMX_USBNX_USBP_CTL_STATUS(usb->index), usbn_usbp_ctl_status.u64); /* 6. Wait 10 cycles */ cvmx_wait(10); /* 7. Clear ATE_RESET field in the USBN clock-control register: USBN_USBP_CTL_STATUS[ATE_RESET] = 0 */ usbn_usbp_ctl_status.s.ate_reset = 0; cvmx_write_csr(CVMX_USBNX_USBP_CTL_STATUS(usb->index), usbn_usbp_ctl_status.u64); /* 8. Program the PHY reset field in the USBN clock-control register: USBN_CLK_CTL[PRST] = 1 */ usbn_clk_ctl.s.prst = 1; cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); /* 9. Program the USBP control and status register to select host or device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for device */ usbn_usbp_ctl_status.s.hst_mode = 1; usbn_usbp_ctl_status.s.dm_pulld = 0; usbn_usbp_ctl_status.s.dp_pulld = 0; cvmx_write_csr(CVMX_USBNX_USBP_CTL_STATUS(usb->index), usbn_usbp_ctl_status.u64); /* 10. Wait 1 µs */ cvmx_wait_usec(1); /* 11. Program the hreset_n field in the USBN clock-control register: USBN_CLK_CTL[HRST] = 1 */ usbn_clk_ctl.s.hrst = 1; cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); /* 12. Proceed to USB core initialization */ usbn_clk_ctl.s.enable = 1; cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); cvmx_wait_usec(1); /* Program the following fields in the global AHB configuration register (USBC_GAHBCFG) DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode Burst length, USBC_GAHBCFG[HBSTLEN] = 0 Nonperiodic TxFIFO empty level (slave mode only), USBC_GAHBCFG[NPTXFEMPLVL] Periodic TxFIFO empty level (slave mode only), USBC_GAHBCFG[PTXFEMPLVL] Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1 */ { cvmx_usbcx_gahbcfg_t usbcx_gahbcfg; usbcx_gahbcfg.u32 = 0; usbcx_gahbcfg.s.dmaen = 1; usbcx_gahbcfg.s.hbstlen = 0; usbcx_gahbcfg.s.nptxfemplvl = 1; usbcx_gahbcfg.s.ptxfemplvl = 1; usbcx_gahbcfg.s.glblintrmsk = 1; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index), usbcx_gahbcfg.u32); } /* Program the following fields in USBC_GUSBCFG register. HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0 ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0 USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5 PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0 */ { cvmx_usbcx_gusbcfg_t usbcx_gusbcfg; usbcx_gusbcfg.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index)); usbcx_gusbcfg.s.toutcal = 0; usbcx_gusbcfg.s.ddrsel = 0; usbcx_gusbcfg.s.usbtrdtim = 0x5; usbcx_gusbcfg.s.phylpwrclksel = 0; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index), usbcx_gusbcfg.u32); } /* Program the following fields in the USBC0/1_DCFG register: Device speed, USBC0/1_DCFG[DEVSPD] = 0 (high speed) Non-zero-length status OUT handshake, USBC0/1_DCFG[NZSTSOUTHSHK]=0 Periodic frame interval (if periodic endpoints are supported), USBC0/1_DCFG[PERFRINT] = 1 */ { cvmx_usbcx_dcfg_t usbcx_dcfg; usbcx_dcfg.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DCFG(usb->index)); usbcx_dcfg.s.devspd = 0; usbcx_dcfg.s.nzstsouthshk = 0; usbcx_dcfg.s.perfrint = 1; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DCFG(usb->index), usbcx_dcfg.u32); } /* Program the USBC0/1_GINTMSK register */ { cvmx_usbcx_gintmsk_t usbcx_gintmsk; usbcx_gintmsk.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_GINTMSK(usb->index)); usbcx_gintmsk.s.oepintmsk = 1; usbcx_gintmsk.s.inepintmsk = 1; usbcx_gintmsk.s.enumdonemsk = 1; usbcx_gintmsk.s.usbrstmsk = 1; usbcx_gintmsk.s.usbsuspmsk = 1; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index), usbcx_gintmsk.u32); } cvmx_usbd_disable(usb); return 0; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_initialize); #endif /** * Shutdown a USB port after a call to cvmx_usbd_initialize(). * * @param usb USB device state populated by * cvmx_usbd_initialize(). * * @return Zero or a negative on error. */ int cvmx_usbd_shutdown(cvmx_usbd_state_t *usb) { cvmx_usbnx_clk_ctl_t usbn_clk_ctl; if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Called\n", __FUNCTION__); /* Disable the clocks and put them in power on reset */ usbn_clk_ctl.u64 = cvmx_read_csr(CVMX_USBNX_CLK_CTL(usb->index)); usbn_clk_ctl.s.enable = 1; usbn_clk_ctl.s.por = 1; usbn_clk_ctl.s.hclk_rst = 1; usbn_clk_ctl.s.prst = 0; usbn_clk_ctl.s.hrst = 0; cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); return 0; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_shutdown); #endif /** * Enable a USB port. After this call succeeds, the USB port is * online and servicing requests. * * @param usb USB device state populated by * cvmx_usb_initialize(). * * @return Zero or negative on error. */ int cvmx_usbd_enable(cvmx_usbd_state_t *usb) { cvmx_usbcx_dctl_t usbcx_dctl; usbcx_dctl.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DCTL(usb->index)); usbcx_dctl.s.cgoutnak = 1; usbcx_dctl.s.sftdiscon = 0; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DCTL(usb->index), usbcx_dctl.u32); return 0; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_enable); #endif /** * Disable a USB port. After this call the USB port will not * generate data transfers and will not generate events. * * @param usb USB device state populated by * cvmx_usb_initialize(). * * @return Zero or negative on error. */ int cvmx_usbd_disable(cvmx_usbd_state_t *usb) { cvmx_usbcx_dctl_t usbcx_dctl; usbcx_dctl.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DCTL(usb->index)); usbcx_dctl.s.sgoutnak = 1; usbcx_dctl.s.sftdiscon = 1; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DCTL(usb->index), usbcx_dctl.u32); return 0; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_disable); #endif /** * Register a callback function to process USB events * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param reason The reason this callback should be called * @param func Function to call * @param user_data User supplied data for the callback * * @return Zero on succes, negative on failure */ int cvmx_usbd_register(cvmx_usbd_state_t *usb, cvmx_usbd_callback_t reason, cvmx_usbd_callback_func_t func, void *user_data) { if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Register reason=%d func=%p data=%p\n", __FUNCTION__, reason, func, user_data); usb->callback[reason] = func; usb->callback_data[reason] = user_data; return 0; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_register); #endif /** * @INTERNAL * Poll a device mode endpoint for status * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param endpoint_num * Endpoint to poll * * @return Zero on success */ static int __cvmx_usbd_poll_in_endpoint(cvmx_usbd_state_t *usb, int endpoint_num) { cvmx_usbcx_diepintx_t usbc_diepint; if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: endpoint=%d\n", __FUNCTION__, endpoint_num); usbc_diepint.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DIEPINTX(endpoint_num, usb->index)); __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DIEPINTX(endpoint_num, usb->index), usbc_diepint.u32); if (usbc_diepint.s.epdisbld) { /* Endpoint Disabled Interrupt (EPDisbld) This bit indicates that the endpoint is disabled per the application's request. */ /* Nothing to do */ } if (usbc_diepint.s.xfercompl) { cvmx_usbcx_dieptsizx_t usbc_dieptsiz; int bytes_transferred; /* Transfer Completed Interrupt (XferCompl) Indicates that the programmed transfer is complete on the AHB as well as on the USB, for this endpoint. */ usbc_dieptsiz.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DIEPTSIZX(endpoint_num, usb->index)); bytes_transferred = usb->endpoint[endpoint_num].buffer_length - usbc_dieptsiz.s.xfersize; __cvmx_usbd_callback(usb, CVMX_USBD_CALLBACK_IN_COMPLETE, endpoint_num, bytes_transferred); } return 0; } /** * @INTERNAL * Poll a device mode endpoint for status * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param endpoint_num * Endpoint to poll * * @return Zero on success */ static int __cvmx_usbd_poll_out_endpoint(cvmx_usbd_state_t *usb, int endpoint_num) { cvmx_usbcx_doepintx_t usbc_doepint; if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: endpoint=%d\n", __FUNCTION__, endpoint_num); usbc_doepint.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DOEPINTX(endpoint_num, usb->index)); __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DOEPINTX(endpoint_num, usb->index), usbc_doepint.u32); if (usbc_doepint.s.setup) { /* SETUP Phase Done (SetUp) Applies to control OUT endpoints only. Indicates that the SETUP phase for the control endpoint is complete and no more back-to-back SETUP packets were received for the current control transfer. On this interrupt, the application can decode the received SETUP data packet. */ __cvmx_usbd_callback(usb, CVMX_USBD_CALLBACK_DEVICE_SETUP, endpoint_num, 0); } if (usbc_doepint.s.epdisbld) { /* Endpoint Disabled Interrupt (EPDisbld) This bit indicates that the endpoint is disabled per the application's request. */ /* Nothing to do */ } if (usbc_doepint.s.xfercompl) { cvmx_usbcx_doeptsizx_t usbc_doeptsiz; int bytes_transferred; /* Transfer Completed Interrupt (XferCompl) Indicates that the programmed transfer is complete on the AHB as well as on the USB, for this endpoint. */ usbc_doeptsiz.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DOEPTSIZX(endpoint_num, usb->index)); bytes_transferred = usb->endpoint[endpoint_num].buffer_length - usbc_doeptsiz.s.xfersize; __cvmx_usbd_callback(usb, CVMX_USBD_CALLBACK_OUT_COMPLETE, endpoint_num, bytes_transferred); } return 0; } /** * Poll the USB block for status and call all needed callback * handlers. This function is meant to be called in the interrupt * handler for the USB controller. It can also be called * periodically in a loop for non-interrupt based operation. * * @param usb USB device state populated by * cvmx_usbd_initialize(). * * @return Zero or negative on error. */ int cvmx_usbd_poll(cvmx_usbd_state_t *usb) { cvmx_usbcx_gintsts_t usbc_gintsts; if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: Called\n", __FUNCTION__); /* Read the pending interrupts */ usbc_gintsts.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_GINTSTS(usb->index)); usbc_gintsts.u32 &= __cvmx_usbd_read_csr32(usb, CVMX_USBCX_GINTMSK(usb->index)); /* Clear the interrupts now that we know about them */ __cvmx_usbd_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), usbc_gintsts.u32); if (usbc_gintsts.s.usbsusp) __cvmx_usbd_callback(usb, CVMX_USBD_CALLBACK_SUSPEND, 0, 0); if (usbc_gintsts.s.enumdone) __cvmx_usbd_callback(usb, CVMX_USBD_CALLBACK_ENUM_COMPLETE, 0, 0); if (usbc_gintsts.s.usbrst) { /* USB Reset (USBRst) The core sets this bit to indicate that a reset is detected on the USB. */ __cvmx_usbd_device_reset_complete(usb); __cvmx_usbd_callback(usb, CVMX_USBD_CALLBACK_RESET, 0, 0); } if (usbc_gintsts.s.oepint || usbc_gintsts.s.iepint) { cvmx_usbcx_daint_t usbc_daint; usbc_daint.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DAINT(usb->index)); if (usbc_daint.s.inepint) { int active_endpoints = usbc_daint.s.inepint; while (active_endpoints) { int endpoint; CVMX_CLZ(endpoint, active_endpoints); endpoint = 31 - endpoint; __cvmx_usbd_poll_in_endpoint(usb, endpoint); active_endpoints ^= 1<<endpoint; } } if (usbc_daint.s.outepint) { int active_endpoints = usbc_daint.s.outepint; while (active_endpoints) { int endpoint; CVMX_CLZ(endpoint, active_endpoints); endpoint = 31 - endpoint; __cvmx_usbd_poll_out_endpoint(usb, endpoint); active_endpoints ^= 1<<endpoint; } } } return 0; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_poll); #endif /** * Get the current USB address * * @param usb USB device state populated by * cvmx_usbd_initialize(). * * @return The USB address */ int cvmx_usbd_get_address(cvmx_usbd_state_t *usb) { cvmx_usbcx_dcfg_t usbc_dcfg; usbc_dcfg.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DCFG(usb->index)); return usbc_dcfg.s.devaddr; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_get_address); #endif /** * Set the current USB address * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param address Address to set */ void cvmx_usbd_set_address(cvmx_usbd_state_t *usb, int address) { cvmx_usbcx_dcfg_t usbc_dcfg; usbc_dcfg.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DCFG(usb->index)); usbc_dcfg.s.devaddr = address; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DCFG(usb->index), usbc_dcfg.u32); } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_set_address); #endif /** * Get the current USB speed * * @param usb USB device state populated by * cvmx_usbd_initialize(). * * @return The USB speed */ cvmx_usbd_speed_t cvmx_usbd_get_speed(cvmx_usbd_state_t *usb) { cvmx_usbcx_dsts_t usbcx_dsts; usbcx_dsts.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DSTS(usb->index)); return usbcx_dsts.s.enumspd; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_get_speed); #endif /** * Set the current USB speed * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param speed The requested speed */ void cvmx_usbd_set_speed(cvmx_usbd_state_t *usb, cvmx_usbd_speed_t speed) { cvmx_usbcx_dcfg_t usbcx_dcfg; usbcx_dcfg.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DCFG(usb->index)); usbcx_dcfg.s.devspd = speed; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DCFG(usb->index), usbcx_dcfg.u32); } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_set_speed); #endif /** * Enable an endpoint to respond to an OUT transaction * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param endpoint_num * Endpoint number to enable * @param transfer_type * Transfer type for the endpoint * @param max_packet_size * Maximum packet size for the endpoint * @param buffer Buffer to receive the data * @param buffer_length * Length of the buffer in bytes * * @return Zero on success, negative on failure */ int cvmx_usbd_out_endpoint_enable(cvmx_usbd_state_t *usb, int endpoint_num, cvmx_usbd_transfer_t transfer_type, int max_packet_size, uint64_t buffer, int buffer_length) { cvmx_usbcx_doepctlx_t usbc_doepctl; cvmx_usbcx_doeptsizx_t usbc_doeptsiz; if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: endpoint=%d buffer=0x%llx length=%d\n", __FUNCTION__, endpoint_num, (ULL)buffer, buffer_length); usb->endpoint[endpoint_num].buffer_length = buffer_length; CVMX_SYNCW; /* Flush out pending writes before enable */ /* Clear any pending interrupts */ __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DOEPINTX(endpoint_num, usb->index), __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DOEPINTX(endpoint_num, usb->index))); /* Setup the locations the DMA engines use */ cvmx_write_csr(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + endpoint_num*8, buffer); usbc_doeptsiz.u32 = 0; usbc_doeptsiz.s.mc = 1; usbc_doeptsiz.s.pktcnt = (buffer_length + max_packet_size - 1) / max_packet_size; if (usbc_doeptsiz.s.pktcnt == 0) usbc_doeptsiz.s.pktcnt = 1; usbc_doeptsiz.s.xfersize = buffer_length; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DOEPTSIZX(endpoint_num, usb->index), usbc_doeptsiz.u32); usbc_doepctl.u32 = 0; usbc_doepctl.s.epena = 1; usbc_doepctl.s.setd1pid = 0; usbc_doepctl.s.setd0pid = 0; usbc_doepctl.s.cnak = 1; usbc_doepctl.s.eptype = transfer_type; usbc_doepctl.s.usbactep = 1; if (endpoint_num == 0) { switch (max_packet_size) { case 8: usbc_doepctl.s.mps = 3; break; case 16: usbc_doepctl.s.mps = 2; break; case 32: usbc_doepctl.s.mps = 1; break; default: usbc_doepctl.s.mps = 0; break; } } else usbc_doepctl.s.mps = max_packet_size; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DOEPCTLX(endpoint_num, usb->index), usbc_doepctl.u32); return 0; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_out_endpoint_enable); #endif /** * Disable an OUT endpoint * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param endpoint_num * Endpoint number to disable * * @return Zero on success, negative on failure */ int cvmx_usbd_out_endpoint_disable(cvmx_usbd_state_t *usb, int endpoint_num) { cvmx_usbcx_doepctlx_t usbc_doepctl; if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: endpoint=%d\n", __FUNCTION__, endpoint_num); usbc_doepctl.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DOEPCTLX(endpoint_num, usb->index)); if (usbc_doepctl.s.epena && !usbc_doepctl.s.epdis) { usbc_doepctl.s.epdis = 1; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DOEPCTLX(endpoint_num, usb->index), usbc_doepctl.u32); } return 0; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_out_endpoint_disable); #endif /** * Enable an endpoint to respond to an IN transaction * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param endpoint_num * Endpoint number to enable * @param transfer_type * Transfer type for the endpoint * @param max_packet_size * Maximum packet size for the endpoint * @param buffer Buffer to send * @param buffer_length * Length of the buffer in bytes * * @return Zero on success, negative on failure */ int cvmx_usbd_in_endpoint_enable(cvmx_usbd_state_t *usb, int endpoint_num, cvmx_usbd_transfer_t transfer_type, int max_packet_size, uint64_t buffer, int buffer_length) { cvmx_usbcx_diepctlx_t usbc_diepctl; cvmx_usbcx_dieptsizx_t usbc_dieptsiz; if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: endpoint=%d buffer=0x%llx length=%d\n", __FUNCTION__, endpoint_num, (ULL)buffer, buffer_length); usb->endpoint[endpoint_num].buffer_length = buffer_length; CVMX_SYNCW; /* Flush out pending writes before enable */ /* Clear any pending interrupts */ __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DIEPINTX(endpoint_num, usb->index), __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DIEPINTX(endpoint_num, usb->index))); usbc_dieptsiz.u32 = 0; usbc_dieptsiz.s.mc = 1; if (buffer) { cvmx_write_csr(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + endpoint_num*8, buffer); usbc_dieptsiz.s.pktcnt = (buffer_length + max_packet_size - 1) / max_packet_size; if (usbc_dieptsiz.s.pktcnt == 0) usbc_dieptsiz.s.pktcnt = 1; usbc_dieptsiz.s.xfersize = buffer_length; } else { usbc_dieptsiz.s.pktcnt = 0; usbc_dieptsiz.s.xfersize = 0; } __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DIEPTSIZX(endpoint_num, usb->index), usbc_dieptsiz.u32); usbc_diepctl.u32 = 0; usbc_diepctl.s.epena = (buffer != 0); usbc_diepctl.s.setd1pid = 0; usbc_diepctl.s.setd0pid = (buffer == 0); usbc_diepctl.s.cnak = 1; usbc_diepctl.s.txfnum = endpoint_num; usbc_diepctl.s.eptype = transfer_type; usbc_diepctl.s.usbactep = 1; usbc_diepctl.s.nextep = endpoint_num; if (endpoint_num == 0) { switch (max_packet_size) { case 8: usbc_diepctl.s.mps = 3; break; case 16: usbc_diepctl.s.mps = 2; break; case 32: usbc_diepctl.s.mps = 1; break; default: usbc_diepctl.s.mps = 0; break; } } else usbc_diepctl.s.mps = max_packet_size; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DIEPCTLX(endpoint_num, usb->index), usbc_diepctl.u32); return 0; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_in_endpoint_enable); #endif /** * Disable an IN endpoint * * @param usb USB device state populated by * cvmx_usbd_initialize(). * @param endpoint_num * Endpoint number to disable * * @return Zero on success, negative on failure */ int cvmx_usbd_in_endpoint_disable(cvmx_usbd_state_t *usb, int endpoint_num) { cvmx_usbcx_diepctlx_t usbc_diepctl; if (cvmx_unlikely(usb->init_flags & CVMX_USBD_INITIALIZE_FLAGS_DEBUG)) cvmx_dprintf("%s: endpoint=%d\n", __FUNCTION__, endpoint_num); usbc_diepctl.u32 = __cvmx_usbd_read_csr32(usb, CVMX_USBCX_DIEPCTLX(endpoint_num, usb->index)); if (usbc_diepctl.s.epena && !usbc_diepctl.s.epdis) { usbc_diepctl.s.epdis = 1; __cvmx_usbd_write_csr32(usb, CVMX_USBCX_DIEPCTLX(endpoint_num, usb->index), usbc_diepctl.u32); } return 0; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_usbd_in_endpoint_disable); #endif