config root man

Current Path : /usr/src/sys/dev/ctau/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //usr/src/sys/dev/ctau/ctau.c

/*-
 * Low-level subroutines for Cronyx-Tau adapter.
 *
 * Copyright (C) 1994-2001 Cronyx Engineering.
 * Author: Serge Vakulenko, <vak@cronyx.ru>
 *
 * Copyright (C) 2003 Cronyx Engineering.
 * Author: Roman Kurakin, <rik@cronyx.ru>
 *
 * This software is distributed with NO WARRANTIES, not even the implied
 * warranties for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Authors grant any other persons or organisations permission to use
 * or modify this software as long as this message is kept with the software,
 * all derivative works or modified versions.
 *
 * Cronyx Id: ctau.c,v 1.1.2.4 2003/12/11 17:33:43 rik Exp $
 */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/dev/ctau/ctau.c 218909 2011-02-21 09:01:34Z brucec $");

#include <dev/cx/machdep.h>
#include <dev/ctau/ctddk.h>
#include <dev/ctau/ctaureg.h>
#include <dev/ctau/hdc64570.h>
#include <dev/ctau/ds2153.h>
#include <dev/ctau/am8530.h>
#include <dev/ctau/lxt318.h>
#include <dev/cx/cronyxfw.h>

#define DMA_MASK	0xd4	/* DMA mask register */
#define DMA_MASK_CLEAR	0x04	/* DMA clear mask */
#define DMA_MODE	0xd6	/* DMA mode register */
#define DMA_MODE_MASTER 0xc0	/* DMA master mode */

#define BYTE *(unsigned char*)&

static unsigned char irqmask [] = {
	BCR0_IRQ_DIS,	BCR0_IRQ_DIS,	BCR0_IRQ_DIS,	BCR0_IRQ_3,
	BCR0_IRQ_DIS,	BCR0_IRQ_5,	BCR0_IRQ_DIS,	BCR0_IRQ_7,
	BCR0_IRQ_DIS,	BCR0_IRQ_DIS,	BCR0_IRQ_10,	BCR0_IRQ_11,
	BCR0_IRQ_12,	BCR0_IRQ_DIS,	BCR0_IRQ_DIS,	BCR0_IRQ_15,
};

static unsigned char dmamask [] = {
	BCR0_DMA_DIS,	BCR0_DMA_DIS,	BCR0_DMA_DIS,	BCR0_DMA_DIS,
	BCR0_DMA_DIS,	BCR0_DMA_5,	BCR0_DMA_6,	BCR0_DMA_7,
};

static short porttab [] = {	       /* standard base port set */
	0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0,
	0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0
};

static short irqtab [] = { 3, 5, 7, 10, 11, 12, 15, 0 };
static short dmatab [] = { 5, 6, 7, 0 };

static int valid (short value, short *list)
{
	while (*list)
		if (value == *list++)
			return 1;
	return 0;
}

long ct_baud = 256000;			/* default baud rate */
unsigned char ct_chan_mode = M_HDLC;	/* default mode */

static void ct_init_chan (ct_board_t *b, int num);
static void ct_enable_loop (ct_chan_t *c);
static void ct_disable_loop (ct_chan_t *c);

int ct_download (port_t port, const unsigned char *firmware,
	long bits, const cr_dat_tst_t *tst)
{
	unsigned char cr1, sr2;
	long i, n, maxn = (bits + 7) >> 3;
	int v, b;

	inb (BSR3(port));
	for (i=n=0; n<maxn; ++n) {
		v = ((firmware[n] ^ ' ') << 1) | ((firmware[n] >> 7) & 1);
		for (b=0; b<7; b+=2, i+=2) {
			if (i >= bits)
				break;
			cr1 = 0;
			if (v >> b & 1)
				cr1 |= BCR1_TMS;
			if (v >> b & 2)
				cr1 |= BCR1_TDI;
			outb (BCR1(port), cr1);
			sr2 = inb (BSR2(port));
			outb (BCR0(port), BCR0_TCK);
			outb (BCR0(port), 0);
			if (i >= tst->end)
				++tst;
			if (i >= tst->start && (sr2 & BSR2_LERR))
				return (0);
		}
	}
	return (1);
}

/*
 * Firmware unpack algorithm.
 */
typedef struct {
	const unsigned char *ptr;
	unsigned char byte;
	unsigned char count;
} unpack_t;

static unsigned short unpack_init (unpack_t *t, const unsigned char *ptr)
{
	unsigned short len;

	len = *ptr++;
	len |= *ptr++ << 8;
	t->ptr = ptr;
	t->byte = 0;
	t->count = 0;
	return len;
}

static unsigned char unpack_getchar (unpack_t *t)
{
	if (t->count > 0) {
		--t->count;
		return t->byte;
	}
	t->byte = *t->ptr++;
	if (t->byte == 0)
		t->count = *t->ptr++;
	return t->byte;
}

/*
 * Firmware download signals.
 */
#define nstatus(b)	(inb(BSR3(b)) & BSR3_NSTATUS)

#define confdone(b)	(inb(BSR3(b)) & BSR3_CONF_DN)

#define nconfig_set(b)	outb (bcr1_port, (bcr1 &= ~BCR1_NCONFIGI))
#define nconfig_clr(b)	outb (bcr1_port, (bcr1 |= BCR1_NCONFIGI))

#define dclk_tick(b) 	outb (BCR3(b), 0)

#define putbit(b,bit) { if (bit) bcr1 |= BCR1_1KDAT; \
			else bcr1 &= ~BCR1_1KDAT; \
			outb (bcr1_port, bcr1); \
			dclk_tick (b); }

#define CTAU_DEBUG(x)	/*trace_str x*/

int ct_download2 (port_t port, const unsigned char *fwaddr)
{
	unsigned short bytes;
	unsigned char bcr1, val;
	port_t bcr1_port;
	unpack_t t;

	/*
	 * Set NCONFIG and wait until NSTATUS is set.
	 */
	bcr1_port = BCR1(port);
	bcr1 = 0;
	nconfig_set(port);
	for (val=0; val<255; ++val)
		if (nstatus(port))
			break;

	/*
	 * Clear NCONFIG, wait 2 usec and check that NSTATUS is cleared.
	 */
	nconfig_clr(port);
	for (val=0; val<2*3; ++val)
		nconfig_clr(port);
	if (nstatus(port)) {
		CTAU_DEBUG (("Bad nstatus, downloading aborted (bsr3=0x%x).\n", inb(BSR3(port))));
		nconfig_set(port);
		return 0;
	}

	/*
	 * Set NCONFIG and wait 5 usec.
	 */
	nconfig_set(port);
	for (val=0; val<5*3; ++val)		/* Delay 5 msec. */
		nconfig_set(port);

	/*
	 * С адреса `fwaddr' в памяти должны лежать упакованные данные
	 * для загрузки firmware. Значение должно быть согласовано с параметром
	 * вызова утилиты `megaprog' в скрипте загрузки (и Makefile).
	 */
	bytes = unpack_init (&t, fwaddr);
	for (; bytes>0; --bytes) {
		val = unpack_getchar (&t);

		if (nstatus(port) == 0) {
			CTAU_DEBUG (("Bad nstatus, %d bytes remaining.\n", bytes));
			goto failed;
		}

		if (confdone(port)) {
			/* Ten extra clocks. Hope 50 is enough. */
			for (val=0; val<50; ++val)
				dclk_tick (port);

			if (nstatus(port) == 0) {
				CTAU_DEBUG (("Bad nstatus after confdone, %d bytes remaining (%d).\n",
					bytes, t.ptr - fwaddr));
				goto failed;
			}

			/* Succeeded. */
			/*CTAU_DEBUG (("Download succeeded.\n"));*/
			return 1;
		}

		putbit (port, val & 0x01);
		putbit (port, val & 0x02);
		putbit (port, val & 0x04);
		putbit (port, val & 0x08);
		putbit (port, val & 0x10);
		putbit (port, val & 0x20);
		putbit (port, val & 0x40);
		putbit (port, val & 0x80);

		/* if ((bytes & 1023) == 0) putch ('.'); */
	}

	CTAU_DEBUG (("Bad confdone.\n"));
failed:
	CTAU_DEBUG (("Downloading aborted.\n"));
	return 0;
}

/*
 * Detect Tau2 adapter.
 */
static int ct_probe2_board (port_t port)
{
	unsigned char sr3, osr3;
	int i;

	if (! valid (port, porttab))
		return 0;

	osr3 = inb (BSR3(port));
	if ((osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB &&
	    (osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB_NEG)
		return (0);
	for (i=0; i<100; ++i) {
		/* Do it twice */
		sr3 = inb (BSR3(port));
		sr3 = inb (BSR3(port));
		if (((sr3 ^ osr3) & (BSR3_IB | BSR3_IB_NEG | BSR3_ZERO)) !=
		    (BSR3_IB | BSR3_IB_NEG))
			return (0);
		osr3 = sr3;
	}
	/* Reset the controller. */
	outb (BCR0(port), 0);
	return 1;
}

/*
 * Check if the Tau board is present at the given base port.
 * Read board status register 1 and check identification bits
 * which should invert every next read.
 * The "zero" bit should remain stable.
 */
int ct_probe_board (port_t port, int irq, int dma)
{
	unsigned char sr3, osr3;
	int i;

	if (! valid (port, porttab))
		return 0;

	if ((irq > 0) && (!valid (irq, irqtab)))
		return 0;

	if ((dma > 0) && (!valid (dma, dmatab)))
		return 0;

	osr3 = inb (BSR3(port));
	if ((osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB &&
	    (osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB_NEG)
		return (0);
	for (i=0; i<100; ++i) {
		sr3 = inb (BSR3(port));
		if (((sr3 ^ osr3) & (BSR3_IB | BSR3_IB_NEG | BSR3_ZERO)) !=
		    (BSR3_IB | BSR3_IB_NEG))
			return ct_probe2_board (port);
		osr3 = sr3;
	}
	/* Reset the controller. */
	outb (BCR0(port), 0);
	return (1);
}

/*
 * Check that the irq is functional.
 * irq>0  - activate the interrupt from the adapter (irq=on)
 * irq<0  - deactivate the interrupt (irq=off)
 * irq==0 - free the interrupt line (irq=tri-state)
 * Return the interrupt mask _before_ activating irq.
 */
int ct_probe_irq (ct_board_t *b, int irq)
{
	int mask;

	outb (0x20, 0x0a);
	mask = inb (0x20);
	outb (0xa0, 0x0a);
	mask |= inb (0xa0) << 8;

	if (irq > 0) {
		outb (BCR0(b->port), BCR0_HDRUN | irqmask[irq]);
		outb (R(b->port,HD_TEPR_0R), 0);
		outw (R(b->port,HD_TCONR_0R), 1);
		outw (R(b->port,HD_TCNT_0R), 0);
		outb (R(b->port,HD_TCSR_0R), TCSR_ENABLE | TCSR_INTR);
		outb (IER2(b->port), IER2_RX_TME_0);
	} else if (irq < 0) {
		outb (BCR0(b->port), BCR0_HDRUN | irqmask[-irq]);
		outb (IER0(b->port), 0);
		outb (IER1(b->port), 0);
		outb (IER2(b->port), 0);
		outb (R(b->port,HD_TCSR_0R), 0);
		cte_out (E1CS0 (b->port), DS_IMR2, 0);
		cte_out (E1CS1 (b->port), DS_IMR2, 0);
		if (-irq > 7) {
			outb (0xa0, 0x60 | ((-irq) & 7));
			outb (0x20, 0x62);
		} else
			outb (0x20, 0x60 | (-irq));
	} else {
		outb (BCR0(b->port), b->bcr0);
		cte_out (E1CS0 (b->port), DS_IMR2, SR2_SEC);
		cte_out (E1CS1 (b->port), DS_IMR2, SR2_SEC);
	}

	return mask;
}

void ct_init_board (ct_board_t *b, int num, port_t port, int irq, int dma,
	int type, long osc)
{
	int i;

	/* Initialize board structure. */
	b->type = type;
	b->port = port;
	b->num = num;
	b->irq = irq;
	b->dma = dma;
	b->osc = osc;

	/* Get the board type. */
	if (b->type == B_TAU)		 strcpy (b->name, "Tau");
	else if (b->type == B_TAU_E1)	 strcpy (b->name, "Tau/E1");
	else if (b->type == B_TAU_E1C)	 strcpy (b->name, "Tau/E1c");
	else if (b->type == B_TAU_E1D)	 strcpy (b->name, "Tau/E1d");
	else if (b->type == B_TAU_G703)  strcpy (b->name, "Tau/G.703");
	else if (b->type == B_TAU_G703C) strcpy (b->name, "Tau/G.703c");
	else if (b->type == B_TAU2)	 strcpy (b->name, "Tau2");
	else if (b->type == B_TAU2_E1)	 strcpy (b->name, "Tau2/E1");
	else if (b->type == B_TAU2_E1D)  strcpy (b->name, "Tau2/E1d");
	else if (b->type == B_TAU2_G703) strcpy (b->name, "Tau2/G.703");
	else				 strcpy (b->name, "Tau/???");

	/* Set DMA and IRQ. */
	b->bcr0 = BCR0_HDRUN | dmamask[b->dma] | irqmask[b->irq];

	/* Clear DTR[0..1]. */
	b->bcr1 = 0;
	b->e1cfg = 0;

	/* Initialize channel structures. */
	for (i=0; i<NCHAN; ++i)
		ct_init_chan (b, i);
	ct_reinit_board (b);
}

/*
 * Initialize the board structure.
 */
void ct_init (ct_board_t *b, int num, port_t port, int irq, int dma,
	const unsigned char *firmware, long bits, const cr_dat_tst_t *tst,
	const unsigned char *firmware2)
{
	static long tlen	       = 182;
	static cr_dat_tst_t tvec []    = {{ 114, 178 }, { 182, 182 }};
	static cr_dat_tst_t tvec2 []   = {{ 50,  178 }, { 182, 182 }};
	static unsigned char tau []    = { 155,153,113,48,64,236,
		48,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,183,};
	static unsigned char e1 []     = { 155,153,113,48,64,236,
		112,37,49,37,33,116,101,100,112,37,49,37,33,116,101,100,230,};
	static unsigned char e1_2 []   = { 155,153,113,48,64,236,
		112,37,49,37,33,116,101,100,96,97,53,49,49,96,97,100,230,};
	static unsigned char e1_3 []   = { 155,153,113,48,64,236,
		96,97,53,49,49,96,97,100,96,97,53,49,49,96,97,100,230,};
	static unsigned char e1_4 []   = { 155,153,113,48,64,236,
		96,97,53,49,49,96,97,100,112,37,49,37,33,116,101,100,230,};
	static unsigned char g703 []   = { 155,153,113,48,64,236,
		112,37,49,37,33,116,101,32,117,37,49,37,33,116,101,100,230,};
	static unsigned char g703_2 [] = { 155,153,113,48,64,236,
		112,37,49,37,33,116,101,32,101,97,53,49,49,96,97,100,230,};
	static unsigned char g703_3 [] = { 155,153,113,48,64,236,
		96,97,53,49,49,96,97,32,101,97,53,49,49,96,97,100,230,};
	static unsigned char g703_4 [] = { 155,153,113,48,64,236,
		96,97,53,49,49,96,97,32,117,37,49,37,33,116,101,100,230,};

	int type = B_TAU;
	long osc = (inb (BSR3(port)) & BSR3_ZERO) ? 8192000 : 10000000;

	/* Get the board type. */
	if (ct_probe2_board (port) && ct_download2 (port, firmware2)) {
		/* Tau2, 1k30-based model */
		unsigned char sr0 = inb (BSR0(port));
		if (! (sr0 & BSR0_T703))
			type = B_TAU2_G703;
		else if (sr0 & BSR0_TE1)
			type = B_TAU2;
		else if (inb(E1SR(port)) & E1SR_REV)
			type = B_TAU2_E1D;
		else
			type = B_TAU2_E1;
	} else if (ct_download (port, tau, tlen, tvec)) {
		if (! ct_download (port, firmware, bits, tst))
			type = B_TAU;
		else {
			unsigned char sr0 = inb (BSR0(port));
			if (! (sr0 & BSR0_T703))
				type = B_TAU_G703C;
			else if (sr0 & BSR0_TE1)
				type = B_TAU;
			else if (inb(E1SR(port)) & E1SR_REV)
				type = B_TAU_E1D;
			else
				type = B_TAU_E1C;
		}
	} else if (ct_download (port, e1, tlen, tvec2) ||
	    ct_download (port, e1_2, tlen, tvec2) ||
	    ct_download (port, e1_3, tlen, tvec2) ||
	    ct_download (port, e1_4, tlen, tvec2))
		type = B_TAU_E1;
	else if (ct_download (port, g703, tlen, tvec2) ||
	    ct_download (port, g703_2, tlen, tvec2) ||
	    ct_download (port, g703_3, tlen, tvec2) ||
	    ct_download (port, g703_4, tlen, tvec2))
		type = B_TAU_G703;
	ct_init_board (b, num, port, irq, dma, type, osc);
}

/*
 * Initialize the channel structure.
 */
static void ct_init_chan (ct_board_t *b, int i)
{
	ct_chan_t *c = b->chan + i;
	port_t port = b->port;

	c->num = i;
	c->board = b;
	switch (b->type) {
	case B_TAU:
	case B_TAU2:	  c->type = T_SERIAL; break;
	case B_TAU_E1:
	case B_TAU_E1C:
	case B_TAU_E1D:
	case B_TAU2_E1:
	case B_TAU2_E1D:  c->type = T_E1;     break;
	case B_TAU_G703:
	case B_TAU_G703C:
	case B_TAU2_G703: c->type = T_G703;   break;
	}
	if (c->num)
		c->type |= T_SERIAL;

#define reg(X,N) HD_##X##_##N
#define set(X,N) c->X = R(port,reg(X,N))
#define srx(X,N) c->RX.X = R(port,reg(X,N##R))
#define stx(X,N) c->TX.X = R(port,reg(X,N##T))
	if (i == 0) {
		set(MD0, 0); set(MD1, 0);  set(MD2, 0); set(CTL, 0);
		set(RXS, 0); set(TXS, 0);  set(TMC, 0); set(CMD, 0);
		set(ST0, 0); set(ST1, 0);  set(ST2, 0); set(ST3, 0);
		set(FST, 0); set(IE0, 0);  set(IE1, 0); set(IE2, 0);
		set(FST, 0); set(IE0, 0);  set(IE1, 0); set(IE2, 0);
		set(FIE, 0); set(SA0, 0);  set(SA1, 0); set(IDL, 0);
		set(TRB, 0); set(RRC, 0);  set(TRC0,0); set(TRC1,0);
		set(CST, 0);
		srx(DAR, 0); srx(DARB,0);  srx(SAR, 0); srx(SARB,0);
		srx(CDA, 0); srx(EDA, 0);  srx(BFL, 0); srx(BCR, 0);
		srx(DSR, 0); srx(DMR, 0);  srx(FCT, 0); srx(DIR, 0);
		srx(DCR, 0);
		srx(TCNT,0); srx(TCONR,0); srx(TCSR,0); srx(TEPR,0);
		stx(DAR, 0); stx(DARB,0);  stx(SAR, 0); stx(SARB,0);
		stx(CDA, 0); stx(EDA, 0);  stx(BCR, 0);
		stx(DSR, 0); stx(DMR, 0);  stx(FCT, 0); stx(DIR, 0);
		stx(DCR, 0);
		stx(TCNT,0); stx(TCONR,0); stx(TCSR,0); stx(TEPR,0);
	} else {
		set(MD0, 1); set(MD1, 1);  set(MD2, 1); set(CTL, 1);
		set(RXS, 1); set(TXS, 1);  set(TMC, 1); set(CMD, 1);
		set(ST0, 1); set(ST1, 1);  set(ST2, 1); set(ST3, 1);
		set(FST, 1); set(IE0, 1);  set(IE1, 1); set(IE2, 1);
		set(FST, 1); set(IE0, 1);  set(IE1, 1); set(IE2, 1);
		set(FIE, 1); set(SA0, 1);  set(SA1, 1); set(IDL, 1);
		set(TRB, 1); set(RRC, 1);  set(TRC0,1); set(TRC1,1);
		set(CST, 1);
		srx(DAR, 1); srx(DARB,1);  srx(SAR, 1); srx(SARB,1);
		srx(CDA, 1); srx(EDA, 1);  srx(BFL, 1); srx(BCR, 1);
		srx(DSR, 1); srx(DMR, 1);  srx(FCT, 1); srx(DIR, 1);
		srx(DCR, 1);
		srx(TCNT,1); srx(TCONR,1); srx(TCSR,1); srx(TEPR,1);
		stx(DAR, 1); stx(DARB,1);  stx(SAR, 1); stx(SARB,1);
		stx(CDA, 1); stx(EDA, 1);  stx(BCR, 1);
		stx(DSR, 1); stx(DMR, 1);  stx(FCT, 1); stx(DIR, 1);
		stx(DCR, 1);
		stx(TCNT,1); stx(TCONR,1); stx(TCSR,1); stx(TEPR,1);
	}
#undef set
#undef srx
#undef stx
#undef reg
}

/*
 * Reinitialize the channels, using new options.
 */
void ct_reinit_chan (ct_chan_t *c)
{
	ct_board_t *b = c->board;
	long s;
	int i;

	if (c->hopt.txs == CLK_LINE) {
		/* External clock mode -- set zero baud rate. */
		if (c->mode != M_ASYNC)
			c->baud = 0;
	} else if (c->baud == 0) {
		/* No baud rate in internal clock mode -- set default values. */
		if (c->mode == M_ASYNC)
			c->baud = 9600;
		else if (c->mode == M_HDLC)
			c->baud = 64000;
	}
	switch (c->type) {
	case T_E1_SERIAL:
		if (b->opt.cfg == CFG_B)
			break;
		/* Fall through... */
	case T_E1:
		c->mode = M_E1;
		c->hopt.txs = CLK_LINE;

		/* Compute the baud value. */
		if (c->num) {
			s = b->opt.s1;
			if (b->opt.cfg == CFG_C)
				s &=~ b->opt.s0;
		} else
			s = b->opt.s0;
		/* Skip timeslot 16 in CAS mode. */
		if (c->gopt.cas)
			s &=~ (1L << 16);

		c->baud = 0;
		for (i=0; i<32; ++i)
			if ((s >> i) & 1)
				c->baud += 64000;
		c->gopt.rate = c->baud / 1000;

		/* Set NRZ and clear INVCLK. */
		c->opt.md2.encod = MD2_ENCOD_NRZ;
		c->board->opt.bcr2 &= c->num ?
			~(BCR2_INVTXC1 | BCR2_INVRXC1) :
			~(BCR2_INVTXC0 | BCR2_INVRXC0);
		break;

	case T_G703_SERIAL:
		if (b->opt.cfg == CFG_B)
			break;
		/* Fall through... */
	case T_G703:
		c->mode = M_G703;
		c->hopt.txs = CLK_LINE;
		c->baud = c->gopt.rate * 1000L;

		/* Set NRZ/NRZI and clear INVCLK. */
		if (c->opt.md2.encod != MD2_ENCOD_NRZ &&
		    c->opt.md2.encod != MD2_ENCOD_NRZI)
			c->opt.md2.encod = MD2_ENCOD_NRZ;
		c->board->opt.bcr2 &= c->num ?
			~(BCR2_INVTXC1 | BCR2_INVRXC1) :
			~(BCR2_INVTXC0 | BCR2_INVRXC0);
		break;
	}
}

/*
 * Reinitialize all channels, using new options and baud rate.
 */
void ct_reinit_board (ct_board_t *b)
{
	ct_chan_t *c;

	b->opt = ct_board_opt_dflt;
	for (c=b->chan; c<b->chan+NCHAN; ++c) {
		c->opt = ct_chan_opt_dflt;
		c->hopt = ct_opt_hdlc_dflt;
		c->gopt = ct_opt_g703_dflt;
		c->mode = ct_chan_mode;
		c->baud = ct_baud;

		ct_reinit_chan (c);
	}
}

/*
 * Set up the E1 controller of the Tau/E1 board.
 * Frame sync signals:
 * Configuration	Rsync0	Tsync0	Rsync1	Tsync1
 * ---------------------------------------------------
 * A (II)		out	out	out	out
 * B,C,D (HI,K,D)	in	out	in	out
 * ---------------------------------------------------
 * BI			out	out	in	in	-- not implemented
 * old B,C,D (HI,K,D)	out	in	out	in	-- old
 */
static void ct_setup_ctlr (ct_chan_t *c)
{
	ct_board_t *b = c->board;
	port_t p = c->num ? E1CS1 (b->port) : E1CS0 (b->port);
	unsigned char rcr1, rcr2, tcr1, tcr2, ccr1, licr;
	unsigned long xcbr, tir;
	int i;

	rcr2 = RCR2_RSCLKM;
	tcr1 = TCR1_TSIS | TCR1_TSO;
	tcr2 = 0;
	ccr1 = 0;
	licr = 0;

	if (b->opt.cfg != CFG_D) {
		/* Enable monitoring channel, when not in telephony mode. */
		rcr2 |= RCR2_SA_4;
		tcr2 |= TCR2_SA_4;
	}
	if (b->opt.cfg == CFG_A) {
		rcr1 = RCR1_RSO;
	} else {
		rcr1 = RCR1_RSI;
		rcr2 |= RCR2_RESE;
	}

	if (c->gopt.cas)
		tcr1 |= TCR1_T16S;
	else
		ccr1 |= CCR1_CCS;

	if (c->gopt.hdb3)
		ccr1 |= CCR1_THDB3 | CCR1_RHDB3;

	if (c->gopt.crc4) {
		ccr1 |= CCR1_TCRC4 | CCR1_RCRC4;
		tcr2 |= TCR2_AEBE;
	}

	if (c->gopt.higain)
		licr |= LICR_HIGAIN;
	if (inb (E1SR (b->port)) & (c->num ? E1SR_TP1 : E1SR_TP0))
		licr |= LICR_LB120P;
	else
		licr |= LICR_LB75P;

	cte_out (p, DS_RCR1, rcr1);		/* receive control 1 */
	cte_out (p, DS_RCR2, rcr2);		/* receive control 2 */
	cte_out (p, DS_TCR1, tcr1);		/* transmit control 1 */
	cte_out (p, DS_TCR2, tcr2);		/* transmit control 2 */
	cte_out (p, DS_CCR1, ccr1);		/* common control 1 */
	cte_out (p, DS_CCR2, CCR2_CNTCV | CCR2_AUTORA | CCR2_LOFA1);			/* common control 2 */
	cte_out (p, DS_CCR3, CCR3_TSCLKM);	/* common control 3 */
	cte_out (p, DS_LICR, licr);		/* line interface control */
	cte_out (p, DS_IMR1, 0);		/* interrupt mask 1 */
	cte_out (p, DS_IMR2, SR2_SEC);		/* interrupt mask 2 */
	cte_out (p, DS_TEST1, 0);
	cte_out (p, DS_TEST2, 0);
	cte_out (p, DS_TAF, 0x9b);		/* transmit align frame */
	cte_out (p, DS_TNAF, 0xdf);		/* transmit non-align frame */
	cte_out (p, DS_TIDR, 0xff);		/* transmit idle definition */

	cte_out (p, DS_TS, 0x0b);		/* transmit signaling 1 */
	for (i=1; i<16; ++i)
		/* transmit signaling 2..16 */
		cte_out (p, (unsigned char) (DS_TS+i), 0xff);

	/*
	 * S0 == list of timeslots for channel 0
	 * S1 == list of timeslots for channel 1
	 * S2 == list of timeslots for E1 subchannel (pass through)
	 *
	 * Each channel uses the same timeslots for receive and transmit,
	 * i.e. RCBRi == TCBRi.
	 */
	if (b->opt.cfg == CFG_B)
		b->opt.s1 = 0;
	else if (b->opt.cfg == CFG_C)
		b->opt.s1 &=~ b->opt.s0;
	if (c->gopt.cas) {
		/* Skip timeslot 16 in CAS mode. */
		b->opt.s0 &=~ (1L << 16);
		b->opt.s1 &=~ (1L << 16);
	}
	b->opt.s2 &=~ b->opt.s0;
	b->opt.s2 &=~ b->opt.s1;

	/*
	 * Configuration A:
	 *	xCBRi := Si
	 *	TIRi  := ~Si
	 *
	 * Configuration B:
	 *	xCBRi := Si
	 *	TIRi  := 0
	 *
	 * Configuration C:		(S0 & S2 == 0)
	 *	xCBR0 := S0
	 *	xCBR1 := 0
	 *	TIR0  := ~S0 & ~S2
	 *	TIR1  := ~S2
	 *
	 * Configuration D:		(Si & Sj == 0)
	 *	xCBR0 := S0
	 *	xCBR1 := S1
	 *	TIR0  := ~S0 & ~S1 & ~S2
	 *	TIR1  := ~S2
	 */
	xcbr = c->num ? b->opt.s1 : b->opt.s0;
	if (b->opt.cfg == CFG_A)
		tir = ~xcbr;
	else if (b->opt.cfg == CFG_D)
		tir = 0;
	else if (c->num == 0)
		tir = ~(b->opt.s0 | b->opt.s1 | b->opt.s2);
	else
		tir = ~b->opt.s2;

	/* Mark idle channels. */
	cte_out (p, DS_TIR, (unsigned char) (tir & 0xfe));
	cte_out (p, DS_TIR+1, (unsigned char) (tir >> 8));
	cte_out (p, DS_TIR+2, (unsigned char) (tir >> 16));
	cte_out (p, DS_TIR+3, (unsigned char) (tir >> 24));

	/* Set up rx/tx timeslots. */
	cte_out (p, DS_RCBR,   (unsigned char) (xcbr & 0xfe));
	cte_out (p, DS_RCBR+1, (unsigned char) (xcbr >> 8));
	cte_out (p, DS_RCBR+2, (unsigned char) (xcbr >> 16));
	cte_out (p, DS_RCBR+3, (unsigned char) (xcbr >> 24));
	cte_out (p, DS_TCBR,   (unsigned char) (xcbr & 0xfe));
	cte_out (p, DS_TCBR+1, (unsigned char) (xcbr >> 8));
	cte_out (p, DS_TCBR+2, (unsigned char) (xcbr >> 16));
	cte_out (p, DS_TCBR+3, (unsigned char) (xcbr >> 24));

	/* Reset the line interface. */
	cte_out (p, DS_CCR3, CCR3_TSCLKM | CCR3_LIRESET);
	cte_out (p, DS_CCR3, CCR3_TSCLKM);

	/* Reset the elastic store. */
	cte_out (p, DS_CCR3, CCR3_TSCLKM | CCR3_ESRESET);
	cte_out (p, DS_CCR3, CCR3_TSCLKM);

	/* Clear status registers. */
	cte_ins (p, DS_SR1, 0xff);
	cte_ins (p, DS_SR2, 0xff);
	cte_ins (p, DS_RIR, 0xff);
}

/*
 * Set up the serial controller of the Tau/E1 board.
 */
static void ct_setup_scc (port_t port)
{
#define SET(r,v) { cte_out2 (port, r, v); cte_out2 (port, AM_A | r, v); }

	/* hardware reset */
	cte_out2 (port, AM_MICR, MICR_RESET_HW);

	SET (AM_PMR, 0x0c);		/* 2 stop bits */
	SET (AM_IMR, 0);		/* no W/REQ signal */
	cte_out2 (port, AM_IVR, 0);	/* interrupt vector */
	SET (AM_RCR, 0xc0);		/* rx 8 bits/char */
	SET (AM_TCR, 0x60);		/* tx 8 bits/char */
	SET (AM_SAF, 0);		/* sync address field */
	SET (AM_SFR, 0x7e);		/* sync flag register */
	cte_out2 (port, AM_MICR, 0);	/* master interrupt control */
	SET (AM_MCR, 0);		/* NRZ mode */
	SET (AM_CMR, 0x08);		/* rxclk=RTxC, txclk=TRxC */
	SET (AM_TCL, 0);		/* time constant low */
	SET (AM_TCH, 0);		/* time constant high */
	SET (AM_BCR, 0);		/* disable baud rate generator */

	SET (AM_RCR, 0xc1);		/* enable rx */
	SET (AM_TCR, 0x68);		/* enable tx */

	SET (AM_SICR, 0);			/* no status interrupt */
	SET (AM_CR, CR_RST_EXTINT);		/* reset external status */
	SET (AM_CR, CR_RST_EXTINT);		/* reset ext/status twice */
#undef SET
}

/*
 * Set up the Tau/E1 board.
 */
void ct_setup_e1 (ct_board_t *b)
{
	/*
	 * Control register 0:
	 * 1) board configuration
	 * 2) clock modes
	 */
	b->e1cfg &= E1CFG_LED;
	switch (b->opt.cfg){
	case CFG_C: b->e1cfg |= E1CFG_K;  break;
	case CFG_B: b->e1cfg |= E1CFG_HI; break;
	case CFG_D: b->e1cfg |= E1CFG_D;  break;
	default:    b->e1cfg |= E1CFG_II; break;
	}

	if (b->opt.clk0 == GCLK_RCV)   b->e1cfg |= E1CFG_CLK0_RCV;
	if (b->opt.clk0 == GCLK_RCLKO) b->e1cfg |= E1CFG_CLK0_RCLK1;
	else			       b->e1cfg |= E1CFG_CLK0_INT;
	if (b->opt.clk1 == GCLK_RCV)   b->e1cfg |= E1CFG_CLK1_RCV;
	if (b->opt.clk1 == GCLK_RCLKO) b->e1cfg |= E1CFG_CLK1_RCLK0;
	else			       b->e1cfg |= E1CFG_CLK1_INT;

	outb (E1CFG (b->port), b->e1cfg);

	/*
	 * Set up serial controller.
	 */
	ct_setup_scc (b->port);

	/*
	 * Set up E1 controllers.
	 */
	ct_setup_ctlr (b->chan + 0);	/* channel 0 */
	ct_setup_ctlr (b->chan + 1);	/* channel 1 */

	/* Start the board (GRUN). */
	b->e1cfg |= E1CFG_GRUN;
	outb (E1CFG (b->port), b->e1cfg);
}

/*
 * Set up the G.703 controller of the Tau/G.703 board.
 */
static void ct_setup_lxt (ct_chan_t *c)
{
	ctg_outx (c, LX_CCR1, LX_RESET); 	/* reset the chip */
	/* Delay */
	ctg_inx (c, LX_CCR1);
	c->lx = LX_LOS; 		/* disable loss of sync interrupt */
	if (c->num && c->board->opt.cfg == CFG_B)
		c->lx |= LX_TAOS;	/* idle channel--transmit all ones */
	if (c->gopt.hdb3)
		c->lx |= LX_HDB3;	/* enable HDB3 encoding */
	ctg_outx (c, LX_CCR1, c->lx);		/* setup the new mode */
	ctg_outx (c, LX_CCR2, LX_CCR2_LH);	/* setup Long Haul mode */
	ctg_outx (c, LX_CCR3, LX_CCR3_E1_LH);	/* setup Long Haul mode */
}

/*
 * Set up the Tau/G.703 board.
 */
void ct_setup_g703 (ct_board_t *b)
{
	b->gmd0 = GMD_2048;
	if (b->chan[0].gopt.pce) {
		if (b->chan[0].gopt.pce2) b->gmd0 |= GMD_PCE_PCM2;
		else			  b->gmd0 |= GMD_PCE_PCM2D;
	}
	if (b->opt.clk0)
		b->gmd0 |= GMD_RSYNC;

	b->gmd1 = 0;
	if (b->chan[1].gopt.pce) {
		if (b->chan[1].gopt.pce2) b->gmd1 |= GMD_PCE_PCM2;
		else			  b->gmd1 |= GMD_PCE_PCM2D;
	}
	if (b->opt.clk1)
		b->gmd1 |= GMD_RSYNC;

	switch (b->chan[0].gopt.rate) {
	case 2048: b->gmd0 |= GMD_2048; break;
	case 1024: b->gmd0 |= GMD_1024; break;
	case 512:  b->gmd0 |= GMD_512;	break;
	case 256:  b->gmd0 |= GMD_256;	break;
	case 128:  b->gmd0 |= GMD_128;	break;
	case 64:   b->gmd0 |= GMD_64;	break;
	}
	switch (b->chan[1].gopt.rate) {
	case 2048: b->gmd1 |= GMD_2048; break;
	case 1024: b->gmd1 |= GMD_1024; break;
	case 512:  b->gmd1 |= GMD_512;	break;
	case 256:  b->gmd1 |= GMD_256;	break;

	case 128:  b->gmd1 |= GMD_128;	break;
	case 64:   b->gmd1 |= GMD_64;	break;
	}

	outb (GMD0(b->port), b->gmd0);
	outb (GMD1(b->port), b->gmd1 | GMD1_NCS0 | GMD1_NCS1);

	b->gmd2 &= GMD2_LED;
	if (b->opt.cfg == CFG_B)   b->gmd2 |= GMD2_SERIAL;
	outb (GMD2(b->port), b->gmd2);

	/* Set up G.703 controllers. */
	if ((b->chan + 0)->lx & LX_LLOOP) {
		ct_setup_lxt (b->chan + 0);	/* channel 0 */
		ct_enable_loop (b->chan + 0);
	} else {
		ct_setup_lxt (b->chan + 0);	/* channel 0 */
	}
	if ((b->chan + 1)->lx & LX_LLOOP) {
		ct_setup_lxt (b->chan + 1);	/* channel 1 */
		ct_enable_loop (b->chan + 1);
	} else {
		ct_setup_lxt (b->chan + 1);	/* channel 1 */
	}

	/* Clear errors. */
	outb (GERR(b->port), 0xff);
	outb (GLDR(b->port), 0xff);
}

/*
 * Set up the board.
 */
int ct_setup_board (ct_board_t *b, const unsigned char *firmware,
	long bits, const cr_dat_tst_t *tst)
{
	ct_chan_t *c;

	/* Disable DMA channel. */
	outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR);

	/* Reset the controller. */
	outb (BCR0(b->port), 0);

	/* Load the firmware. */
	if (firmware && (b->type == B_TAU || b->type == B_TAU_E1 ||
	    b->type == B_TAU_G703) &&
	    ! ct_download (b->port, firmware, bits, tst))
		return (0);
	if (firmware && (b->type == B_TAU2 || b->type == B_TAU2_E1 ||
	     b->type == B_TAU2_E1D || b->type == B_TAU2_G703) &&
	    ! ct_download2 (b->port, firmware))
		return (0);

	/* Enable DMA and IRQ. */
	outb (BCR0(b->port), BCR0_HDRUN);
	outb (BCR0(b->port), b->bcr0);

	/* Clear DTR[0..1]. */
	outb (BCR1(b->port), b->bcr1);

	/* Set bus timing. */
	b->bcr2 = b->opt.bcr2;
	outb (BCR2(b->port), b->bcr2);

	/*
	 * Initialize the controller.
	 */
	/* Zero wait state mode. */
	outb (WCRL(b->port), 0);
	outb (WCRM(b->port), 0);
	outb (WCRH(b->port), 0);

	/* Clear interrupt modified vector register. */
	outb (IMVR(b->port), 0);
	outb (ITCR(b->port), ITCR_CYCLE_SINGLE | ITCR_VECT_MOD);

	/* Disable all interrupts. */
	outb (IER0(b->port), 0);
	outb (IER1(b->port), 0);
	outb (IER2(b->port), 0);

	/* Set DMA parameters, enable master DMA mode. */
	outb (PCR(b->port), BYTE b->opt.pcr);
	outb (DMER(b->port), DME_ENABLE);

	/* Set up DMA channel to master mode. */
	outb (DMA_MODE, (b->dma & 3) | DMA_MODE_MASTER);

	/* Enable DMA channel. */
	outb (DMA_MASK, b->dma & 3);

	/* Disable byte-sync mode for Tau/G.703. */
	if (b->type == B_TAU_G703)
		outb (GMD2(b->port), 0);

	/* Initialize all channels. */
	for (c=b->chan; c<b->chan+NCHAN; ++c)
		ct_setup_chan (c);

	switch (b->type) {
	case B_TAU_G703:
	case B_TAU_G703C:
	case B_TAU2_G703:
		ct_setup_g703 (b);
		break;
	case B_TAU_E1:
	case B_TAU_E1C:
	case B_TAU_E1D:
	case B_TAU2_E1:
	case B_TAU2_E1D:
		ct_setup_e1 (b);
		break;
	}
	return (1);
}

/*
 * Update the channel mode options.
 */
void ct_update_chan (ct_chan_t *c)
{
	int txbr, rxbr, tmc, txcout;
	unsigned char rxs, txs, dmr = 0;
	ct_md0_async_t amd0;
	ct_md0_hdlc_t hmd0;
	ct_md1_async_t amd1;

	switch (c->mode) {	/* initialize the channel mode */
	case M_ASYNC: default:
		rxs = CLK_INT;
		txs = CLK_INT;

		amd0.mode = MD0_MODE_ASYNC;
		amd0.stopb = MD0_STOPB_1;
		amd0.cts_rts_dcd = 0;

		amd1.clk = MD1_CLK_16;
		amd1.txclen = amd1.rxclen = MD1_CLEN_8;
		amd1.parmode = MD1_PAR_NO;

		outb (c->MD0, BYTE amd0);
		outb (c->MD1, BYTE amd1);
		outb (c->CTL, c->rts ? 0 : CTL_RTS_INV);
		break;

	case M_E1:
	case M_G703:
	case M_HDLC:
		rxs = c->hopt.rxs;
		txs = c->hopt.txs;

		if (c->mode == M_E1 && c->board->opt.cfg == CFG_D) {
			hmd0 = c->hopt.md0;
			hmd0.crc = 0;

			outb (c->MD0, BYTE hmd0);
			outb (c->MD1, BYTE c->hopt.md1);
			outb (c->CTL, c->hopt.ctl & ~CTL_IDLE_PTRN);
			outb (c->SA0, c->hopt.sa0);
			outb (c->SA1, c->hopt.sa1);
			outb (c->IDL, 0x7e);	/* HDLC flag 01111110 */
		} else {
			outb (c->MD0, BYTE c->hopt.md0);
			outb (c->MD1, BYTE c->hopt.md1);
			outb (c->SA0, c->hopt.sa0);
			outb (c->SA1, c->hopt.sa1);
			outb (c->IDL, 0x7e);	/* HDLC flag 01111110 */

			if (c->rts)
				outb (c->CTL, c->hopt.ctl & ~CTL_RTS_INV);
			else
				outb (c->CTL, c->hopt.ctl | CTL_RTS_INV);
		}

		/* Chained-block DMA mode with frame counter. */
		dmr |= DMR_CHAIN_CNTE | DMR_CHAIN_NF | DMR_TMOD;
		break;

	}
	outb (c->RX.DMR, dmr);
	outb (c->TX.DMR, dmr);

	/* set mode-independent options */
	c->opt.md2.dpll_clk = MD2_DPLL_CLK_8;
	outb (c->MD2, BYTE c->opt.md2);

	/* set up receiver and transmitter clocks */
	if (c->baud > 1024000) {
		/* turn off DPLL if the baud rate is too high */
		if (rxs == CLK_RXS_LINE_NS)	  rxs = CLK_LINE;
		else if (rxs == CLK_RXS_DPLL_INT) rxs = CLK_INT;
	}
	if (rxs == CLK_RXS_LINE_NS || rxs == CLK_RXS_DPLL_INT) {
		/* Using 1:8 sampling rate. */
		ct_compute_clock (c->board->osc, c->baud * 8, &rxbr, &tmc);
		txbr = rxbr + 3;
	} else if (c->mode == M_ASYNC) {
		/* Using 1:16 sampling rate. */
		ct_compute_clock (c->board->osc, c->baud * 8, &rxbr, &tmc);
		--rxbr;
		txbr = rxbr;
	} else {
		ct_compute_clock (c->board->osc, c->baud, &rxbr, &tmc);
		txbr = rxbr;
	}
	txs |= txbr;
	rxs |= rxbr;
	outb (c->TMC, tmc);
	outb (c->RXS, rxs);

	/* Disable TXCOUT before changing TXS
	 * to avoid two transmitters on the same line.
	 * Enable it after TXS is set, if needed. */
	txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
	c->board->bcr1 &= ~txcout;
	outb (BCR1(c->board->port), c->board->bcr1);
	outb (c->TXS, txs);
	if ((txs & CLK_MASK) != CLK_LINE) {
		c->board->bcr1 |= txcout;
		outb (BCR1(c->board->port), c->board->bcr1);
	}
	if (c->board->type == B_TAU_E1D ||
	    c->board->type == B_TAU2_E1D)
		ct_set_phony (c, c->gopt.phony);
}

/*
 * Initialize the channel.
 */
void ct_setup_chan (ct_chan_t *c)
{
	/* reset the channel */
	outb (c->RX.DSR, DSR_DMA_DISABLE);
	outb (c->TX.DSR, DSR_DMA_DISABLE);
	outb (c->CMD, CMD_TX_RESET);
	outb (c->CMD, CMD_TX_ABORT);
	outb (c->CMD, CMD_CHAN_RESET);

	/* disable interrupts */
	outb (c->IE0, 0);
	outb (c->IE1, 0);
	outb (c->IE2, 0);
	outb (c->FIE, 0);

	/* clear DTR, RTS */
	ct_set_dtr (c, 0);
	ct_set_rts (c, 0);

	c->lx = LX_LOS;
	ct_update_chan (c);
}

unsigned long ct_get_ts (ct_chan_t *c)
{
	return c->num ? c->board->opt.s1 : c->board->opt.s0;
}

/*
 * Data transfer speed
 */
unsigned long ct_get_baud (ct_chan_t *c)
{
	unsigned long speed;
	unsigned long ts;

	if (c->mode == M_G703) {
		speed = 1000 * c->gopt.rate;
	} else if (c->mode == M_E1) {
		ts = ct_get_ts (c);
		for (speed=0; ts; ts >>= 1) /* Each timeslot is 64 Kbps */
			if (ts & 1)
				speed += 64000;
	} else
		speed = (c->hopt.txs == CLK_INT) ? c->baud : 0;
	return speed;
}

/*
 * Turn local loopback on
 */
static void ct_enable_loop (ct_chan_t *c)
{
	if (c->mode == M_E1) {
		unsigned short p = c->num ? E1CS1 (c->board->port) :
					    E1CS0 (c->board->port);

		/* Local loopback. */
		cte_out (p, DS_CCR2, cte_in (p, DS_CCR2) | CCR2_LLOOP);

		/* Enable jitter attenuator at the transmit side. */
		cte_out (p, DS_LICR, cte_in (p, DS_LICR) | LICR_JA_TX);
		return;
	} else if (c->mode == M_G703) {
		c->lx = LX_LOS | LX_HDB3;
		ctg_outx (c, LX_CCR1, c->lx |= LX_LLOOP);
		return;
	} else if (c->mode == M_HDLC && ct_get_baud(c)) {
		unsigned char rxs = inb (c->RXS) & ~CLK_MASK;
		unsigned char txs = inb (c->TXS) & ~CLK_MASK;
		int txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
		c->opt.md2.loop = MD2_LLOOP;

		/* Disable TXCOUT before changing TXS */
		/* to avoid two transmitters on the same line. */
		/* Enable it after TXS is set. */
		outb (BCR1(c->board->port), c->board->bcr1 & ~txcout);

		outb (c->RXS, rxs | CLK_INT);
		outb (c->TXS, txs | CLK_INT);

		c->board->bcr1 |= txcout;
		outb (BCR1(c->board->port), c->board->bcr1);

		outb (c->MD2, *(unsigned char*)&c->opt.md2);
		return;
	}
}

/*
 * Turn local loopback off
 */
static void ct_disable_loop (ct_chan_t *c)
{
	if (c->mode == M_E1) {
		unsigned short p = c->num ? E1CS1 (c->board->port) :
					    E1CS0 (c->board->port);

		/* Local loopback. */
		cte_out (p, DS_CCR2, cte_in (p, DS_CCR2) & ~CCR2_LLOOP);

		/* Disable jitter attenuator at the transmit side. */
		cte_out (p, DS_LICR, cte_in (p, DS_LICR) & ~LICR_JA_TX);
		return;
	} else if (c->mode == M_G703) {
		c->lx = LX_LOS | LX_HDB3;
		ctg_outx (c, LX_CCR1, c->lx);
		return;
	} else if (c->mode == M_HDLC && ct_get_baud(c)) {
		unsigned char rxs = inb (c->RXS) & ~CLK_MASK;
		unsigned char txs = inb (c->TXS) & ~CLK_MASK;
		int txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
		c->opt.md2.loop = MD2_FDX;

		outb (BCR1(c->board->port), c->board->bcr1 & ~txcout);

		outb (c->RXS, rxs | CLK_LINE);
		if (ct_get_baud (c))
			outb (c->TXS, txs | CLK_INT);
		else
			outb (c->TXS, txs | CLK_LINE);

		c->board->bcr1 |= txcout;
		outb (BCR1(c->board->port), c->board->bcr1);

		outb (c->MD2, *(unsigned char*)&c->opt.md2);
		return;
	}
}

/*
 * Turn local loopback on/off
 */
void ct_set_loop (ct_chan_t *c, int on)
{
	if (on)
		ct_enable_loop (c);
	else
		ct_disable_loop (c);
}

int ct_get_loop (ct_chan_t *c)
{
	if (c->mode == M_E1) {
		unsigned short p = c->num ? E1CS1 (c->board->port) :
					    E1CS0 (c->board->port);

		return cte_in (p, DS_CCR2) & CCR2_LLOOP;
	}
	if (c->mode == M_G703)
		return c->lx & LX_LLOOP;

	/* M_HDLC */
	return (c->opt.md2.loop & MD2_LLOOP) != 0;
}

void ct_set_phony (ct_chan_t *c, int on)
{
	/* Valid only for TauPCI-E1. */
	if (c->board->type != B_TAU_E1D &&
	    c->board->type != B_TAU2_E1D)
		return;
	c->gopt.phony = (on != 0);
	if (c->gopt.phony) {
		c->board->e1syn |= c->num ? E1SYN_ENS1 : E1SYN_ENS0;
		/* No receive/transmit crc. */
		c->hopt.md0.crc = 0;
	} else {
		c->board->e1syn &= ~(c->num ? E1SYN_ENS1 : E1SYN_ENS0);
		/* Enable crc. */
		c->hopt.md0.crc = 1;
	}
	outb (c->MD0, BYTE c->hopt.md0);
	outb (E1SYN(c->board->port), c->board->e1syn);
}

void ct_start_receiver (ct_chan_t *c, int dma, unsigned long buf,
	unsigned len, unsigned long desc, unsigned long lim)
{
	int ier0 = inb (IER0(c->board->port));
	int ier1 = inb (IER1(c->board->port));
	int ier2 = inb (IER2(c->board->port));
	int ie0 = inb (c->IE0);
	int ie2 = inb (c->IE2);

	if (dma) {
		ier1 |= c->num ? (IER1_RX_DMERE_1 | IER1_RX_DME_1) :
			(IER1_RX_DMERE_0 | IER1_RX_DME_0);
		if (c->mode == M_ASYNC) {
			ier0 |= c->num ? IER0_RX_INTE_1 : IER0_RX_INTE_0;
			ie0 |= IE0_RX_INTE;
			ie2 |= IE2_OVRNE | IE2_ASYNC_FRMEE | IE2_ASYNC_PEE;
		}
	} else {
		ier0 |= c->num ? (IER0_RX_INTE_1 | IER0_RX_RDYE_1) :
			(IER0_RX_INTE_0 | IER0_RX_RDYE_0);
		ie0 |= IE0_RX_INTE | IE0_RX_RDYE;
	}

	/* Start timer. */
	if (! dma) {
		outb (c->RX.TEPR, TEPR_64);	/* prescale to 16 kHz */
		outw (c->RX.TCONR, 160);	/* period is 10 msec */
		outw (c->RX.TCNT, 0);
		outb (c->RX.TCSR, TCSR_ENABLE | TCSR_INTR);
		ier2 |= c->num ? IER2_RX_TME_1 : IER2_RX_TME_0;
	}

	/* Enable interrupts. */
	outb (IER0(c->board->port), ier0);
	outb (IER1(c->board->port), ier1);
	outb (IER2(c->board->port), ier2);
	outb (c->IE0, ie0);
	outb (c->IE2, ie2);

	/* RXRDY:=1 when the receive buffer has more than RRC chars */
	outb (c->RRC, dma ? c->opt.dma_rrc : c->opt.pio_rrc);

	/* Start receiver. */
	if (dma) {
		outb (c->RX.DCR, DCR_ABORT);
		if (c->mode == M_ASYNC) {
			/* Single-buffer DMA mode. */
			outb (c->RX.DARB, (unsigned char) (buf >> 16));
			outw (c->RX.DAR, (unsigned short) buf);
			outw (c->RX.BCR, len);
			outb (c->RX.DIR, DIR_EOTE);
		} else {
			/* Chained-buffer DMA mode. */
			outb (c->RX.SARB, (unsigned char) (desc >> 16));
			outw (c->RX.EDA, (unsigned short) lim);
			outw (c->RX.CDA, (unsigned short) desc);
			outw (c->RX.BFL, len);
			outb (c->RX.DIR, DIR_CHAIN_EOME | DIR_CHAIN_BOFE |
				DIR_CHAIN_COFE);
		}
		outb (c->RX.DSR, DSR_DMA_ENABLE);
	}
	outb (c->CMD, CMD_RX_ENABLE);
}

void ct_start_transmitter (ct_chan_t *c, int dma, unsigned long buf,
	unsigned len, unsigned long desc, unsigned long lim)
{
	int ier0 = inb (IER0(c->board->port));
	int ier1 = inb (IER1(c->board->port));
	int ie0 = inb (c->IE0);
	int ie1 = inb (c->IE1);

	/* Enable underrun interrupt in HDLC and raw modes. */
	if (c->mode != M_ASYNC) {
		ier0 |= c->num ? IER0_TX_INTE_1 : IER0_TX_INTE_0;
		ie0 |= IE0_TX_INTE;
		ie1 |= IE1_HDLC_UDRNE;
	}
	if (dma)
		ier1 |= c->num ? (IER1_TX_DMERE_1 | IER1_TX_DME_1) :
			(IER1_TX_DMERE_0 | IER1_TX_DME_0);
	else {
		ier0 |= c->num ? IER0_TX_RDYE_1 : IER0_TX_RDYE_0;
		ie0 |= IE0_TX_RDYE;
	}

	/* Enable interrupts. */
	outb (IER0(c->board->port), ier0);
	outb (IER1(c->board->port), ier1);
	outb (c->IE0, ie0);
	outb (c->IE1, ie1);

	/* TXRDY:=1 when the transmit buffer has TRC0 or less chars,
	 * TXRDY:=0 when the transmit buffer has more than TRC1 chars */
	outb (c->TRC0, dma ? c->opt.dma_trc0 : c->opt.pio_trc0);
	outb (c->TRC1, dma ? c->opt.dma_trc1 : c->opt.pio_trc1);

	/* Start transmitter. */
	if (dma) {
		outb (c->TX.DCR, DCR_ABORT);
		if (c->mode == M_ASYNC) {
			/* Single-buffer DMA mode. */
			outb (c->TX.SARB, (unsigned char) (buf >> 16));
			outw (c->TX.SAR, (unsigned short) buf);
			outw (c->TX.BCR, len);
			outb (c->TX.DIR, DIR_EOTE);
		} else {
			/* Chained-buffer DMA mode. */
			outb (c->TX.SARB, (unsigned char) (desc >> 16));
			outw (c->TX.EDA, (unsigned short) lim);
			outw (c->TX.CDA, (unsigned short) desc);
			outb (c->TX.DIR, /* DIR_CHAIN_EOME | */ DIR_CHAIN_BOFE |
				DIR_CHAIN_COFE);
		}
		/* Set DSR_DMA_ENABLE to begin! */
	}
	outb (c->CMD, CMD_TX_ENABLE);

	/* Clear errors. */
	if (c->board->type == B_TAU_G703) {
		outb (GERR(c->board->port), 0xff);
		outb (GLDR(c->board->port), 0xff);
	}
}

/*
 * Control DTR signal for the channel.
 * Turn it on/off.
 */
void ct_set_dtr (ct_chan_t *c, int on)
{
	if (on) {
		c->dtr = 1;
		c->board->bcr1 |= c->num ? BCR1_DTR1 : BCR1_DTR0;
	} else {
		c->dtr = 0;
		c->board->bcr1 &= ~(c->num ? BCR1_DTR1 : BCR1_DTR0);
	}
	outb (BCR1(c->board->port), c->board->bcr1);
}

/*
 * Control RTS signal for the channel.
 * Turn it on/off.
 */
void ct_set_rts (ct_chan_t *c, int on)
{
	c->rts = (on != 0);
	if (c->rts)
		outb (c->CTL, inb (c->CTL) & ~CTL_RTS_INV);
	else
		outb (c->CTL, inb (c->CTL) | CTL_RTS_INV);
}

/*
 * Control BREAK state in asynchronous mode.
 * Turn it on/off.
 */
void ct_set_brk (ct_chan_t *c, int on)
{
	if (c->mode != M_ASYNC)
		return;
	if (on)
		outb (c->CTL, inb (c->CTL) | CTL_BRK);
	else
		outb (c->CTL, inb (c->CTL) & ~CTL_BRK);
}

/*
 * Get the state of DSR signal of the channel.
 */
int ct_get_dsr (ct_chan_t *c)
{
	return (inb (BSR1(c->board->port)) &
		(c->num ? BSR1_DSR1 : BSR1_DSR0)) != 0;
}

/*
 * Get the G.703 line signal level.
 */
int ct_get_lq (ct_chan_t *c)
{
	unsigned char q1, q2, q3;
	static int lq_to_santibells [] = { 0, 95, 195, 285 };
	int i;

	if (! (c->type & T_G703))
		return 0;
	q1 = inb (GLQ (c->board->port));
	/* Repeat reading the register to produce a 10-usec delay. */
	for (i=0; i<20; ++i)
		q2 = inb (GLQ (c->board->port));
	for (i=0; i<20; ++i)
		q3 = inb (GLQ (c->board->port));
	if (c->num) {
		q1 >>= GLQ_SHIFT;
		q2 >>= GLQ_SHIFT;
		q3 >>= GLQ_SHIFT;
	}
	q1 &= GLQ_MASK;
	q2 &= GLQ_MASK;
	q3 &= GLQ_MASK;
	if (q1 <= q2 && q2 <= q3) return lq_to_santibells [q2];
	if (q2 <= q3 && q3 <= q1) return lq_to_santibells [q3];
	if (q3 <= q1 && q1 <= q2) return lq_to_santibells [q1];
	if (q1 <= q3 && q3 <= q2) return lq_to_santibells [q3];
	if (q3 <= q2 && q2 <= q1) return lq_to_santibells [q2];
	/* if (q2 <= q1 && q1 <= q3) */ return lq_to_santibells [q1];
}

/*
 * Get the state of CARRIER signal of the channel.
 */
int ct_get_cd (ct_chan_t *c)
{
	return (inb (c->ST3) & ST3_DCD_INV) == 0;
}

/*
 * Get the state of CTS signal of the channel.
 */
int ct_get_cts (ct_chan_t *c)
{
	return (inb (c->ST3) & ST3_CTS_INV) == 0;
}

/*
 * Turn LED on/off.
 */
void ct_led (ct_board_t *b, int on)
{
	switch (b->type) {
	case B_TAU_G703:
	case B_TAU_G703C:
	case B_TAU2_G703:
		if (on) b->gmd2 |= GMD2_LED;
		else	b->gmd2 &= ~GMD2_LED;
		outb (GMD2(b->port), b->gmd2);
		break;
	default:
		if (on) b->e1cfg |= E1CFG_LED;
		else	b->e1cfg &= ~E1CFG_LED;
		outb (E1CFG(b->port), b->e1cfg);
		break;
	}
}

void ct_disable_dma (ct_board_t *b)
{
	/* Disable DMA channel. */
	outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR);
}

void ct_compute_clock (long hz, long baud, int *txbr, int *tmc)
{
	if (baud < 100)
		baud = 100;
	*txbr = 0;
	if (4*baud > 3*hz)
		*tmc = 1;
	else {
		while (((hz / baud) >> ++*txbr) > 256)
			continue;
		*tmc = (((2 * hz / baud) >> *txbr) + 1) / 2;
	}
}

/*
 * Access to DS2153 chips on the Tau/E1 board.
 * Examples:
 *	val = cte_in (E1CSi (base), DS_RCR1)
 *	cte_out (E1CSi (base), DS_CCR1, val)
 *	val = cte_ins (E1CSi (base), DS_SSR)
 */
unsigned char cte_in (port_t base, unsigned char reg)
{
	outb (base, reg);
	return inb (E1DAT (base & 0x3e0));
}

void cte_out (port_t base, unsigned char reg, unsigned char val)
{
	outb (base, reg);
	outb (E1DAT (base & 0x3e0), val);
}

/*
 * Get the DS2153 status register, using write-read-write scheme.
 */
unsigned char cte_ins (port_t base, unsigned char reg,
	unsigned char mask)
{
	unsigned char val;
	port_t rw = E1DAT (base & 0x3e0);

	outb (base, reg); outb (rw, mask);		/* lock bits */
	outb (base, reg); val = inb (rw) & mask;	/* get values */
	outb (base, reg); outb (rw, val);		/* unlock bits */
	return val;
}

/*
 * Access to 8530 chip on the Tau/E1 board.
 * Examples:
 *	val = cte_in2 (base, AM_RSR | AM_A)
 *	cte_out2 (base, AM_IMR, val)
 */
unsigned char cte_in2 (port_t base, unsigned char reg)
{
	outb (E1CS2(base), E1CS2_SCC | reg >> 4);
	outb (E1DAT(base), reg & 15);
	return inb (E1DAT(base));
}

void cte_out2 (port_t base, unsigned char reg, unsigned char val)
{
	outb (E1CS2(base), E1CS2_SCC | reg >> 4);
	outb (E1DAT(base), reg & 15);
	outb (E1DAT(base), val);
}

/*
 * Read the data from the 8530 receive fifo.
 */
unsigned char cte_in2d (ct_chan_t *c)
{
	outb (E1CS2(c->board->port), E1CS2_SCC | E1CS2_DC |
		(c->num ? 0 : E1CS2_AB));
	return inb (E1DAT(c->board->port));
}

/*
 * Send the 8530 command.
 */
void cte_out2c (ct_chan_t *c, unsigned char val)
{
	outb (E1CS2(c->board->port), E1CS2_SCC | (c->num ? 0 : E1CS2_AB));
	outb (E1DAT(c->board->port), val);
}

/*
 * Write the data to the 8530 transmit fifo.
 */
void cte_out2d (ct_chan_t *c, unsigned char val)
{
	outb (E1CS2(c->board->port), E1CS2_SCC | E1CS2_DC |
		(c->num ? 0 : E1CS2_AB));
	outb (E1DAT(c->board->port), val);
}

/*
 * Access to LXT318 chip on the Tau/G.703 board.
 * Examples:
 *	val = ctg_inx (c)
 *	ctg_outx (c, val)
 */
static void ctg_output (port_t port, unsigned char val, unsigned char v0)
{
	int i;

	for (i=0; i<8; ++i) {
		unsigned char v = v0;
		if ((val >> i) & 1)
			v |= GMD0_SDI;
		outb (port, v);
		outb (port, v);
		outb (port, v);
		outb (port, v);
		outb (port, v | GMD0_SCLK);
		outb (port, v | GMD0_SCLK);
		outb (port, v | GMD0_SCLK);
		outb (port, v | GMD0_SCLK);
	}
	outb (port, v0);
}

void ctg_outx (ct_chan_t *c, unsigned char reg, unsigned char val)
{
	port_t port = GMD0(c->board->port);

	outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
	outb (GMD1(c->board->port), c->board->gmd1 |
		(c->num ? GMD1_NCS0 : GMD1_NCS1));
	ctg_output (port, (reg << 1) | LX_WRITE, c->board->gmd0);
	ctg_output (port, val, c->board->gmd0);
	outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
}

unsigned char ctg_inx (ct_chan_t *c, unsigned char reg)
{
	port_t port = GMD0(c->board->port);
	port_t data = GLDR(c->board->port);
	unsigned char val = 0, mask = c->num ? GLDR_C1 : GLDR_C0;
	int i;

	outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
	outb (GMD1(c->board->port), c->board->gmd1 |
		(c->num ? GMD1_NCS0 : GMD1_NCS1));
	ctg_output (port, (reg << 1) | LX_READ, c->board->gmd0);
	for (i=0; i<8; ++i) {
		outb (port, c->board->gmd0 | GMD0_SCLK);
		if (inb (data) & mask)
			val |= 1 << i;
		outb (port, c->board->gmd0);
	}
	outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
	return val;
}

/*
 * Adapter options
 */
ct_board_opt_t ct_board_opt_dflt = {
	0,			/* board control register 2 */
	{			/* DMA priority control register */
		PCR_PRIO_ROTATE,
		0,		/* all channels share the bus hold */
		0,		/* hold the bus until all transfers done */
	},
	CFG_A,			/* E1/G.703 config: two independent channels */
	GCLK_INT,		/* E1/G.703 chan 0 internal tx clock source */
	GCLK_INT,		/* E1/G.703 chan 1 internal tx clock source */
	~0UL << 1,		/* E1 channel 0 timeslots 1..31 */
	~0UL << 1,		/* E1 channel 1 timeslots 1..31 */
	0,			/* no E1 subchannel timeslots */
};

/*
 * Mode-independent channel options
 */
ct_chan_opt_t ct_chan_opt_dflt = {
	{			/* mode register 2 */
		MD2_FDX,	/* full duplex communication */
		0,		/* empty ADPLL clock rate */
		MD2_ENCOD_NRZ,	/* NRZ encoding */
	},
				/* DMA mode FIFO marks */
	15, 24, 30,		/* rx ready, tx empty, tx full */
				/* port i/o mode FIFO marks */
	15, 16, 30,		/* rx ready, tx empty, tx full */
};

/*
 * Default HDLC options
 */
ct_opt_hdlc_t ct_opt_hdlc_dflt = {
	{			/* mode register 0 */
		1,		/* CRC preset to all ones (V.41) */
		1,		/* CRC-CCITT */
		1,		/* enable CRC */
		0,		/* disable automatic CTS/DCD */
		MD0_MODE_HDLC,	/* HDLC mode */
	},
	{			/* mode register 1 */
		MD1_ADDR_NOCHK, /* do not check address field */
	},
	CTL_IDLE_PTRN | CTL_UDRN_ABORT | CTL_RTS_INV,	/* control register */
	0, 0,			/* empty sync/address registers 0,1 */
	CLK_LINE,		/* receive clock source: RXC line input */
	CLK_LINE,		/* transmit clock source: TXC line input */
};

/*
 * Default E1/G.703 options
 */
ct_opt_g703_t ct_opt_g703_dflt = {
	1,			/* HDB3 enable */
	0,			/* precoder disable */
	GTEST_DIS,		/* test disabled, normal operation */
	0,			/* CRC4 disable */
	0,			/* CCS signaling */
	0,			/* low gain */
	0,			/* no raw mode */
	0,			/* no PCM2 precoder compatibility */
	2048,			/* data rate 2048 kbit/sec */
};

Man Man