Current Path : /usr/src/sys/dev/cxgbe/common/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/dev/cxgbe/common/t4_hw.c |
/*- * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/cxgbe/common/t4_hw.c 237925 2012-07-01 13:43:30Z np $"); #include "opt_inet.h" #include "common.h" #include "t4_regs.h" #include "t4_regs_values.h" #include "firmware/t4fw_interface.h" #undef msleep #define msleep(x) pause("t4hw", (x) * hz / 1000) /** * t4_wait_op_done_val - wait until an operation is completed * @adapter: the adapter performing the operation * @reg: the register to check for completion * @mask: a single-bit field within @reg that indicates completion * @polarity: the value of the field when the operation is completed * @attempts: number of check iterations * @delay: delay in usecs between iterations * @valp: where to store the value of the register at completion time * * Wait until an operation is completed by checking a bit in a register * up to @attempts times. If @valp is not NULL the value of the register * at the time it indicated completion is stored there. Returns 0 if the * operation completes and -EAGAIN otherwise. */ int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, int polarity, int attempts, int delay, u32 *valp) { while (1) { u32 val = t4_read_reg(adapter, reg); if (!!(val & mask) == polarity) { if (valp) *valp = val; return 0; } if (--attempts == 0) return -EAGAIN; if (delay) udelay(delay); } } /** * t4_set_reg_field - set a register field to a value * @adapter: the adapter to program * @addr: the register address * @mask: specifies the portion of the register to modify * @val: the new value for the register field * * Sets a register field specified by the supplied mask to the * given value. */ void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, u32 val) { u32 v = t4_read_reg(adapter, addr) & ~mask; t4_write_reg(adapter, addr, v | val); (void) t4_read_reg(adapter, addr); /* flush */ } /** * t4_read_indirect - read indirectly addressed registers * @adap: the adapter * @addr_reg: register holding the indirect address * @data_reg: register holding the value of the indirect register * @vals: where the read register values are stored * @nregs: how many indirect registers to read * @start_idx: index of first indirect register to read * * Reads registers that are accessed indirectly through an address/data * register pair. */ void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, u32 *vals, unsigned int nregs, unsigned int start_idx) { while (nregs--) { t4_write_reg(adap, addr_reg, start_idx); *vals++ = t4_read_reg(adap, data_reg); start_idx++; } } /** * t4_write_indirect - write indirectly addressed registers * @adap: the adapter * @addr_reg: register holding the indirect addresses * @data_reg: register holding the value for the indirect registers * @vals: values to write * @nregs: how many indirect registers to write * @start_idx: address of first indirect register to write * * Writes a sequential block of registers that are accessed indirectly * through an address/data register pair. */ void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, const u32 *vals, unsigned int nregs, unsigned int start_idx) { while (nregs--) { t4_write_reg(adap, addr_reg, start_idx++); t4_write_reg(adap, data_reg, *vals++); } } /* * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor * mechanism. This guarantees that we get the real value even if we're * operating within a Virtual Machine and the Hypervisor is trapping our * Configuration Space accesses. */ u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg) { t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, F_ENABLE | F_LOCALCFG | V_FUNCTION(adap->pf) | V_REGISTER(reg)); return t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA); } /* * Get the reply to a mailbox command and store it in @rpl in big-endian order. */ static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, u32 mbox_addr) { for ( ; nflit; nflit--, mbox_addr += 8) *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); } /* * Handle a FW assertion reported in a mailbox. */ static void fw_asrt(struct adapter *adap, u32 mbox_addr) { struct fw_debug_cmd asrt; get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); CH_ALERT(adap, "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line), ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y)); } #define X_CIM_PF_NOACCESS 0xeeeeeeee /** * t4_wr_mbox_meat - send a command to FW through the given mailbox * @adap: the adapter * @mbox: index of the mailbox to use * @cmd: the command to write * @size: command length in bytes * @rpl: where to optionally store the reply * @sleep_ok: if true we may sleep while awaiting command completion * * Sends the given command to FW through the selected mailbox and waits * for the FW to execute the command. If @rpl is not %NULL it is used to * store the FW's reply to the command. The command and its optional * reply are of the same length. Some FW commands like RESET and * INITIALIZE can take a considerable amount of time to execute. * @sleep_ok determines whether we may sleep while awaiting the response. * If sleeping is allowed we use progressive backoff otherwise we spin. * * The return value is 0 on success or a negative errno on failure. A * failure can happen either because we are not able to execute the * command or FW executes it but signals an error. In the latter case * the return value is the error code indicated by FW (negated). */ int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl, bool sleep_ok) { /* * We delay in small increments at first in an effort to maintain * responsiveness for simple, fast executing commands but then back * off to larger delays to a maximum retry delay. */ static const int delay[] = { 1, 1, 3, 5, 10, 10, 20, 50, 100 }; u32 v; u64 res; int i, ms, delay_idx; const __be64 *p = cmd; u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA); u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL); if ((size & 15) || size > MBOX_LEN) return -EINVAL; v = G_MBOWNER(t4_read_reg(adap, ctl_reg)); for (i = 0; v == X_MBOWNER_NONE && i < 3; i++) v = G_MBOWNER(t4_read_reg(adap, ctl_reg)); if (v != X_MBOWNER_PL) return v ? -EBUSY : -ETIMEDOUT; for (i = 0; i < size; i += 8, p++) t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p)); t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW)); t4_read_reg(adap, ctl_reg); /* flush write */ delay_idx = 0; ms = delay[0]; for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { if (sleep_ok) { ms = delay[delay_idx]; /* last element may repeat */ if (delay_idx < ARRAY_SIZE(delay) - 1) delay_idx++; msleep(ms); } else mdelay(ms); v = t4_read_reg(adap, ctl_reg); if (v == X_CIM_PF_NOACCESS) continue; if (G_MBOWNER(v) == X_MBOWNER_PL) { if (!(v & F_MBMSGVALID)) { t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); continue; } res = t4_read_reg64(adap, data_reg); if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) { fw_asrt(adap, data_reg); res = V_FW_CMD_RETVAL(EIO); } else if (rpl) get_mbox_rpl(adap, rpl, size / 8, data_reg); t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); return -G_FW_CMD_RETVAL((int)res); } } CH_ERR(adap, "command %#x in mailbox %d timed out\n", *(const u8 *)cmd, mbox); return -ETIMEDOUT; } /** * t4_mc_read - read from MC through backdoor accesses * @adap: the adapter * @addr: address of first byte requested * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from MC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc) { int i; if (t4_read_reg(adap, A_MC_BIST_CMD) & F_START_BIST) return -EBUSY; t4_write_reg(adap, A_MC_BIST_CMD_ADDR, addr & ~0x3fU); t4_write_reg(adap, A_MC_BIST_CMD_LEN, 64); t4_write_reg(adap, A_MC_BIST_DATA_PATTERN, 0xc); t4_write_reg(adap, A_MC_BIST_CMD, V_BIST_OPCODE(1) | F_START_BIST | V_BIST_CMD_GAP(1)); i = t4_wait_op_done(adap, A_MC_BIST_CMD, F_START_BIST, 0, 10, 1); if (i) return i; #define MC_DATA(i) MC_BIST_STATUS_REG(A_MC_BIST_STATUS_RDATA, i) for (i = 15; i >= 0; i--) *data++ = ntohl(t4_read_reg(adap, MC_DATA(i))); if (ecc) *ecc = t4_read_reg64(adap, MC_DATA(16)); #undef MC_DATA return 0; } /** * t4_edc_read - read from EDC through backdoor accesses * @adap: the adapter * @idx: which EDC to access * @addr: address of first byte requested * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from EDC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) { int i; idx *= EDC_STRIDE; if (t4_read_reg(adap, A_EDC_BIST_CMD + idx) & F_START_BIST) return -EBUSY; t4_write_reg(adap, A_EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU); t4_write_reg(adap, A_EDC_BIST_CMD_LEN + idx, 64); t4_write_reg(adap, A_EDC_BIST_DATA_PATTERN + idx, 0xc); t4_write_reg(adap, A_EDC_BIST_CMD + idx, V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST); i = t4_wait_op_done(adap, A_EDC_BIST_CMD + idx, F_START_BIST, 0, 10, 1); if (i) return i; #define EDC_DATA(i) (EDC_BIST_STATUS_REG(A_EDC_BIST_STATUS_RDATA, i) + idx) for (i = 15; i >= 0; i--) *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i))); if (ecc) *ecc = t4_read_reg64(adap, EDC_DATA(16)); #undef EDC_DATA return 0; } /** * t4_mem_read - read EDC 0, EDC 1 or MC into buffer * @adap: the adapter * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC * @addr: address within indicated memory type * @len: amount of memory to read * @buf: host memory buffer * * Reads an [almost] arbitrary memory region in the firmware: the * firmware memory address, length and host buffer must be aligned on * 32-bit boudaries. The memory is returned as a raw byte sequence from * the firmware's memory. If this memory contains data structures which * contain multi-byte integers, it's the callers responsibility to * perform appropriate byte order conversions. */ int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len, __be32 *buf) { u32 pos, start, end, offset; int ret; /* * Argument sanity checks ... */ if ((addr & 0x3) || (len & 0x3)) return -EINVAL; /* * The underlaying EDC/MC read routines read 64 bytes at a time so we * need to round down the start and round up the end. We'll start * copying out of the first line at (addr - start) a word at a time. */ start = addr & ~(64-1); end = (addr + len + 64-1) & ~(64-1); offset = (addr - start)/sizeof(__be32); for (pos = start; pos < end; pos += 64, offset = 0) { __be32 data[16]; /* * Read the chip's memory block and bail if there's an error. */ if (mtype == MEM_MC) ret = t4_mc_read(adap, pos, data, NULL); else ret = t4_edc_read(adap, mtype, pos, data, NULL); if (ret) return ret; /* * Copy the data into the caller's memory buffer. */ while (offset < 16 && len > 0) { *buf++ = data[offset++]; len -= sizeof(__be32); } } return 0; } /* * Partial EEPROM Vital Product Data structure. Includes only the ID and * VPD-R header. */ struct t4_vpd_hdr { u8 id_tag; u8 id_len[2]; u8 id_data[ID_LEN]; u8 vpdr_tag; u8 vpdr_len[2]; }; /* * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */ #define EEPROM_MAX_RD_POLL 40 #define EEPROM_MAX_WR_POLL 6 #define EEPROM_STAT_ADDR 0x7bfc #define VPD_BASE 0x400 #define VPD_BASE_OLD 0 #define VPD_LEN 512 #define VPD_INFO_FLD_HDR_SIZE 3 /** * t4_seeprom_read - read a serial EEPROM location * @adapter: adapter to read * @addr: EEPROM virtual address * @data: where to store the read data * * Read a 32-bit word from a location in serial EEPROM using the card's PCI * VPD capability. Note that this function must be called with a virtual * address. */ int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) { u16 val; int attempts = EEPROM_MAX_RD_POLL; unsigned int base = adapter->params.pci.vpd_cap_addr; if (addr >= EEPROMVSIZE || (addr & 3)) return -EINVAL; t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr); do { udelay(10); t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val); } while (!(val & PCI_VPD_ADDR_F) && --attempts); if (!(val & PCI_VPD_ADDR_F)) { CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr); return -EIO; } t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data); *data = le32_to_cpu(*data); return 0; } /** * t4_seeprom_write - write a serial EEPROM location * @adapter: adapter to write * @addr: virtual EEPROM address * @data: value to write * * Write a 32-bit word to a location in serial EEPROM using the card's PCI * VPD capability. Note that this function must be called with a virtual * address. */ int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data) { u16 val; int attempts = EEPROM_MAX_WR_POLL; unsigned int base = adapter->params.pci.vpd_cap_addr; if (addr >= EEPROMVSIZE || (addr & 3)) return -EINVAL; t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, cpu_to_le32(data)); t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr | PCI_VPD_ADDR_F); do { msleep(1); t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val); } while ((val & PCI_VPD_ADDR_F) && --attempts); if (val & PCI_VPD_ADDR_F) { CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr); return -EIO; } return 0; } /** * t4_eeprom_ptov - translate a physical EEPROM address to virtual * @phys_addr: the physical EEPROM address * @fn: the PCI function number * @sz: size of function-specific area * * Translate a physical EEPROM address to virtual. The first 1K is * accessed through virtual addresses starting at 31K, the rest is * accessed through virtual addresses starting at 0. * * The mapping is as follows: * [0..1K) -> [31K..32K) * [1K..1K+A) -> [ES-A..ES) * [1K+A..ES) -> [0..ES-A-1K) * * where A = @fn * @sz, and ES = EEPROM size. */ int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) { fn *= sz; if (phys_addr < 1024) return phys_addr + (31 << 10); if (phys_addr < 1024 + fn) return EEPROMSIZE - fn + phys_addr - 1024; if (phys_addr < EEPROMSIZE) return phys_addr - 1024 - fn; return -EINVAL; } /** * t4_seeprom_wp - enable/disable EEPROM write protection * @adapter: the adapter * @enable: whether to enable or disable write protection * * Enables or disables write protection on the serial EEPROM. */ int t4_seeprom_wp(struct adapter *adapter, int enable) { return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); } /** * get_vpd_keyword_val - Locates an information field keyword in the VPD * @v: Pointer to buffered vpd data structure * @kw: The keyword to search for * * Returns the value of the information field keyword or * -ENOENT otherwise. */ static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw) { int i; unsigned int offset , len; const u8 *buf = &v->id_tag; const u8 *vpdr_len = &v->vpdr_tag; offset = sizeof(struct t4_vpd_hdr); len = (u16)vpdr_len[1] + ((u16)vpdr_len[2] << 8); if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) { return -ENOENT; } for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) { if(memcmp(buf + i , kw , 2) == 0){ i += VPD_INFO_FLD_HDR_SIZE; return i; } i += VPD_INFO_FLD_HDR_SIZE + buf[i+2]; } return -ENOENT; } /** * get_vpd_params - read VPD parameters from VPD EEPROM * @adapter: adapter to read * @p: where to store the parameters * * Reads card parameters stored in VPD EEPROM. */ static int get_vpd_params(struct adapter *adapter, struct vpd_params *p) { int i, ret, addr; int ec, sn, pn, na; u8 vpd[VPD_LEN], csum; const struct t4_vpd_hdr *v; /* * Card information normally starts at VPD_BASE but early cards had * it at 0. */ ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd)); addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD; for (i = 0; i < sizeof(vpd); i += 4) { ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i)); if (ret) return ret; } v = (const struct t4_vpd_hdr *)vpd; #define FIND_VPD_KW(var,name) do { \ var = get_vpd_keyword_val(v , name); \ if (var < 0) { \ CH_ERR(adapter, "missing VPD keyword " name "\n"); \ return -EINVAL; \ } \ } while (0) FIND_VPD_KW(i, "RV"); for (csum = 0; i >= 0; i--) csum += vpd[i]; if (csum) { CH_ERR(adapter, "corrupted VPD EEPROM, actual csum %u\n", csum); return -EINVAL; } FIND_VPD_KW(ec, "EC"); FIND_VPD_KW(sn, "SN"); FIND_VPD_KW(pn, "PN"); FIND_VPD_KW(na, "NA"); #undef FIND_VPD_KW memcpy(p->id, v->id_data, ID_LEN); strstrip(p->id); memcpy(p->ec, vpd + ec, EC_LEN); strstrip(p->ec); i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); strstrip(p->sn); memcpy(p->pn, vpd + pn, min(i, PN_LEN)); strstrip((char *)p->pn); memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); strstrip((char *)p->na); return 0; } /* serial flash and firmware constants and flash config file constants */ enum { SF_ATTEMPTS = 10, /* max retries for SF operations */ /* flash command opcodes */ SF_PROG_PAGE = 2, /* program page */ SF_WR_DISABLE = 4, /* disable writes */ SF_RD_STATUS = 5, /* read status register */ SF_WR_ENABLE = 6, /* enable writes */ SF_RD_DATA_FAST = 0xb, /* read flash */ SF_RD_ID = 0x9f, /* read ID */ SF_ERASE_SECTOR = 0xd8, /* erase sector */ }; /** * sf1_read - read data from the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to read * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @valp: where to store the read data * * Reads up to 4 bytes of data from the serial flash. The location of * the read needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, int lock, u32 *valp) { int ret; if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) return -EBUSY; t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); if (!ret) *valp = t4_read_reg(adapter, A_SF_DATA); return ret; } /** * sf1_write - write data to the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to write * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @val: value to write * * Writes up to 4 bytes of data to the serial flash. The location of * the write needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, int lock, u32 val) { if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) return -EBUSY; t4_write_reg(adapter, A_SF_DATA, val); t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); } /** * flash_wait_op - wait for a flash operation to complete * @adapter: the adapter * @attempts: max number of polls of the status register * @delay: delay between polls in ms * * Wait for a flash operation to complete by polling the status register. */ static int flash_wait_op(struct adapter *adapter, int attempts, int delay) { int ret; u32 status; while (1) { if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) return ret; if (!(status & 1)) return 0; if (--attempts == 0) return -EAGAIN; if (delay) msleep(delay); } } /** * t4_read_flash - read words from serial flash * @adapter: the adapter * @addr: the start address for the read * @nwords: how many 32-bit words to read * @data: where to store the read data * @byte_oriented: whether to store data as bytes or as words * * Read the specified number of 32-bit words from the serial flash. * If @byte_oriented is set the read data is stored as a byte array * (i.e., big-endian), otherwise as 32-bit words in the platform's * natural endianess. */ int t4_read_flash(struct adapter *adapter, unsigned int addr, unsigned int nwords, u32 *data, int byte_oriented) { int ret; if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) return -EINVAL; addr = swab32(addr) | SF_RD_DATA_FAST; if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) return ret; for ( ; nwords; nwords--, data++) { ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); if (nwords == 1) t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ if (ret) return ret; if (byte_oriented) *data = htonl(*data); } return 0; } /** * t4_write_flash - write up to a page of data to the serial flash * @adapter: the adapter * @addr: the start address to write * @n: length of data to write in bytes * @data: the data to write * @byte_oriented: whether to store data as bytes or as words * * Writes up to a page of data (256 bytes) to the serial flash starting * at the given address. All the data must be written to the same page. * If @byte_oriented is set the write data is stored as byte stream * (i.e. matches what on disk), otherwise in big-endian. */ static int t4_write_flash(struct adapter *adapter, unsigned int addr, unsigned int n, const u8 *data, int byte_oriented) { int ret; u32 buf[SF_PAGE_SIZE / 4]; unsigned int i, c, left, val, offset = addr & 0xff; if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) return -EINVAL; val = swab32(addr) | SF_PROG_PAGE; if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) goto unlock; for (left = n; left; left -= c) { c = min(left, 4U); for (val = 0, i = 0; i < c; ++i) val = (val << 8) + *data++; if (!byte_oriented) val = htonl(val); ret = sf1_write(adapter, c, c != left, 1, val); if (ret) goto unlock; } ret = flash_wait_op(adapter, 8, 1); if (ret) goto unlock; t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ /* Read the page to verify the write succeeded */ ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, byte_oriented); if (ret) return ret; if (memcmp(data - n, (u8 *)buf + offset, n)) { CH_ERR(adapter, "failed to correctly write the flash page " "at %#x\n", addr); return -EIO; } return 0; unlock: t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ return ret; } /** * t4_get_fw_version - read the firmware version * @adapter: the adapter * @vers: where to place the version * * Reads the FW version from flash. */ int t4_get_fw_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1, vers, 0); } /** * t4_get_tp_version - read the TP microcode version * @adapter: the adapter * @vers: where to place the version * * Reads the TP microcode version from flash. */ int t4_get_tp_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr, tp_microcode_ver), 1, vers, 0); } /** * t4_check_fw_version - check if the FW is compatible with this driver * @adapter: the adapter * * Checks if an adapter's FW is compatible with the driver. Returns 0 * if there's exact match, a negative error if the version could not be * read or there's a major version mismatch, and a positive value if the * expected major version is found but there's a minor version mismatch. */ int t4_check_fw_version(struct adapter *adapter) { int ret, major, minor, micro; ret = t4_get_fw_version(adapter, &adapter->params.fw_vers); if (!ret) ret = t4_get_tp_version(adapter, &adapter->params.tp_vers); if (ret) return ret; major = G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers); minor = G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers); micro = G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers); if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */ CH_ERR(adapter, "card FW has major version %u, driver wants " "%u\n", major, FW_VERSION_MAJOR); return -EINVAL; } if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO) return 0; /* perfect match */ /* Minor/micro version mismatch. Report it but often it's OK. */ return 1; } /** * t4_flash_erase_sectors - erase a range of flash sectors * @adapter: the adapter * @start: the first sector to erase * @end: the last sector to erase * * Erases the sectors in the given inclusive range. */ static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) { int ret = 0; while (start <= end) { if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 0, 1, SF_ERASE_SECTOR | (start << 8))) != 0 || (ret = flash_wait_op(adapter, 14, 500)) != 0) { CH_ERR(adapter, "erase of flash sector %d failed, " "error %d\n", start, ret); break; } start++; } t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ return ret; } /** * t4_flash_cfg_addr - return the address of the flash configuration file * @adapter: the adapter * * Return the address within the flash where the Firmware Configuration * File is stored. */ unsigned int t4_flash_cfg_addr(struct adapter *adapter) { if (adapter->params.sf_size == 0x100000) return FLASH_FPGA_CFG_START; else return FLASH_CFG_START; } /** * t4_load_cfg - download config file * @adap: the adapter * @cfg_data: the cfg text file to write * @size: text file size * * Write the supplied config text file to the card's serial flash. */ int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) { int ret, i, n; unsigned int addr; unsigned int flash_cfg_start_sec; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; addr = t4_flash_cfg_addr(adap); flash_cfg_start_sec = addr / SF_SEC_SIZE; if (size > FLASH_CFG_MAX_SIZE) { CH_ERR(adap, "cfg file too large, max is %u bytes\n", FLASH_CFG_MAX_SIZE); return -EFBIG; } i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ sf_sec_size); ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, flash_cfg_start_sec + i - 1); /* * If size == 0 then we're simply erasing the FLASH sectors associated * with the on-adapter Firmware Configuration File. */ if (ret || size == 0) goto out; /* this will write to the flash up to SF_PAGE_SIZE at a time */ for (i = 0; i< size; i+= SF_PAGE_SIZE) { if ( (size - i) < SF_PAGE_SIZE) n = size - i; else n = SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, n, cfg_data, 1); if (ret) goto out; addr += SF_PAGE_SIZE; cfg_data += SF_PAGE_SIZE; } out: if (ret) CH_ERR(adap, "config file %s failed %d\n", (size == 0 ? "clear" : "download"), ret); return ret; } /** * t4_load_fw - download firmware * @adap: the adapter * @fw_data: the firmware image to write * @size: image size * * Write the supplied firmware image to the card's serial flash. */ int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) { u32 csum; int ret, addr; unsigned int i; u8 first_page[SF_PAGE_SIZE]; const u32 *p = (const u32 *)fw_data; const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; if (!size) { CH_ERR(adap, "FW image has no data\n"); return -EINVAL; } if (size & 511) { CH_ERR(adap, "FW image size not multiple of 512 bytes\n"); return -EINVAL; } if (ntohs(hdr->len512) * 512 != size) { CH_ERR(adap, "FW image size differs from size in FW header\n"); return -EINVAL; } if (size > FLASH_FW_MAX_SIZE) { CH_ERR(adap, "FW image too large, max is %u bytes\n", FLASH_FW_MAX_SIZE); return -EFBIG; } for (csum = 0, i = 0; i < size / sizeof(csum); i++) csum += ntohl(p[i]); if (csum != 0xffffffff) { CH_ERR(adap, "corrupted firmware image, checksum %#x\n", csum); return -EINVAL; } i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ ret = t4_flash_erase_sectors(adap, FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1); if (ret) goto out; /* * We write the correct version at the end so the driver can see a bad * version if the FW write fails. Start by writing a copy of the * first page with a bad version. */ memcpy(first_page, fw_data, SF_PAGE_SIZE); ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff); ret = t4_write_flash(adap, FLASH_FW_START, SF_PAGE_SIZE, first_page, 1); if (ret) goto out; addr = FLASH_FW_START; for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { addr += SF_PAGE_SIZE; fw_data += SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1); if (ret) goto out; } ret = t4_write_flash(adap, FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1); out: if (ret) CH_ERR(adap, "firmware download failed, error %d\n", ret); return ret; } /* BIOS boot headers */ typedef struct pci_expansion_rom_header { u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ u8 reserved[22]; /* Reserved per processor Architecture data */ u8 pcir_offset[2]; /* Offset to PCI Data Structure */ } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */ /* Legacy PCI Expansion ROM Header */ typedef struct legacy_pci_expansion_rom_header { u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ u8 size512; /* Current Image Size in units of 512 bytes */ u8 initentry_point[4]; u8 cksum; /* Checksum computed on the entire Image */ u8 reserved[16]; /* Reserved */ u8 pcir_offset[2]; /* Offset to PCI Data Struture */ } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */ /* EFI PCI Expansion ROM Header */ typedef struct efi_pci_expansion_rom_header { u8 signature[2]; // ROM signature. The value 0xaa55 u8 initialization_size[2]; /* Units 512. Includes this header */ u8 efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */ u8 efi_subsystem[2]; /* Subsystem value for EFI image header */ u8 efi_machine_type[2]; /* Machine type from EFI image header */ u8 compression_type[2]; /* Compression type. */ /* * Compression type definition * 0x0: uncompressed * 0x1: Compressed * 0x2-0xFFFF: Reserved */ u8 reserved[8]; /* Reserved */ u8 efi_image_header_offset[2]; /* Offset to EFI Image */ u8 pcir_offset[2]; /* Offset to PCI Data Structure */ } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */ /* PCI Data Structure Format */ typedef struct pcir_data_structure { /* PCI Data Structure */ u8 signature[4]; /* Signature. The string "PCIR" */ u8 vendor_id[2]; /* Vendor Identification */ u8 device_id[2]; /* Device Identification */ u8 vital_product[2]; /* Pointer to Vital Product Data */ u8 length[2]; /* PCIR Data Structure Length */ u8 revision; /* PCIR Data Structure Revision */ u8 class_code[3]; /* Class Code */ u8 image_length[2]; /* Image Length. Multiple of 512B */ u8 code_revision[2]; /* Revision Level of Code/Data */ u8 code_type; /* Code Type. */ /* * PCI Expansion ROM Code Types * 0x00: Intel IA-32, PC-AT compatible. Legacy * 0x01: Open Firmware standard for PCI. FCODE * 0x02: Hewlett-Packard PA RISC. HP reserved * 0x03: EFI Image. EFI * 0x04-0xFF: Reserved. */ u8 indicator; /* Indicator. Identifies the last image in the ROM */ u8 reserved[2]; /* Reserved */ } pcir_data_t; /* PCI__DATA_STRUCTURE */ /* BOOT constants */ enum { BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */ BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */ BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */ BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */ BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment */ VENDOR_ID = 0x1425, /* Vendor ID */ PCIR_SIGNATURE = 0x52494350 /* PCIR signature */ }; /* * modify_device_id - Modifies the device ID of the Boot BIOS image * @adatper: the device ID to write. * @boot_data: the boot image to modify. * * Write the supplied device ID to the boot BIOS image. */ static void modify_device_id(int device_id, u8 *boot_data) { legacy_pci_exp_rom_header_t *header; pcir_data_t *pcir_header; u32 cur_header = 0; /* * Loop through all chained images and change the device ID's */ while (1) { header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header]; pcir_header = (pcir_data_t *) &boot_data[cur_header + le16_to_cpu(*(u16*)header->pcir_offset)]; /* * Only modify the Device ID if code type is Legacy or HP. * 0x00: Okay to modify * 0x01: FCODE. Do not be modify * 0x03: Okay to modify * 0x04-0xFF: Do not modify */ if (pcir_header->code_type == 0x00) { u8 csum = 0; int i; /* * Modify Device ID to match current adatper */ *(u16*) pcir_header->device_id = device_id; /* * Set checksum temporarily to 0. * We will recalculate it later. */ header->cksum = 0x0; /* * Calculate and update checksum */ for (i = 0; i < (header->size512 * 512); i++) csum += (u8)boot_data[cur_header + i]; /* * Invert summed value to create the checksum * Writing new checksum value directly to the boot data */ boot_data[cur_header + 7] = -csum; } else if (pcir_header->code_type == 0x03) { /* * Modify Device ID to match current adatper */ *(u16*) pcir_header->device_id = device_id; } /* * Check indicator element to identify if this is the last * image in the ROM. */ if (pcir_header->indicator & 0x80) break; /* * Move header pointer up to the next image in the ROM. */ cur_header += header->size512 * 512; } } /* * t4_load_boot - download boot flash * @adapter: the adapter * @boot_data: the boot image to write * @boot_addr: offset in flash to write boot_data * @size: image size * * Write the supplied boot image to the card's serial flash. * The boot image has the following sections: a 28-byte header and the * boot image. */ int t4_load_boot(struct adapter *adap, u8 *boot_data, unsigned int boot_addr, unsigned int size) { pci_exp_rom_header_t *header; int pcir_offset ; pcir_data_t *pcir_header; int ret, addr; uint16_t device_id; unsigned int i; unsigned int boot_sector = boot_addr * 1024; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; /* * Make sure the boot image does not encroach on the firmware region */ if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { CH_ERR(adap, "boot image encroaching on firmware region\n"); return -EFBIG; } /* * Number of sectors spanned */ i = DIV_ROUND_UP(size ? size : FLASH_BOOTCFG_MAX_SIZE, sf_sec_size); ret = t4_flash_erase_sectors(adap, boot_sector >> 16, (boot_sector >> 16) + i - 1); /* * If size == 0 then we're simply erasing the FLASH sectors associated * with the on-adapter option ROM file */ if (ret || (size == 0)) goto out; /* Get boot header */ header = (pci_exp_rom_header_t *)boot_data; pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset); /* PCIR Data Structure */ pcir_header = (pcir_data_t *) &boot_data[pcir_offset]; /* * Perform some primitive sanity testing to avoid accidentally * writing garbage over the boot sectors. We ought to check for * more but it's not worth it for now ... */ if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { CH_ERR(adap, "boot image too small/large\n"); return -EFBIG; } /* * Check BOOT ROM header signature */ if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) { CH_ERR(adap, "Boot image missing signature\n"); return -EINVAL; } /* * Check PCI header signature */ if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) { CH_ERR(adap, "PCI header missing signature\n"); return -EINVAL; } /* * Check Vendor ID matches Chelsio ID */ if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) { CH_ERR(adap, "Vendor ID missing signature\n"); return -EINVAL; } /* * Retrieve adapter's device ID */ t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id); /* Want to deal with PF 0 so I strip off PF 4 indicator */ device_id = (device_id & 0xff) | 0x4000; /* * Check PCIE Device ID */ if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) { /* * Change the device ID in the Boot BIOS image to match * the Device ID of the current adapter. */ modify_device_id(device_id, boot_data); } /* * Skip over the first SF_PAGE_SIZE worth of data and write it after * we finish copying the rest of the boot image. This will ensure * that the BIOS boot header will only be written if the boot image * was written in full. */ addr = boot_sector; for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { addr += SF_PAGE_SIZE; boot_data += SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0); if (ret) goto out; } ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, boot_data, 0); out: if (ret) CH_ERR(adap, "boot image download failed, error %d\n", ret); return ret; } /** * t4_read_cimq_cfg - read CIM queue configuration * @adap: the adapter * @base: holds the queue base addresses in bytes * @size: holds the queue sizes in bytes * @thres: holds the queue full thresholds in bytes * * Returns the current configuration of the CIM queues, starting with * the IBQs, then the OBQs. */ void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) { unsigned int i, v; for (i = 0; i < CIM_NUM_IBQ; i++) { t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT | V_QUENUMSELECT(i)); v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); *base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */ *size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */ *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */ } for (i = 0; i < CIM_NUM_OBQ; i++) { t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | V_QUENUMSELECT(i)); v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); *base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */ *size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */ } } /** * t4_read_cim_ibq - read the contents of a CIM inbound queue * @adap: the adapter * @qid: the queue index * @data: where to store the queue contents * @n: capacity of @data in 32-bit words * * Reads the contents of the selected CIM queue starting at address 0 up * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on * error and the number of 32-bit words actually read on success. */ int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) { int i, err; unsigned int addr; const unsigned int nwords = CIM_IBQ_SIZE * 4; if (qid > 5 || (n & 3)) return -EINVAL; addr = qid * nwords; if (n > nwords) n = nwords; for (i = 0; i < n; i++, addr++) { t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) | F_IBQDBGEN); err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0, 2, 1); if (err) return err; *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA); } t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0); return i; } /** * t4_read_cim_obq - read the contents of a CIM outbound queue * @adap: the adapter * @qid: the queue index * @data: where to store the queue contents * @n: capacity of @data in 32-bit words * * Reads the contents of the selected CIM queue starting at address 0 up * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on * error and the number of 32-bit words actually read on success. */ int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) { int i, err; unsigned int addr, v, nwords; if (qid > 5 || (n & 3)) return -EINVAL; t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | V_QUENUMSELECT(qid)); v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); addr = G_CIMQBASE(v) * 64; /* muliple of 256 -> muliple of 4 */ nwords = G_CIMQSIZE(v) * 64; /* same */ if (n > nwords) n = nwords; for (i = 0; i < n; i++, addr++) { t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) | F_OBQDBGEN); err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0, 2, 1); if (err) return err; *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA); } t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0); return i; } enum { CIM_QCTL_BASE = 0, CIM_CTL_BASE = 0x2000, CIM_PBT_ADDR_BASE = 0x2800, CIM_PBT_LRF_BASE = 0x3000, CIM_PBT_DATA_BASE = 0x3800 }; /** * t4_cim_read - read a block from CIM internal address space * @adap: the adapter * @addr: the start address within the CIM address space * @n: number of words to read * @valp: where to store the result * * Reads a block of 4-byte words from the CIM intenal address space. */ int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, unsigned int *valp) { int ret = 0; if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) return -EBUSY; for ( ; !ret && n--; addr += 4) { t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr); ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 0, 5, 2); if (!ret) *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA); } return ret; } /** * t4_cim_write - write a block into CIM internal address space * @adap: the adapter * @addr: the start address within the CIM address space * @n: number of words to write * @valp: set of values to write * * Writes a block of 4-byte words into the CIM intenal address space. */ int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, const unsigned int *valp) { int ret = 0; if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) return -EBUSY; for ( ; !ret && n--; addr += 4) { t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++); t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE); ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 0, 5, 2); } return ret; } static int t4_cim_write1(struct adapter *adap, unsigned int addr, unsigned int val) { return t4_cim_write(adap, addr, 1, &val); } /** * t4_cim_ctl_read - read a block from CIM control region * @adap: the adapter * @addr: the start address within the CIM control region * @n: number of words to read * @valp: where to store the result * * Reads a block of 4-byte words from the CIM control region. */ int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n, unsigned int *valp) { return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp); } /** * t4_cim_read_la - read CIM LA capture buffer * @adap: the adapter * @la_buf: where to store the LA data * @wrptr: the HW write pointer within the capture buffer * * Reads the contents of the CIM LA buffer with the most recent entry at * the end of the returned data and with the entry at @wrptr first. * We try to leave the LA in the running state we find it in. */ int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) { int i, ret; unsigned int cfg, val, idx; ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg); if (ret) return ret; if (cfg & F_UPDBGLAEN) { /* LA is running, freeze it */ ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0); if (ret) return ret; } ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); if (ret) goto restart; idx = G_UPDBGLAWRPTR(val); if (wrptr) *wrptr = idx; for (i = 0; i < adap->params.cim_la_size; i++) { ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN); if (ret) break; ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); if (ret) break; if (val & F_UPDBGLARDEN) { ret = -ETIMEDOUT; break; } ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]); if (ret) break; idx = (idx + 1) & M_UPDBGLARDPTR; } restart: if (cfg & F_UPDBGLAEN) { int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, cfg & ~F_UPDBGLARDEN); if (!ret) ret = r; } return ret; } void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, unsigned int *pif_req_wrptr, unsigned int *pif_rsp_wrptr) { int i, j; u32 cfg, val, req, rsp; cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); if (cfg & F_LADBGEN) t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); val = t4_read_reg(adap, A_CIM_DEBUGSTS); req = G_POLADBGWRPTR(val); rsp = G_PILADBGWRPTR(val); if (pif_req_wrptr) *pif_req_wrptr = req; if (pif_rsp_wrptr) *pif_rsp_wrptr = rsp; for (i = 0; i < CIM_PIFLA_SIZE; i++) { for (j = 0; j < 6; j++) { t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) | V_PILADBGRDPTR(rsp)); *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA); *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA); req++; rsp++; } req = (req + 2) & M_POLADBGRDPTR; rsp = (rsp + 2) & M_PILADBGRDPTR; } t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); } void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) { u32 cfg; int i, j, idx; cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); if (cfg & F_LADBGEN) t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); for (i = 0; i < CIM_MALA_SIZE; i++) { for (j = 0; j < 5; j++) { idx = 8 * i + j; t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) | V_PILADBGRDPTR(idx)); *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA); *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA); } } t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); } /** * t4_tp_read_la - read TP LA capture buffer * @adap: the adapter * @la_buf: where to store the LA data * @wrptr: the HW write pointer within the capture buffer * * Reads the contents of the TP LA buffer with the most recent entry at * the end of the returned data and with the entry at @wrptr first. * We leave the LA in the running state we find it in. */ void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) { bool last_incomplete; unsigned int i, cfg, val, idx; cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff; if (cfg & F_DBGLAENABLE) /* freeze LA */ t4_write_reg(adap, A_TP_DBG_LA_CONFIG, adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE)); val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG); idx = G_DBGLAWPTR(val); last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0; if (last_incomplete) idx = (idx + 1) & M_DBGLARPTR; if (wrptr) *wrptr = idx; val &= 0xffff; val &= ~V_DBGLARPTR(M_DBGLARPTR); val |= adap->params.tp.la_mask; for (i = 0; i < TPLA_SIZE; i++) { t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val); la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL); idx = (idx + 1) & M_DBGLARPTR; } /* Wipe out last entry if it isn't valid */ if (last_incomplete) la_buf[TPLA_SIZE - 1] = ~0ULL; if (cfg & F_DBGLAENABLE) /* restore running state */ t4_write_reg(adap, A_TP_DBG_LA_CONFIG, cfg | adap->params.tp.la_mask); } void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) { unsigned int i, j; for (i = 0; i < 8; i++) { u32 *p = la_buf + i; t4_write_reg(adap, A_ULP_RX_LA_CTL, i); j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR); t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j); for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA); } } #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG) /** * t4_link_start - apply link configuration to MAC/PHY * @phy: the PHY to setup * @mac: the MAC to setup * @lc: the requested link configuration * * Set up a port's MAC and PHY according to a desired link configuration. * - If the PHY can auto-negotiate first decide what to advertise, then * enable/disable auto-negotiation as desired, and reset. * - If the PHY does not auto-negotiate just reset it. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, * otherwise do it later based on the outcome of auto-negotiation. */ int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port, struct link_config *lc) { struct fw_port_cmd c; unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO); lc->link_ok = 0; if (lc->requested_fc & PAUSE_RX) fc |= FW_PORT_CAP_FC_RX; if (lc->requested_fc & PAUSE_TX) fc |= FW_PORT_CAP_FC_TX; memset(&c, 0, sizeof(c)); c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port)); c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | FW_LEN16(c)); if (!(lc->supported & FW_PORT_CAP_ANEG)) { c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc); lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); } else if (lc->autoneg == AUTONEG_DISABLE) { c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi); lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); } else c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_restart_aneg - restart autonegotiation * @adap: the adapter * @mbox: mbox to use for the FW command * @port: the port id * * Restarts autonegotiation for the selected port. */ int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) { struct fw_port_cmd c; memset(&c, 0, sizeof(c)); c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port)); c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | FW_LEN16(c)); c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } struct intr_info { unsigned int mask; /* bits to check in interrupt status */ const char *msg; /* message to print or NULL */ short stat_idx; /* stat counter to increment or -1 */ unsigned short fatal; /* whether the condition reported is fatal */ }; /** * t4_handle_intr_status - table driven interrupt handler * @adapter: the adapter that generated the interrupt * @reg: the interrupt status register to process * @acts: table of interrupt actions * * A table driven interrupt handler that applies a set of masks to an * interrupt status word and performs the corresponding actions if the * interrupts described by the mask have occured. The actions include * optionally emitting a warning or alert message. The table is terminated * by an entry specifying mask 0. Returns the number of fatal interrupt * conditions. */ static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, const struct intr_info *acts) { int fatal = 0; unsigned int mask = 0; unsigned int status = t4_read_reg(adapter, reg); for ( ; acts->mask; ++acts) { if (!(status & acts->mask)) continue; if (acts->fatal) { fatal++; CH_ALERT(adapter, "%s (0x%x)\n", acts->msg, status & acts->mask); } else if (acts->msg) CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg, status & acts->mask); mask |= acts->mask; } status &= mask; if (status) /* clear processed interrupts */ t4_write_reg(adapter, reg, status); return fatal; } /* * Interrupt handler for the PCIE module. */ static void pcie_intr_handler(struct adapter *adapter) { static struct intr_info sysbus_intr_info[] = { { F_RNPP, "RXNP array parity error", -1, 1 }, { F_RPCP, "RXPC array parity error", -1, 1 }, { F_RCIP, "RXCIF array parity error", -1, 1 }, { F_RCCP, "Rx completions control array parity error", -1, 1 }, { F_RFTP, "RXFT array parity error", -1, 1 }, { 0 } }; static struct intr_info pcie_port_intr_info[] = { { F_TPCP, "TXPC array parity error", -1, 1 }, { F_TNPP, "TXNP array parity error", -1, 1 }, { F_TFTP, "TXFT array parity error", -1, 1 }, { F_TCAP, "TXCA array parity error", -1, 1 }, { F_TCIP, "TXCIF array parity error", -1, 1 }, { F_RCAP, "RXCA array parity error", -1, 1 }, { F_OTDD, "outbound request TLP discarded", -1, 1 }, { F_RDPE, "Rx data parity error", -1, 1 }, { F_TDUE, "Tx uncorrectable data error", -1, 1 }, { 0 } }; static struct intr_info pcie_intr_info[] = { { F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 }, { F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 }, { F_MSIDATAPERR, "MSI data parity error", -1, 1 }, { F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, { F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, { F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, { F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, { F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 }, { F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 }, { F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, { F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 }, { F_CREQPERR, "PCI CMD channel request parity error", -1, 1 }, { F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, { F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 }, { F_DREQPERR, "PCI DMA channel request parity error", -1, 1 }, { F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, { F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 }, { F_HREQPERR, "PCI HMA channel request parity error", -1, 1 }, { F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, { F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, { F_FIDPERR, "PCI FID parity error", -1, 1 }, { F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 }, { F_MATAGPERR, "PCI MA tag parity error", -1, 1 }, { F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, { F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 }, { F_RXWRPERR, "PCI Rx write parity error", -1, 1 }, { F_RPLPERR, "PCI replay buffer parity error", -1, 1 }, { F_PCIESINT, "PCI core secondary fault", -1, 1 }, { F_PCIEPINT, "PCI core primary fault", -1, 1 }, { F_UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 }, { 0 } }; int fat; fat = t4_handle_intr_status(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, sysbus_intr_info) + t4_handle_intr_status(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, pcie_port_intr_info) + t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE, pcie_intr_info); if (fat) t4_fatal_err(adapter); } /* * TP interrupt handler. */ static void tp_intr_handler(struct adapter *adapter) { static struct intr_info tp_intr_info[] = { { 0x3fffffff, "TP parity error", -1, 1 }, { F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info)) t4_fatal_err(adapter); } /* * SGE interrupt handler. */ static void sge_intr_handler(struct adapter *adapter) { u64 v; u32 err; static struct intr_info sge_intr_info[] = { { F_ERR_CPL_EXCEED_IQE_SIZE, "SGE received CPL exceeding IQE size", -1, 1 }, { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large", -1, 0 }, { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 }, { F_ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 }, { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, "SGE IQID > 1023 received CPL for FL", -1, 0 }, { F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1, 0 }, { F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1, 0 }, { F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1, 0 }, { F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1, 0 }, { F_ERR_ING_CTXT_PRIO, "SGE too many priority ingress contexts", -1, 0 }, { F_ERR_EGR_CTXT_PRIO, "SGE too many priority egress contexts", -1, 0 }, { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 }, { F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 }, { 0 } }; v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) | ((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32); if (v) { CH_ALERT(adapter, "SGE parity error (%#llx)\n", (unsigned long long)v); t4_write_reg(adapter, A_SGE_INT_CAUSE1, v); t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32); } v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info); err = t4_read_reg(adapter, A_SGE_ERROR_STATS); if (err & F_ERROR_QID_VALID) { CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err)); if (err & F_UNCAPTURED_ERROR) CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n"); t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID | F_UNCAPTURED_ERROR); } if (v != 0) t4_fatal_err(adapter); } #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\ F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR) #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\ F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR) /* * CIM interrupt handler. */ static void cim_intr_handler(struct adapter *adapter) { static struct intr_info cim_intr_info[] = { { F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 }, { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, { F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 }, { F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 }, { F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 }, { F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 }, { 0 } }; static struct intr_info cim_upintr_info[] = { { F_RSVDSPACEINT, "CIM reserved space access", -1, 1 }, { F_ILLTRANSINT, "CIM illegal transaction", -1, 1 }, { F_ILLWRINT, "CIM illegal write", -1, 1 }, { F_ILLRDINT, "CIM illegal read", -1, 1 }, { F_ILLRDBEINT, "CIM illegal read BE", -1, 1 }, { F_ILLWRBEINT, "CIM illegal write BE", -1, 1 }, { F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 }, { F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 }, { F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 }, { F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 }, { F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 }, { F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 }, { F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 }, { F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 }, { F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 }, { F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 }, { F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 }, { F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 }, { F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 }, { F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 }, { F_SGLRDPLINT , "CIM single read from PL space", -1, 1 }, { F_SGLWRPLINT , "CIM single write to PL space", -1, 1 }, { F_BLKRDPLINT , "CIM block read from PL space", -1, 1 }, { F_BLKWRPLINT , "CIM block write to PL space", -1, 1 }, { F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 }, { F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 }, { F_TIMEOUTINT , "CIM PIF timeout", -1, 1 }, { F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 }, { 0 } }; int fat; fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, cim_intr_info) + t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE, cim_upintr_info); if (fat) t4_fatal_err(adapter); } /* * ULP RX interrupt handler. */ static void ulprx_intr_handler(struct adapter *adapter) { static struct intr_info ulprx_intr_info[] = { { F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 }, { F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 }, { 0x7fffff, "ULPRX parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info)) t4_fatal_err(adapter); } /* * ULP TX interrupt handler. */ static void ulptx_intr_handler(struct adapter *adapter) { static struct intr_info ulptx_intr_info[] = { { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1, 0 }, { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1, 0 }, { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1, 0 }, { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1, 0 }, { 0xfffffff, "ULPTX parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info)) t4_fatal_err(adapter); } /* * PM TX interrupt handler. */ static void pmtx_intr_handler(struct adapter *adapter) { static struct intr_info pmtx_intr_info[] = { { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 }, { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 }, { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 }, { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 }, { 0xffffff0, "PMTX framing error", -1, 1 }, { F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 }, { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 }, { F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 }, { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1}, { 0 } }; if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info)) t4_fatal_err(adapter); } /* * PM RX interrupt handler. */ static void pmrx_intr_handler(struct adapter *adapter) { static struct intr_info pmrx_intr_info[] = { { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 }, { 0x3ffff0, "PMRX framing error", -1, 1 }, { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 }, { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 }, { F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 }, { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1}, { 0 } }; if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info)) t4_fatal_err(adapter); } /* * CPL switch interrupt handler. */ static void cplsw_intr_handler(struct adapter *adapter) { static struct intr_info cplsw_intr_info[] = { { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 }, { F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 }, { F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 }, { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 }, { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 }, { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info)) t4_fatal_err(adapter); } /* * LE interrupt handler. */ static void le_intr_handler(struct adapter *adap) { static struct intr_info le_intr_info[] = { { F_LIPMISS, "LE LIP miss", -1, 0 }, { F_LIP0, "LE 0 LIP error", -1, 0 }, { F_PARITYERR, "LE parity error", -1, 1 }, { F_UNKNOWNCMD, "LE unknown command", -1, 1 }, { F_REQQPARERR, "LE request queue parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE, le_intr_info)) t4_fatal_err(adap); } /* * MPS interrupt handler. */ static void mps_intr_handler(struct adapter *adapter) { static struct intr_info mps_rx_intr_info[] = { { 0xffffff, "MPS Rx parity error", -1, 1 }, { 0 } }; static struct intr_info mps_tx_intr_info[] = { { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 }, { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 }, { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error", -1, 1 }, { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error", -1, 1 }, { F_BUBBLE, "MPS Tx underflow", -1, 1 }, { F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 }, { F_FRMERR, "MPS Tx framing error", -1, 1 }, { 0 } }; static struct intr_info mps_trc_intr_info[] = { { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 }, { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1, 1 }, { F_MISCPERR, "MPS TRC misc parity error", -1, 1 }, { 0 } }; static struct intr_info mps_stat_sram_intr_info[] = { { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, { 0 } }; static struct intr_info mps_stat_tx_intr_info[] = { { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, { 0 } }; static struct intr_info mps_stat_rx_intr_info[] = { { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, { 0 } }; static struct intr_info mps_cls_intr_info[] = { { F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 }, { F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 }, { F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 }, { 0 } }; int fat; fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE, mps_rx_intr_info) + t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE, mps_tx_intr_info) + t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE, mps_trc_intr_info) + t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM, mps_stat_sram_intr_info) + t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, mps_stat_tx_intr_info) + t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, mps_stat_rx_intr_info) + t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE, mps_cls_intr_info); t4_write_reg(adapter, A_MPS_INT_CAUSE, 0); t4_read_reg(adapter, A_MPS_INT_CAUSE); /* flush */ if (fat) t4_fatal_err(adapter); } #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | F_ECC_UE_INT_CAUSE) /* * EDC/MC interrupt handler. */ static void mem_intr_handler(struct adapter *adapter, int idx) { static const char name[3][5] = { "EDC0", "EDC1", "MC" }; unsigned int addr, cnt_addr, v; if (idx <= MEM_EDC1) { addr = EDC_REG(A_EDC_INT_CAUSE, idx); cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx); } else { addr = A_MC_INT_CAUSE; cnt_addr = A_MC_ECC_STATUS; } v = t4_read_reg(adapter, addr) & MEM_INT_MASK; if (v & F_PERR_INT_CAUSE) CH_ALERT(adapter, "%s FIFO parity error\n", name[idx]); if (v & F_ECC_CE_INT_CAUSE) { u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr)); t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT)); CH_WARN_RATELIMIT(adapter, "%u %s correctable ECC data error%s\n", cnt, name[idx], cnt > 1 ? "s" : ""); } if (v & F_ECC_UE_INT_CAUSE) CH_ALERT(adapter, "%s uncorrectable ECC data error\n", name[idx]); t4_write_reg(adapter, addr, v); if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE)) t4_fatal_err(adapter); } /* * MA interrupt handler. */ static void ma_intr_handler(struct adapter *adapter) { u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE); if (status & F_MEM_PERR_INT_CAUSE) CH_ALERT(adapter, "MA parity error, parity status %#x\n", t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS)); if (status & F_MEM_WRAP_INT_CAUSE) { v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS); CH_ALERT(adapter, "MA address wrap-around error by client %u to" " address %#x\n", G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4); } t4_write_reg(adapter, A_MA_INT_CAUSE, status); t4_fatal_err(adapter); } /* * SMB interrupt handler. */ static void smb_intr_handler(struct adapter *adap) { static struct intr_info smb_intr_info[] = { { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 }, { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 }, { F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info)) t4_fatal_err(adap); } /* * NC-SI interrupt handler. */ static void ncsi_intr_handler(struct adapter *adap) { static struct intr_info ncsi_intr_info[] = { { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 }, { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 }, { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 }, { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info)) t4_fatal_err(adap); } /* * XGMAC interrupt handler. */ static void xgmac_intr_handler(struct adapter *adap, int port) { u32 v = t4_read_reg(adap, PORT_REG(port, A_XGMAC_PORT_INT_CAUSE)); v &= F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; if (!v) return; if (v & F_TXFIFO_PRTY_ERR) CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n", port); if (v & F_RXFIFO_PRTY_ERR) CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n", port); t4_write_reg(adap, PORT_REG(port, A_XGMAC_PORT_INT_CAUSE), v); t4_fatal_err(adap); } /* * PL interrupt handler. */ static void pl_intr_handler(struct adapter *adap) { static struct intr_info pl_intr_info[] = { { F_FATALPERR, "T4 fatal parity error", -1, 1 }, { F_PERRVFID, "PL VFID_MAP parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE, pl_intr_info)) t4_fatal_err(adap); } #define PF_INTR_MASK (F_PFSW | F_PFCIM) #define GLBL_INTR_MASK (F_CIM | F_MPS | F_PL | F_PCIE | F_MC | F_EDC0 | \ F_EDC1 | F_LE | F_TP | F_MA | F_PM_TX | F_PM_RX | F_ULP_RX | \ F_CPL_SWITCH | F_SGE | F_ULP_TX) /** * t4_slow_intr_handler - control path interrupt handler * @adapter: the adapter * * T4 interrupt handler for non-data global interrupt events, e.g., errors. * The designation 'slow' is because it involves register reads, while * data interrupts typically don't involve any MMIOs. */ int t4_slow_intr_handler(struct adapter *adapter) { u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE); if (!(cause & GLBL_INTR_MASK)) return 0; if (cause & F_CIM) cim_intr_handler(adapter); if (cause & F_MPS) mps_intr_handler(adapter); if (cause & F_NCSI) ncsi_intr_handler(adapter); if (cause & F_PL) pl_intr_handler(adapter); if (cause & F_SMB) smb_intr_handler(adapter); if (cause & F_XGMAC0) xgmac_intr_handler(adapter, 0); if (cause & F_XGMAC1) xgmac_intr_handler(adapter, 1); if (cause & F_XGMAC_KR0) xgmac_intr_handler(adapter, 2); if (cause & F_XGMAC_KR1) xgmac_intr_handler(adapter, 3); if (cause & F_PCIE) pcie_intr_handler(adapter); if (cause & F_MC) mem_intr_handler(adapter, MEM_MC); if (cause & F_EDC0) mem_intr_handler(adapter, MEM_EDC0); if (cause & F_EDC1) mem_intr_handler(adapter, MEM_EDC1); if (cause & F_LE) le_intr_handler(adapter); if (cause & F_TP) tp_intr_handler(adapter); if (cause & F_MA) ma_intr_handler(adapter); if (cause & F_PM_TX) pmtx_intr_handler(adapter); if (cause & F_PM_RX) pmrx_intr_handler(adapter); if (cause & F_ULP_RX) ulprx_intr_handler(adapter); if (cause & F_CPL_SWITCH) cplsw_intr_handler(adapter); if (cause & F_SGE) sge_intr_handler(adapter); if (cause & F_ULP_TX) ulptx_intr_handler(adapter); /* Clear the interrupts just processed for which we are the master. */ t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK); (void) t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */ return 1; } /** * t4_intr_enable - enable interrupts * @adapter: the adapter whose interrupts should be enabled * * Enable PF-specific interrupts for the calling function and the top-level * interrupt concentrator for global interrupts. Interrupts are already * enabled at each module, here we just enable the roots of the interrupt * hierarchies. * * Note: this function should be called only when the driver manages * non PF-specific interrupts from the various HW modules. Only one PCI * function at a time should be doing this. */ void t4_intr_enable(struct adapter *adapter) { u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI)); t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 | F_ERR_DROPPED_DB | F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_ERR_EGR_CTXT_PRIO | F_INGRESS_SIZE_ERR | F_EGRESS_SIZE_ERR); t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK); t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf); } /** * t4_intr_disable - disable interrupts * @adapter: the adapter whose interrupts should be disabled * * Disable interrupts. We only disable the top-level interrupt * concentrators. The caller must be a PCI function managing global * interrupts. */ void t4_intr_disable(struct adapter *adapter) { u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI)); t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0); t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0); } /** * t4_intr_clear - clear all interrupts * @adapter: the adapter whose interrupts should be cleared * * Clears all interrupts. The caller must be a PCI function managing * global interrupts. */ void t4_intr_clear(struct adapter *adapter) { static const unsigned int cause_reg[] = { A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE, A_MC_INT_CAUSE, A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS, A_MA_INT_CAUSE, A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1), A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE, MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), A_TP_INT_CAUSE, A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE, A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE, A_MPS_RX_PERR_INT_CAUSE, A_CPL_INTR_CAUSE, MYPF_REG(A_PL_PF_INT_CAUSE), A_PL_PL_INT_CAUSE, A_LE_DB_INT_CAUSE, }; unsigned int i; for (i = 0; i < ARRAY_SIZE(cause_reg); ++i) t4_write_reg(adapter, cause_reg[i], 0xffffffff); t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK); (void) t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */ } /** * hash_mac_addr - return the hash value of a MAC address * @addr: the 48-bit Ethernet MAC address * * Hashes a MAC address according to the hash function used by HW inexact * (hash) address matching. */ static int hash_mac_addr(const u8 *addr) { u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; a ^= b; a ^= (a >> 12); a ^= (a >> 6); return a & 0x3f; } /** * t4_config_rss_range - configure a portion of the RSS mapping table * @adapter: the adapter * @mbox: mbox to use for the FW command * @viid: virtual interface whose RSS subtable is to be written * @start: start entry in the table to write * @n: how many table entries to write * @rspq: values for the "response queue" (Ingress Queue) lookup table * @nrspq: number of values in @rspq * * Programs the selected part of the VI's RSS mapping table with the * provided values. If @nrspq < @n the supplied values are used repeatedly * until the full table range is populated. * * The caller must ensure the values in @rspq are in the range allowed for * @viid. */ int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, int start, int n, const u16 *rspq, unsigned int nrspq) { int ret; const u16 *rsp = rspq; const u16 *rsp_end = rspq + nrspq; struct fw_rss_ind_tbl_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_RSS_IND_TBL_CMD_VIID(viid)); cmd.retval_len16 = htonl(FW_LEN16(cmd)); /* * Each firmware RSS command can accommodate up to 32 RSS Ingress * Queue Identifiers. These Ingress Queue IDs are packed three to * a 32-bit word as 10-bit values with the upper remaining 2 bits * reserved. */ while (n > 0) { int nq = min(n, 32); int nq_packed = 0; __be32 *qp = &cmd.iq0_to_iq2; /* * Set up the firmware RSS command header to send the next * "nq" Ingress Queue IDs to the firmware. */ cmd.niqid = htons(nq); cmd.startidx = htons(start); /* * "nq" more done for the start of the next loop. */ start += nq; n -= nq; /* * While there are still Ingress Queue IDs to stuff into the * current firmware RSS command, retrieve them from the * Ingress Queue ID array and insert them into the command. */ while (nq > 0) { /* * Grab up to the next 3 Ingress Queue IDs (wrapping * around the Ingress Queue ID array if necessary) and * insert them into the firmware RSS command at the * current 3-tuple position within the commad. */ u16 qbuf[3]; u16 *qbp = qbuf; int nqbuf = min(3, nq); nq -= nqbuf; qbuf[0] = qbuf[1] = qbuf[2] = 0; while (nqbuf && nq_packed < 32) { nqbuf--; nq_packed++; *qbp++ = *rsp++; if (rsp >= rsp_end) rsp = rspq; } *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); } /* * Send this portion of the RRS table update to the firmware; * bail out on any errors. */ ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); if (ret) return ret; } return 0; } /** * t4_config_glbl_rss - configure the global RSS mode * @adapter: the adapter * @mbox: mbox to use for the FW command * @mode: global RSS mode * @flags: mode-specific flags * * Sets the global RSS mode. */ int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, unsigned int flags) { struct fw_rss_glb_config_cmd c; memset(&c, 0, sizeof(c)); c.op_to_write = htonl(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); c.retval_len16 = htonl(FW_LEN16(c)); if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { c.u.manual.mode_pkd = htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { c.u.basicvirtual.mode_pkd = htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags); } else return -EINVAL; return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); } /** * t4_config_vi_rss - configure per VI RSS settings * @adapter: the adapter * @mbox: mbox to use for the FW command * @viid: the VI id * @flags: RSS flags * @defq: id of the default RSS queue for the VI. * * Configures VI-specific RSS properties. */ int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, unsigned int flags, unsigned int defq) { struct fw_rss_vi_config_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_RSS_VI_CONFIG_CMD_VIID(viid)); c.retval_len16 = htonl(FW_LEN16(c)); c.u.basicvirtual.defaultq_to_udpen = htonl(flags | V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq)); return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); } /* Read an RSS table row */ static int rd_rss_row(struct adapter *adap, int row, u32 *val) { t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row); return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1, 5, 0, val); } /** * t4_read_rss - read the contents of the RSS mapping table * @adapter: the adapter * @map: holds the contents of the RSS mapping table * * Reads the contents of the RSS hash->queue mapping table. */ int t4_read_rss(struct adapter *adapter, u16 *map) { u32 val; int i, ret; for (i = 0; i < RSS_NENTRIES / 2; ++i) { ret = rd_rss_row(adapter, i, &val); if (ret) return ret; *map++ = G_LKPTBLQUEUE0(val); *map++ = G_LKPTBLQUEUE1(val); } return 0; } /** * t4_read_rss_key - read the global RSS key * @adap: the adapter * @key: 10-entry array holding the 320-bit RSS key * * Reads the global 320-bit RSS key. */ void t4_read_rss_key(struct adapter *adap, u32 *key) { t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10, A_TP_RSS_SECRET_KEY0); } /** * t4_write_rss_key - program one of the RSS keys * @adap: the adapter * @key: 10-entry array holding the 320-bit RSS key * @idx: which RSS key to write * * Writes one of the RSS keys with the given 320-bit value. If @idx is * 0..15 the corresponding entry in the RSS key table is written, * otherwise the global RSS key is written. */ void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx) { t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10, A_TP_RSS_SECRET_KEY0); if (idx >= 0 && idx < 16) t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, V_KEYWRADDR(idx) | F_KEYWREN); } /** * t4_read_rss_pf_config - read PF RSS Configuration Table * @adapter: the adapter * @index: the entry in the PF RSS table to read * @valp: where to store the returned value * * Reads the PF RSS Configuration Table at the specified index and returns * the value found there. */ void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, u32 *valp) { t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, valp, 1, A_TP_RSS_PF0_CONFIG + index); } /** * t4_write_rss_pf_config - write PF RSS Configuration Table * @adapter: the adapter * @index: the entry in the VF RSS table to read * @val: the value to store * * Writes the PF RSS Configuration Table at the specified index with the * specified value. */ void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, u32 val) { t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &val, 1, A_TP_RSS_PF0_CONFIG + index); } /** * t4_read_rss_vf_config - read VF RSS Configuration Table * @adapter: the adapter * @index: the entry in the VF RSS table to read * @vfl: where to store the returned VFL * @vfh: where to store the returned VFH * * Reads the VF RSS Configuration Table at the specified index and returns * the (VFL, VFH) values found there. */ void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, u32 *vfl, u32 *vfh) { u32 vrt; /* * Request that the index'th VF Table values be read into VFL/VFH. */ vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); vrt &= ~(F_VFRDRG | V_VFWRADDR(M_VFWRADDR) | F_VFWREN | F_KEYWREN); vrt |= V_VFWRADDR(index) | F_VFRDEN; t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); /* * Grab the VFL/VFH values ... */ t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, vfl, 1, A_TP_RSS_VFL_CONFIG); t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, vfh, 1, A_TP_RSS_VFH_CONFIG); } /** * t4_write_rss_vf_config - write VF RSS Configuration Table * * @adapter: the adapter * @index: the entry in the VF RSS table to write * @vfl: the VFL to store * @vfh: the VFH to store * * Writes the VF RSS Configuration Table at the specified index with the * specified (VFL, VFH) values. */ void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index, u32 vfl, u32 vfh) { u32 vrt; /* * Load up VFL/VFH with the values to be written ... */ t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &vfl, 1, A_TP_RSS_VFL_CONFIG); t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &vfh, 1, A_TP_RSS_VFH_CONFIG); /* * Write the VFL/VFH into the VF Table at index'th location. */ vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); vrt &= ~(F_VFRDRG | F_VFRDEN | V_VFWRADDR(M_VFWRADDR) | F_KEYWREN); vrt |= V_VFWRADDR(index) | F_VFWREN; t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); } /** * t4_read_rss_pf_map - read PF RSS Map * @adapter: the adapter * * Reads the PF RSS Map register and returns its value. */ u32 t4_read_rss_pf_map(struct adapter *adapter) { u32 pfmap; t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &pfmap, 1, A_TP_RSS_PF_MAP); return pfmap; } /** * t4_write_rss_pf_map - write PF RSS Map * @adapter: the adapter * @pfmap: PF RSS Map value * * Writes the specified value to the PF RSS Map register. */ void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap) { t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &pfmap, 1, A_TP_RSS_PF_MAP); } /** * t4_read_rss_pf_mask - read PF RSS Mask * @adapter: the adapter * * Reads the PF RSS Mask register and returns its value. */ u32 t4_read_rss_pf_mask(struct adapter *adapter) { u32 pfmask; t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &pfmask, 1, A_TP_RSS_PF_MSK); return pfmask; } /** * t4_write_rss_pf_mask - write PF RSS Mask * @adapter: the adapter * @pfmask: PF RSS Mask value * * Writes the specified value to the PF RSS Mask register. */ void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask) { t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA, &pfmask, 1, A_TP_RSS_PF_MSK); } /** * t4_set_filter_mode - configure the optional components of filter tuples * @adap: the adapter * @mode_map: a bitmap selcting which optional filter components to enable * * Sets the filter mode by selecting the optional components to enable * in filter tuples. Returns 0 on success and a negative error if the * requested mode needs more bits than are available for optional * components. */ int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map) { static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 }; int i, nbits = 0; for (i = S_FCOE; i <= S_FRAGMENTATION; i++) if (mode_map & (1 << i)) nbits += width[i]; if (nbits > FILTER_OPT_LEN) return -EINVAL; t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map, 1, A_TP_VLAN_PRI_MAP); return 0; } /** * t4_tp_get_tcp_stats - read TP's TCP MIB counters * @adap: the adapter * @v4: holds the TCP/IP counter values * @v6: holds the TCP/IPv6 counter values * * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. * Either @v4 or @v6 may be %NULL to skip the corresponding stats. */ void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, struct tp_tcp_stats *v6) { u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1]; #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST) #define STAT(x) val[STAT_IDX(x)] #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) if (v4) { t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST); v4->tcpOutRsts = STAT(OUT_RST); v4->tcpInSegs = STAT64(IN_SEG); v4->tcpOutSegs = STAT64(OUT_SEG); v4->tcpRetransSegs = STAT64(RXT_SEG); } if (v6) { t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST); v6->tcpOutRsts = STAT(OUT_RST); v6->tcpInSegs = STAT64(IN_SEG); v6->tcpOutSegs = STAT64(OUT_SEG); v6->tcpRetransSegs = STAT64(RXT_SEG); } #undef STAT64 #undef STAT #undef STAT_IDX } /** * t4_tp_get_err_stats - read TP's error MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's error counters. */ void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st) { t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->macInErrs, 12, A_TP_MIB_MAC_IN_ERR_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlCongDrops, 8, A_TP_MIB_TNL_CNG_DROP_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlTxDrops, 4, A_TP_MIB_TNL_DROP_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->ofldVlanDrops, 4, A_TP_MIB_OFD_VLN_DROP_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tcp6InErrs, 4, A_TP_MIB_TCP_V6IN_ERR_0); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->ofldNoNeigh, 2, A_TP_MIB_OFD_ARP_DROP); } /** * t4_tp_get_proxy_stats - read TP's proxy MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's proxy counters. */ void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st) { t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy, 4, A_TP_MIB_TNL_LPBK_0); } /** * t4_tp_get_cpl_stats - read TP's CPL MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's CPL counters. */ void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st) { t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req, 8, A_TP_MIB_CPL_IN_REQ_0); } /** * t4_tp_get_rdma_stats - read TP's RDMA MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's RDMA counters. */ void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st) { t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_mod, 2, A_TP_MIB_RQE_DFR_MOD); } /** * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port * @adap: the adapter * @idx: the port index * @st: holds the counter values * * Returns the values of TP's FCoE counters for the selected port. */ void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, struct tp_fcoe_stats *st) { u32 val[2]; t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDDP, 1, A_TP_MIB_FCOE_DDP_0 + idx); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDrop, 1, A_TP_MIB_FCOE_DROP_0 + idx); t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx); st->octetsDDP = ((u64)val[0] << 32) | val[1]; } /** * t4_get_usm_stats - read TP's non-TCP DDP MIB counters * @adap: the adapter * @st: holds the counter values * * Returns the values of TP's counters for non-TCP directly-placed packets. */ void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st) { u32 val[4]; t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4, A_TP_MIB_USM_PKTS); st->frames = val[0]; st->drops = val[1]; st->octets = ((u64)val[2] << 32) | val[3]; } /** * t4_read_mtu_tbl - returns the values in the HW path MTU table * @adap: the adapter * @mtus: where to store the MTU values * @mtu_log: where to store the MTU base-2 log (may be %NULL) * * Reads the HW path MTU table. */ void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) { u32 v; int i; for (i = 0; i < NMTUS; ++i) { t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(0xff) | V_MTUVALUE(i)); v = t4_read_reg(adap, A_TP_MTU_TABLE); mtus[i] = G_MTUVALUE(v); if (mtu_log) mtu_log[i] = G_MTUWIDTH(v); } } /** * t4_read_cong_tbl - reads the congestion control table * @adap: the adapter * @incr: where to store the alpha values * * Reads the additive increments programmed into the HW congestion * control table. */ void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) { unsigned int mtu, w; for (mtu = 0; mtu < NMTUS; ++mtu) for (w = 0; w < NCCTRL_WIN; ++w) { t4_write_reg(adap, A_TP_CCTRL_TABLE, V_ROWINDEX(0xffff) | (mtu << 5) | w); incr[mtu][w] = (u16)t4_read_reg(adap, A_TP_CCTRL_TABLE) & 0x1fff; } } /** * t4_read_pace_tbl - read the pace table * @adap: the adapter * @pace_vals: holds the returned values * * Returns the values of TP's pace table in microseconds. */ void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) { unsigned int i, v; for (i = 0; i < NTX_SCHED; i++) { t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i); v = t4_read_reg(adap, A_TP_PACE_TABLE); pace_vals[i] = dack_ticks_to_usec(adap, v); } } /** * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register * @adap: the adapter * @addr: the indirect TP register address * @mask: specifies the field within the register to modify * @val: new value for the field * * Sets a field of an indirect TP register to the given value. */ void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, unsigned int mask, unsigned int val) { t4_write_reg(adap, A_TP_PIO_ADDR, addr); val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask; t4_write_reg(adap, A_TP_PIO_DATA, val); } /** * init_cong_ctrl - initialize congestion control parameters * @a: the alpha values for congestion control * @b: the beta values for congestion control * * Initialize the congestion control parameters. */ static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b) { a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; a[9] = 2; a[10] = 3; a[11] = 4; a[12] = 5; a[13] = 6; a[14] = 7; a[15] = 8; a[16] = 9; a[17] = 10; a[18] = 14; a[19] = 17; a[20] = 21; a[21] = 25; a[22] = 30; a[23] = 35; a[24] = 45; a[25] = 60; a[26] = 80; a[27] = 100; a[28] = 200; a[29] = 300; a[30] = 400; a[31] = 500; b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; b[9] = b[10] = 1; b[11] = b[12] = 2; b[13] = b[14] = b[15] = b[16] = 3; b[17] = b[18] = b[19] = b[20] = b[21] = 4; b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; b[28] = b[29] = 6; b[30] = b[31] = 7; } /* The minimum additive increment value for the congestion control table */ #define CC_MIN_INCR 2U /** * t4_load_mtus - write the MTU and congestion control HW tables * @adap: the adapter * @mtus: the values for the MTU table * @alpha: the values for the congestion control alpha parameter * @beta: the values for the congestion control beta parameter * * Write the HW MTU table with the supplied MTUs and the high-speed * congestion control table with the supplied alpha, beta, and MTUs. * We write the two tables together because the additive increments * depend on the MTUs. */ void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, const unsigned short *alpha, const unsigned short *beta) { static const unsigned int avg_pkts[NCCTRL_WIN] = { 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 28672, 40960, 57344, 81920, 114688, 163840, 229376 }; unsigned int i, w; for (i = 0; i < NMTUS; ++i) { unsigned int mtu = mtus[i]; unsigned int log2 = fls(mtu); if (!(mtu & ((1 << log2) >> 2))) /* round */ log2--; t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) | V_MTUWIDTH(log2) | V_MTUVALUE(mtu)); for (w = 0; w < NCCTRL_WIN; ++w) { unsigned int inc; inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], CC_MIN_INCR); t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | (w << 16) | (beta[w] << 13) | inc); } } } /** * t4_set_pace_tbl - set the pace table * @adap: the adapter * @pace_vals: the pace values in microseconds * @start: index of the first entry in the HW pace table to set * @n: how many entries to set * * Sets (a subset of the) HW pace table. */ int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals, unsigned int start, unsigned int n) { unsigned int vals[NTX_SCHED], i; unsigned int tick_ns = dack_ticks_to_usec(adap, 1000); if (n > NTX_SCHED) return -ERANGE; /* convert values from us to dack ticks, rounding to closest value */ for (i = 0; i < n; i++, pace_vals++) { vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns; if (vals[i] > 0x7ff) return -ERANGE; if (*pace_vals && vals[i] == 0) return -ERANGE; } for (i = 0; i < n; i++, start++) t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]); return 0; } /** * t4_set_sched_bps - set the bit rate for a HW traffic scheduler * @adap: the adapter * @kbps: target rate in Kbps * @sched: the scheduler index * * Configure a Tx HW scheduler for the target rate. */ int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps) { unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; unsigned int clk = adap->params.vpd.cclk * 1000; unsigned int selected_cpt = 0, selected_bpt = 0; if (kbps > 0) { kbps *= 125; /* -> bytes */ for (cpt = 1; cpt <= 255; cpt++) { tps = clk / cpt; bpt = (kbps + tps / 2) / tps; if (bpt > 0 && bpt <= 255) { v = bpt * tps; delta = v >= kbps ? v - kbps : kbps - v; if (delta < mindelta) { mindelta = delta; selected_cpt = cpt; selected_bpt = bpt; } } else if (selected_cpt) break; } if (!selected_cpt) return -EINVAL; } t4_write_reg(adap, A_TP_TM_PIO_ADDR, A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); v = t4_read_reg(adap, A_TP_TM_PIO_DATA); if (sched & 1) v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); else v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); t4_write_reg(adap, A_TP_TM_PIO_DATA, v); return 0; } /** * t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler * @adap: the adapter * @sched: the scheduler index * @ipg: the interpacket delay in tenths of nanoseconds * * Set the interpacket delay for a HW packet rate scheduler. */ int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg) { unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; /* convert ipg to nearest number of core clocks */ ipg *= core_ticks_per_usec(adap); ipg = (ipg + 5000) / 10000; if (ipg > M_TXTIMERSEPQ0) return -EINVAL; t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); v = t4_read_reg(adap, A_TP_TM_PIO_DATA); if (sched & 1) v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg); else v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg); t4_write_reg(adap, A_TP_TM_PIO_DATA, v); t4_read_reg(adap, A_TP_TM_PIO_DATA); return 0; } /** * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler * @adap: the adapter * @sched: the scheduler index * @kbps: the byte rate in Kbps * @ipg: the interpacket delay in tenths of nanoseconds * * Return the current configuration of a HW Tx scheduler. */ void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps, unsigned int *ipg) { unsigned int v, addr, bpt, cpt; if (kbps) { addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); v = t4_read_reg(adap, A_TP_TM_PIO_DATA); if (sched & 1) v >>= 16; bpt = (v >> 8) & 0xff; cpt = v & 0xff; if (!cpt) *kbps = 0; /* scheduler disabled */ else { v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ *kbps = (v * bpt) / 125; } } if (ipg) { addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); v = t4_read_reg(adap, A_TP_TM_PIO_DATA); if (sched & 1) v >>= 16; v &= 0xffff; *ipg = (10000 * v) / core_ticks_per_usec(adap); } } /* * Calculates a rate in bytes/s given the number of 256-byte units per 4K core * clocks. The formula is * * bytes/s = bytes256 * 256 * ClkFreq / 4096 * * which is equivalent to * * bytes/s = 62.5 * bytes256 * ClkFreq_ms */ static u64 chan_rate(struct adapter *adap, unsigned int bytes256) { u64 v = bytes256 * adap->params.vpd.cclk; return v * 62 + v / 2; } /** * t4_get_chan_txrate - get the current per channel Tx rates * @adap: the adapter * @nic_rate: rates for NIC traffic * @ofld_rate: rates for offloaded traffic * * Return the current Tx rates in bytes/s for NIC and offloaded traffic * for each channel. */ void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) { u32 v; v = t4_read_reg(adap, A_TP_TX_TRATE); nic_rate[0] = chan_rate(adap, G_TNLRATE0(v)); nic_rate[1] = chan_rate(adap, G_TNLRATE1(v)); nic_rate[2] = chan_rate(adap, G_TNLRATE2(v)); nic_rate[3] = chan_rate(adap, G_TNLRATE3(v)); v = t4_read_reg(adap, A_TP_TX_ORATE); ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v)); ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v)); ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v)); ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v)); } /** * t4_set_trace_filter - configure one of the tracing filters * @adap: the adapter * @tp: the desired trace filter parameters * @idx: which filter to configure * @enable: whether to enable or disable the filter * * Configures one of the tracing filters available in HW. If @enable is * %0 @tp is not examined and may be %NULL. The user is responsible to * set the single/multiple trace mode by writing to A_MPS_TRC_CFG register * by using "cxgbtool iface reg reg_addr=val" command. See t4_sniffer/ * docs/readme.txt for a complete description of how to setup traceing on * T4. */ int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, int idx, int enable) { int i, ofst = idx * 4; u32 data_reg, mask_reg, cfg; u32 multitrc = F_TRCMULTIFILTER; if (!enable) { t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0); return 0; } /* * TODO - After T4 data book is updated, specify the exact * section below. * * See T4 data book - MPS section for a complete description * of the below if..else handling of A_MPS_TRC_CFG register * value. */ cfg = t4_read_reg(adap, A_MPS_TRC_CFG); if (cfg & F_TRCMULTIFILTER) { /* * If multiple tracers are enabled, then maximum * capture size is 2.5KB (FIFO size of a single channel) * minus 2 flits for CPL_TRACE_PKT header. */ if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) return -EINVAL; } else { /* * If multiple tracers are disabled, to avoid deadlocks * maximum packet capture size of 9600 bytes is recommended. * Also in this mode, only trace0 can be enabled and running. */ multitrc = 0; if (tp->snap_len > 9600 || idx) return -EINVAL; } if (tp->port > 11 || tp->invert > 1 || tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET || tp->min_len > M_TFMINPKTSIZE) return -EINVAL; /* stop the tracer we'll be changing */ t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0); idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH); data_reg = A_MPS_TRC_FILTER0_MATCH + idx; mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx; for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { t4_write_reg(adap, data_reg, tp->data[i]); t4_write_reg(adap, mask_reg, ~tp->mask[i]); } t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst, V_TFCAPTUREMAX(tp->snap_len) | V_TFMINPKTSIZE(tp->min_len)); t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | V_TFPORT(tp->port) | F_TFEN | V_TFINVERTMATCH(tp->invert)); return 0; } /** * t4_get_trace_filter - query one of the tracing filters * @adap: the adapter * @tp: the current trace filter parameters * @idx: which trace filter to query * @enabled: non-zero if the filter is enabled * * Returns the current settings of one of the HW tracing filters. */ void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, int *enabled) { u32 ctla, ctlb; int i, ofst = idx * 4; u32 data_reg, mask_reg; ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst); ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst); *enabled = !!(ctla & F_TFEN); tp->snap_len = G_TFCAPTUREMAX(ctlb); tp->min_len = G_TFMINPKTSIZE(ctlb); tp->skip_ofst = G_TFOFFSET(ctla); tp->skip_len = G_TFLENGTH(ctla); tp->invert = !!(ctla & F_TFINVERTMATCH); tp->port = G_TFPORT(ctla); ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx; data_reg = A_MPS_TRC_FILTER0_MATCH + ofst; mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst; for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { tp->mask[i] = ~t4_read_reg(adap, mask_reg); tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; } } /** * t4_pmtx_get_stats - returns the HW stats from PMTX * @adap: the adapter * @cnt: where to store the count statistics * @cycles: where to store the cycle statistics * * Returns performance statistics from PMTX. */ void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) { int i; for (i = 0; i < PM_NSTATS; i++) { t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1); cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT); cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB); } } /** * t4_pmrx_get_stats - returns the HW stats from PMRX * @adap: the adapter * @cnt: where to store the count statistics * @cycles: where to store the cycle statistics * * Returns performance statistics from PMRX. */ void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) { int i; for (i = 0; i < PM_NSTATS; i++) { t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1); cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT); cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB); } } /** * get_mps_bg_map - return the buffer groups associated with a port * @adap: the adapter * @idx: the port index * * Returns a bitmap indicating which MPS buffer groups are associated * with the given port. Bit i is set if buffer group i is used by the * port. */ static unsigned int get_mps_bg_map(struct adapter *adap, int idx) { u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); if (n == 0) return idx == 0 ? 0xf : 0; if (n == 1) return idx < 2 ? (3 << (2 * idx)) : 0; return 1 << idx; } /** * t4_get_port_stats_offset - collect port stats relative to a previous * snapshot * @adap: The adapter * @idx: The port * @stats: Current stats to fill * @offset: Previous stats snapshot */ void t4_get_port_stats_offset(struct adapter *adap, int idx, struct port_stats *stats, struct port_stats *offset) { u64 *s, *o; int i; t4_get_port_stats(adap, idx, stats); for (i = 0, s = (u64 *)stats, o = (u64 *)offset ; i < (sizeof(struct port_stats)/sizeof(u64)) ; i++, s++, o++) *s -= *o; } /** * t4_get_port_stats - collect port statistics * @adap: the adapter * @idx: the port index * @p: the stats structure to fill * * Collect statistics related to the given port from HW. */ void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) { u32 bgmap = get_mps_bg_map(adap, idx); #define GET_STAT(name) \ t4_read_reg64(adap, PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)) #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) p->tx_pause = GET_STAT(TX_PORT_PAUSE); p->tx_octets = GET_STAT(TX_PORT_BYTES); p->tx_frames = GET_STAT(TX_PORT_FRAMES); p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); p->tx_error_frames = GET_STAT(TX_PORT_ERROR); p->tx_frames_64 = GET_STAT(TX_PORT_64B); p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); p->tx_drop = GET_STAT(TX_PORT_DROP); p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); p->rx_pause = GET_STAT(RX_PORT_PAUSE); p->rx_octets = GET_STAT(RX_PORT_BYTES); p->rx_frames = GET_STAT(RX_PORT_FRAMES); p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); p->rx_runt = GET_STAT(RX_PORT_LESS_64B); p->rx_frames_64 = GET_STAT(RX_PORT_64B); p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; #undef GET_STAT #undef GET_STAT_COM } /** * t4_clr_port_stats - clear port statistics * @adap: the adapter * @idx: the port index * * Clear HW statistics for the given port. */ void t4_clr_port_stats(struct adapter *adap, int idx) { unsigned int i; u32 bgmap = get_mps_bg_map(adap, idx); for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L; i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8) t4_write_reg(adap, PORT_REG(idx, i), 0); for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L; i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8) t4_write_reg(adap, PORT_REG(idx, i), 0); for (i = 0; i < 4; i++) if (bgmap & (1 << i)) { t4_write_reg(adap, A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0); t4_write_reg(adap, A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0); } } /** * t4_get_lb_stats - collect loopback port statistics * @adap: the adapter * @idx: the loopback port index * @p: the stats structure to fill * * Return HW statistics for the given loopback port. */ void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) { u32 bgmap = get_mps_bg_map(adap, idx); #define GET_STAT(name) \ t4_read_reg64(adap, PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)) #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) p->octets = GET_STAT(BYTES); p->frames = GET_STAT(FRAMES); p->bcast_frames = GET_STAT(BCAST); p->mcast_frames = GET_STAT(MCAST); p->ucast_frames = GET_STAT(UCAST); p->error_frames = GET_STAT(ERROR); p->frames_64 = GET_STAT(64B); p->frames_65_127 = GET_STAT(65B_127B); p->frames_128_255 = GET_STAT(128B_255B); p->frames_256_511 = GET_STAT(256B_511B); p->frames_512_1023 = GET_STAT(512B_1023B); p->frames_1024_1518 = GET_STAT(1024B_1518B); p->frames_1519_max = GET_STAT(1519B_MAX); p->drop = t4_read_reg(adap, PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_DROP_FRAMES)); p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; #undef GET_STAT #undef GET_STAT_COM } /** * t4_wol_magic_enable - enable/disable magic packet WoL * @adap: the adapter * @port: the physical port index * @addr: MAC address expected in magic packets, %NULL to disable * * Enables/disables magic packet wake-on-LAN for the selected port. */ void t4_wol_magic_enable(struct adapter *adap, unsigned int port, const u8 *addr) { if (addr) { t4_write_reg(adap, PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO), (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]); t4_write_reg(adap, PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI), (addr[0] << 8) | addr[1]); } t4_set_reg_field(adap, PORT_REG(port, A_XGMAC_PORT_CFG2), F_MAGICEN, V_MAGICEN(addr != NULL)); } /** * t4_wol_pat_enable - enable/disable pattern-based WoL * @adap: the adapter * @port: the physical port index * @map: bitmap of which HW pattern filters to set * @mask0: byte mask for bytes 0-63 of a packet * @mask1: byte mask for bytes 64-127 of a packet * @crc: Ethernet CRC for selected bytes * @enable: enable/disable switch * * Sets the pattern filters indicated in @map to mask out the bytes * specified in @mask0/@mask1 in received packets and compare the CRC of * the resulting packet against @crc. If @enable is %true pattern-based * WoL is enabled, otherwise disabled. */ int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, u64 mask0, u64 mask1, unsigned int crc, bool enable) { int i; if (!enable) { t4_set_reg_field(adap, PORT_REG(port, A_XGMAC_PORT_CFG2), F_PATEN, 0); return 0; } if (map > 0xff) return -EINVAL; #define EPIO_REG(name) PORT_REG(port, A_XGMAC_PORT_EPIO_##name) t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); t4_write_reg(adap, EPIO_REG(DATA2), mask1); t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); for (i = 0; i < NWOL_PAT; i++, map >>= 1) { if (!(map & 1)) continue; /* write byte masks */ t4_write_reg(adap, EPIO_REG(DATA0), mask0); t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR); t4_read_reg(adap, EPIO_REG(OP)); /* flush */ if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) return -ETIMEDOUT; /* write CRC */ t4_write_reg(adap, EPIO_REG(DATA0), crc); t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR); t4_read_reg(adap, EPIO_REG(OP)); /* flush */ if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) return -ETIMEDOUT; } #undef EPIO_REG t4_set_reg_field(adap, PORT_REG(port, A_XGMAC_PORT_CFG2), 0, F_PATEN); return 0; } /** * t4_mk_filtdelwr - create a delete filter WR * @ftid: the filter ID * @wr: the filter work request to populate * @qid: ingress queue to receive the delete notification * * Creates a filter work request to delete the supplied filter. If @qid is * negative the delete notification is suppressed. */ void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) { memset(wr, 0, sizeof(*wr)); wr->op_pkd = htonl(V_FW_WR_OP(FW_FILTER_WR)); wr->len16_pkd = htonl(V_FW_WR_LEN16(sizeof(*wr) / 16)); wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) | V_FW_FILTER_WR_NOREPLY(qid < 0)); wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER); if (qid >= 0) wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid)); } #define INIT_CMD(var, cmd, rd_wr) do { \ (var).op_to_write = htonl(V_FW_CMD_OP(FW_##cmd##_CMD) | \ F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \ (var).retval_len16 = htonl(FW_LEN16(var)); \ } while (0) int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val) { struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE)); c.cycles_to_len16 = htonl(FW_LEN16(c)); c.u.addrval.addr = htonl(addr); c.u.addrval.val = htonl(val); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_mdio_rd - read a PHY register through MDIO * @adap: the adapter * @mbox: mailbox to use for the FW command * @phy_addr: the PHY address * @mmd: the PHY MMD to access (0 for clause 22 PHYs) * @reg: the register to read * @valp: where to store the value * * Issues a FW command through the given mailbox to read a PHY register. */ int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, unsigned int *valp) { int ret; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO)); c.cycles_to_len16 = htonl(FW_LEN16(c)); c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) | V_FW_LDST_CMD_MMD(mmd)); c.u.mdio.raddr = htons(reg); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) *valp = ntohs(c.u.mdio.rval); return ret; } /** * t4_mdio_wr - write a PHY register through MDIO * @adap: the adapter * @mbox: mailbox to use for the FW command * @phy_addr: the PHY address * @mmd: the PHY MMD to access (0 for clause 22 PHYs) * @reg: the register to write * @valp: value to write * * Issues a FW command through the given mailbox to write a PHY register. */ int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, unsigned int val) { struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO)); c.cycles_to_len16 = htonl(FW_LEN16(c)); c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) | V_FW_LDST_CMD_MMD(mmd)); c.u.mdio.raddr = htons(reg); c.u.mdio.rval = htons(val); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_sge_ctxt_flush - flush the SGE context cache * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a FW command through the given mailbox to flush the * SGE context cache. */ int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) { int ret; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC)); c.cycles_to_len16 = htonl(FW_LEN16(c)); c.u.idctxt.msg_ctxtflush = htonl(F_FW_LDST_CMD_CTXTFLUSH); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); return ret; } /** * t4_sge_ctxt_rd - read an SGE context through FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @cid: the context id * @ctype: the context type * @data: where to store the context data * * Issues a FW command through the given mailbox to read an SGE context. */ int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, enum ctxt_type ctype, u32 *data) { int ret; struct fw_ldst_cmd c; if (ctype == CTXT_EGRESS) ret = FW_LDST_ADDRSPC_SGE_EGRC; else if (ctype == CTXT_INGRESS) ret = FW_LDST_ADDRSPC_SGE_INGC; else if (ctype == CTXT_FLM) ret = FW_LDST_ADDRSPC_SGE_FLMC; else ret = FW_LDST_ADDRSPC_SGE_CONMC; memset(&c, 0, sizeof(c)); c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(ret)); c.cycles_to_len16 = htonl(FW_LEN16(c)); c.u.idctxt.physid = htonl(cid); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) { data[0] = ntohl(c.u.idctxt.ctxt_data0); data[1] = ntohl(c.u.idctxt.ctxt_data1); data[2] = ntohl(c.u.idctxt.ctxt_data2); data[3] = ntohl(c.u.idctxt.ctxt_data3); data[4] = ntohl(c.u.idctxt.ctxt_data4); data[5] = ntohl(c.u.idctxt.ctxt_data5); } return ret; } /** * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW * @adap: the adapter * @cid: the context id * @ctype: the context type * @data: where to store the context data * * Reads an SGE context directly, bypassing FW. This is only for * debugging when FW is unavailable. */ int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype, u32 *data) { int i, ret; t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype)); ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1); if (!ret) for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4) *data++ = t4_read_reg(adap, i); return ret; } /** * t4_fw_hello - establish communication with FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @evt_mbox: mailbox to receive async FW events * @master: specifies the caller's willingness to be the device master * @state: returns the current device state (if non-NULL) * * Issues a command to establish communication with FW. Returns either * an error (negative integer) or the mailbox of the Master PF. */ int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, enum dev_master master, enum dev_state *state) { int ret; struct fw_hello_cmd c; u32 v; unsigned int master_mbox; int retries = FW_CMD_HELLO_RETRIES; retry: memset(&c, 0, sizeof(c)); INIT_CMD(c, HELLO, WRITE); c.err_to_clearinit = htonl( V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : M_FW_HELLO_CMD_MBMASTER) | V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) | F_FW_HELLO_CMD_CLEARINIT); /* * Issue the HELLO command to the firmware. If it's not successful * but indicates that we got a "busy" or "timeout" condition, retry * the HELLO until we exhaust our retry limit. */ ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret != FW_SUCCESS) { if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) goto retry; return ret; } v = ntohl(c.err_to_clearinit); master_mbox = G_FW_HELLO_CMD_MBMASTER(v); if (state) { if (v & F_FW_HELLO_CMD_ERR) *state = DEV_STATE_ERR; else if (v & F_FW_HELLO_CMD_INIT) *state = DEV_STATE_INIT; else *state = DEV_STATE_UNINIT; } /* * If we're not the Master PF then we need to wait around for the * Master PF Driver to finish setting up the adapter. * * Note that we also do this wait if we're a non-Master-capable PF and * there is no current Master PF; a Master PF may show up momentarily * and we wouldn't want to fail pointlessly. (This can happen when an * OS loads lots of different drivers rapidly at the same time). In * this case, the Master PF returned by the firmware will be * M_PCIE_FW_MASTER so the test below will work ... */ if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 && master_mbox != mbox) { int waiting = FW_CMD_HELLO_TIMEOUT; /* * Wait for the firmware to either indicate an error or * initialized state. If we see either of these we bail out * and report the issue to the caller. If we exhaust the * "hello timeout" and we haven't exhausted our retries, try * again. Otherwise bail with a timeout error. */ for (;;) { u32 pcie_fw; msleep(50); waiting -= 50; /* * If neither Error nor Initialialized are indicated * by the firmware keep waiting till we exhaust our * timeout ... and then retry if we haven't exhausted * our retries ... */ pcie_fw = t4_read_reg(adap, A_PCIE_FW); if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) { if (waiting <= 0) { if (retries-- > 0) goto retry; return -ETIMEDOUT; } continue; } /* * We either have an Error or Initialized condition * report errors preferentially. */ if (state) { if (pcie_fw & F_PCIE_FW_ERR) *state = DEV_STATE_ERR; else if (pcie_fw & F_PCIE_FW_INIT) *state = DEV_STATE_INIT; } /* * If we arrived before a Master PF was selected and * there's not a valid Master PF, grab its identity * for our caller. */ if (master_mbox == M_PCIE_FW_MASTER && (pcie_fw & F_PCIE_FW_MASTER_VLD)) master_mbox = G_PCIE_FW_MASTER(pcie_fw); break; } } return master_mbox; } /** * t4_fw_bye - end communication with FW * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to terminate communication with FW. */ int t4_fw_bye(struct adapter *adap, unsigned int mbox) { struct fw_bye_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, BYE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_fw_reset - issue a reset to FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @reset: specifies the type of reset to perform * * Issues a reset command of the specified type to FW. */ int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) { struct fw_reset_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, RESET, WRITE); c.val = htonl(reset); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_fw_halt - issue a reset/halt to FW and put uP into RESET * @adap: the adapter * @mbox: mailbox to use for the FW RESET command (if desired) * @force: force uP into RESET even if FW RESET command fails * * Issues a RESET command to firmware (if desired) with a HALT indication * and then puts the microprocessor into RESET state. The RESET command * will only be issued if a legitimate mailbox is provided (mbox <= * M_PCIE_FW_MASTER). * * This is generally used in order for the host to safely manipulate the * adapter without fear of conflicting with whatever the firmware might * be doing. The only way out of this state is to RESTART the firmware * ... */ int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) { int ret = 0; /* * If a legitimate mailbox is provided, issue a RESET command * with a HALT indication. */ if (mbox <= M_PCIE_FW_MASTER) { struct fw_reset_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, RESET, WRITE); c.val = htonl(F_PIORST | F_PIORSTMODE); c.halt_pkd = htonl(F_FW_RESET_CMD_HALT); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /* * Normally we won't complete the operation if the firmware RESET * command fails but if our caller insists we'll go ahead and put the * uP into RESET. This can be useful if the firmware is hung or even * missing ... We'll have to take the risk of putting the uP into * RESET without the cooperation of firmware in that case. * * We also force the firmware's HALT flag to be on in case we bypassed * the firmware RESET command above or we're dealing with old firmware * which doesn't have the HALT capability. This will serve as a flag * for the incoming firmware to know that it's coming out of a HALT * rather than a RESET ... if it's new enough to understand that ... */ if (ret == 0 || force) { t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST); t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, F_PCIE_FW_HALT); } /* * And we always return the result of the firmware RESET command * even when we force the uP into RESET ... */ return ret; } /** * t4_fw_restart - restart the firmware by taking the uP out of RESET * @adap: the adapter * @reset: if we want to do a RESET to restart things * * Restart firmware previously halted by t4_fw_halt(). On successful * return the previous PF Master remains as the new PF Master and there * is no need to issue a new HELLO command, etc. * * We do this in two ways: * * 1. If we're dealing with newer firmware we'll simply want to take * the chip's microprocessor out of RESET. This will cause the * firmware to start up from its start vector. And then we'll loop * until the firmware indicates it's started again (PCIE_FW.HALT * reset to 0) or we timeout. * * 2. If we're dealing with older firmware then we'll need to RESET * the chip since older firmware won't recognize the PCIE_FW.HALT * flag and automatically RESET itself on startup. */ int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) { if (reset) { /* * Since we're directing the RESET instead of the firmware * doing it automatically, we need to clear the PCIE_FW.HALT * bit. */ t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0); /* * If we've been given a valid mailbox, first try to get the * firmware to do the RESET. If that works, great and we can * return success. Otherwise, if we haven't been given a * valid mailbox or the RESET command failed, fall back to * hitting the chip with a hammer. */ if (mbox <= M_PCIE_FW_MASTER) { t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0); msleep(100); if (t4_fw_reset(adap, mbox, F_PIORST | F_PIORSTMODE) == 0) return 0; } t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE); msleep(2000); } else { int ms; t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0); for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT)) return FW_SUCCESS; msleep(100); ms += 100; } return -ETIMEDOUT; } return 0; } /** * t4_fw_upgrade - perform all of the steps necessary to upgrade FW * @adap: the adapter * @mbox: mailbox to use for the FW RESET command (if desired) * @fw_data: the firmware image to write * @size: image size * @force: force upgrade even if firmware doesn't cooperate * * Perform all of the steps necessary for upgrading an adapter's * firmware image. Normally this requires the cooperation of the * existing firmware in order to halt all existing activities * but if an invalid mailbox token is passed in we skip that step * (though we'll still put the adapter microprocessor into RESET in * that case). * * On successful return the new firmware will have been loaded and * the adapter will have been fully RESET losing all previous setup * state. On unsuccessful return the adapter may be completely hosed ... * positive errno indicates that the adapter is ~probably~ intact, a * negative errno indicates that things are looking bad ... */ int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, const u8 *fw_data, unsigned int size, int force) { const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; int reset, ret; ret = t4_fw_halt(adap, mbox, force); if (ret < 0 && !force) return ret; ret = t4_load_fw(adap, fw_data, size); if (ret < 0) return ret; /* * Older versions of the firmware don't understand the new * PCIE_FW.HALT flag and so won't know to perform a RESET when they * restart. So for newly loaded older firmware we'll have to do the * RESET for it so it starts up on a clean slate. We can tell if * the newly loaded firmware will handle this right by checking * its header flags to see if it advertises the capability. */ reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); return t4_fw_restart(adap, mbox, reset); } /** * t4_fw_initialize - ask FW to initialize the device * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to FW to partially initialize the device. This * performs initialization that generally doesn't depend on user input. */ int t4_fw_initialize(struct adapter *adap, unsigned int mbox) { struct fw_initialize_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, INITIALIZE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_query_params - query FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * * Reads the value of FW or device parameters. Up to 7 parameters can be * queried at once. */ int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, u32 *val) { int i, ret; struct fw_params_cmd c; __be32 *p = &c.param[0].mnem; if (nparams > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_PARAMS_CMD_PFN(pf) | V_FW_PARAMS_CMD_VFN(vf)); c.retval_len16 = htonl(FW_LEN16(c)); for (i = 0; i < nparams; i++, p += 2) *p = htonl(*params++); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) *val++ = ntohl(*p); return ret; } /** * t4_set_params - sets FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * * Sets the value of FW or device parameters. Up to 7 parameters can be * specified at once. */ int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, const u32 *val) { struct fw_params_cmd c; __be32 *p = &c.param[0].mnem; if (nparams > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(pf) | V_FW_PARAMS_CMD_VFN(vf)); c.retval_len16 = htonl(FW_LEN16(c)); while (nparams--) { *p++ = htonl(*params++); *p++ = htonl(*val++); } return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_cfg_pfvf - configure PF/VF resource limits * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF being configured * @vf: the VF being configured * @txq: the max number of egress queues * @txq_eth_ctrl: the max number of egress Ethernet or control queues * @rxqi: the max number of interrupt-capable ingress queues * @rxq: the max number of interruptless ingress queues * @tc: the PCI traffic class * @vi: the max number of virtual interfaces * @cmask: the channel access rights mask for the PF/VF * @pmask: the port access rights mask for the PF/VF * @nexact: the maximum number of exact MPS filters * @rcaps: read capabilities * @wxcaps: write/execute capabilities * * Configures resource limits and capabilities for a physical or virtual * function. */ int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, unsigned int rxqi, unsigned int rxq, unsigned int tc, unsigned int vi, unsigned int cmask, unsigned int pmask, unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) { struct fw_pfvf_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) | V_FW_PFVF_CMD_VFN(vf)); c.retval_len16 = htonl(FW_LEN16(c)); c.niqflint_niq = htonl(V_FW_PFVF_CMD_NIQFLINT(rxqi) | V_FW_PFVF_CMD_NIQ(rxq)); c.type_to_neq = htonl(V_FW_PFVF_CMD_CMASK(cmask) | V_FW_PFVF_CMD_PMASK(pmask) | V_FW_PFVF_CMD_NEQ(txq)); c.tc_to_nexactf = htonl(V_FW_PFVF_CMD_TC(tc) | V_FW_PFVF_CMD_NVI(vi) | V_FW_PFVF_CMD_NEXACTF(nexact)); c.r_caps_to_nethctrl = htonl(V_FW_PFVF_CMD_R_CAPS(rcaps) | V_FW_PFVF_CMD_WX_CAPS(wxcaps) | V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_alloc_vi_func - allocate a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @port: physical port associated with the VI * @pf: the PF owning the VI * @vf: the VF owning the VI * @nmac: number of MAC addresses needed (1 to 5) * @mac: the MAC addresses of the VI * @rss_size: size of RSS table slice associated with this VI * @portfunc: which Port Application Function MAC Address is desired * @idstype: Intrusion Detection Type * * Allocates a virtual interface for the given physical port. If @mac is * not %NULL it contains the MAC addresses of the VI as assigned by FW. * @mac should be large enough to hold @nmac Ethernet addresses, they are * stored consecutively so the space needed is @nmac * 6 bytes. * Returns a negative error number or the non-negative VI id. */ int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox, unsigned int port, unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, unsigned int *rss_size, unsigned int portfunc, unsigned int idstype) { int ret; struct fw_vi_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); c.alloc_to_len16 = htonl(F_FW_VI_CMD_ALLOC | FW_LEN16(c)); c.type_to_viid = htons(V_FW_VI_CMD_TYPE(idstype) | V_FW_VI_CMD_FUNC(portfunc)); c.portid_pkd = V_FW_VI_CMD_PORTID(port); c.nmac = nmac - 1; ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret) return ret; if (mac) { memcpy(mac, c.mac, sizeof(c.mac)); switch (nmac) { case 5: memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); case 4: memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); case 3: memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); case 2: memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); } } if (rss_size) *rss_size = G_FW_VI_CMD_RSSSIZE(ntohs(c.rsssize_pkd)); return G_FW_VI_CMD_VIID(htons(c.type_to_viid)); } /** * t4_alloc_vi - allocate an [Ethernet Function] virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @port: physical port associated with the VI * @pf: the PF owning the VI * @vf: the VF owning the VI * @nmac: number of MAC addresses needed (1 to 5) * @mac: the MAC addresses of the VI * @rss_size: size of RSS table slice associated with this VI * * backwards compatible and convieniance routine to allocate a Virtual * Interface with a Ethernet Port Application Function and Intrustion * Detection System disabled. */ int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, unsigned int *rss_size) { return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size, FW_VI_FUNC_ETH, 0); } /** * t4_free_vi - free a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the VI * @vf: the VF owning the VI * @viid: virtual interface identifiler * * Free a previously allocated virtual interface. */ int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int viid) { struct fw_vi_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); c.alloc_to_len16 = htonl(F_FW_VI_CMD_FREE | FW_LEN16(c)); c.type_to_viid = htons(V_FW_VI_CMD_VIID(viid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); } /** * t4_set_rxmode - set Rx properties of a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @mtu: the new MTU or -1 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change * @vlanex: 1 to enable HVLAN extraction, 0 to disable it, -1 no change * @sleep_ok: if true we may sleep while awaiting command completion * * Sets Rx properties of a virtual interface. */ int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, int mtu, int promisc, int all_multi, int bcast, int vlanex, bool sleep_ok) { struct fw_vi_rxmode_cmd c; /* convert to FW values */ if (mtu < 0) mtu = M_FW_VI_RXMODE_CMD_MTU; if (promisc < 0) promisc = M_FW_VI_RXMODE_CMD_PROMISCEN; if (all_multi < 0) all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN; if (bcast < 0) bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN; if (vlanex < 0) vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_RXMODE_CMD_VIID(viid)); c.retval_len16 = htonl(FW_LEN16(c)); c.mtu_to_vlanexen = htonl(V_FW_VI_RXMODE_CMD_MTU(mtu) | V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) | V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); } /** * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @free: if true any existing filters for this VI id are first removed * @naddr: the number of MAC addresses to allocate filters for (up to 7) * @addr: the MAC address(es) * @idx: where to store the index of each allocated filter * @hash: pointer to hash address filter bitmap * @sleep_ok: call is allowed to sleep * * Allocates an exact-match filter for each of the supplied addresses and * sets it to the corresponding address. If @idx is not %NULL it should * have at least @naddr entries, each of which will be set to the index of * the filter allocated for the corresponding MAC address. If a filter * could not be allocated for an address its index is set to 0xffff. * If @hash is not %NULL addresses that fail to allocate an exact filter * are hashed and update the hash filter bitmap pointed at by @hash. * * Returns a negative error number or the number of filters allocated. */ int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, unsigned int viid, bool free, unsigned int naddr, const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) { int offset, ret = 0; struct fw_vi_mac_cmd c; unsigned int nfilters = 0; unsigned int rem = naddr; if (naddr > NUM_MPS_CLS_SRAM_L_INSTANCES) return -EINVAL; for (offset = 0; offset < naddr ; /**/) { unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? rem : ARRAY_SIZE(c.u.exact)); size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, u.exact[fw_naddr]), 16); struct fw_vi_mac_exact *p; int i; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_CMD_EXEC(free) | V_FW_VI_MAC_CMD_VIID(viid)); c.freemacs_to_len16 = htonl(V_FW_VI_MAC_CMD_FREEMACS(free) | V_FW_CMD_LEN16(len16)); for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { p->valid_to_idx = htons( F_FW_VI_MAC_CMD_VALID | V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); } /* * It's okay if we run out of space in our MAC address arena. * Some of the addresses we submit may get stored so we need * to run through the reply to see what the results were ... */ ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); if (ret && ret != -FW_ENOMEM) break; for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { u16 index = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx)); if (idx) idx[offset+i] = (index >= NUM_MPS_CLS_SRAM_L_INSTANCES ? 0xffff : index); if (index < NUM_MPS_CLS_SRAM_L_INSTANCES) nfilters++; else if (hash) *hash |= (1ULL << hash_mac_addr(addr[offset+i])); } free = false; offset += fw_naddr; rem -= fw_naddr; } if (ret == 0 || ret == -FW_ENOMEM) ret = nfilters; return ret; } /** * t4_change_mac - modifies the exact-match filter for a MAC address * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @idx: index of existing filter for old value of MAC address, or -1 * @addr: the new MAC address value * @persist: whether a new MAC allocation should be persistent * @add_smt: if true also add the address to the HW SMT * * Modifies an exact-match filter and sets it to the new MAC address if * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the * latter case the address is added persistently if @persist is %true. * * Note that in general it is not possible to modify the value of a given * filter so the generic way to modify an address filter is to free the one * being used by the old address value and allocate a new filter for the * new address value. * * Returns a negative error number or the index of the filter with the new * MAC value. Note that this index may differ from @idx. */ int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, int idx, const u8 *addr, bool persist, bool add_smt) { int ret, mode; struct fw_vi_mac_cmd c; struct fw_vi_mac_exact *p = c.u.exact; if (idx < 0) /* new allocation */ idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid)); c.freemacs_to_len16 = htonl(V_FW_CMD_LEN16(1)); p->valid_to_idx = htons(F_FW_VI_MAC_CMD_VALID | V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | V_FW_VI_MAC_CMD_IDX(idx)); memcpy(p->macaddr, addr, sizeof(p->macaddr)); ret = t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), &c); if (ret == 0) { ret = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx)); if (ret >= NUM_MPS_CLS_SRAM_L_INSTANCES) ret = -ENOMEM; } return ret; } /** * t4_set_addr_hash - program the MAC inexact-match hash filter * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @ucast: whether the hash filter should also match unicast addresses * @vec: the value to be written to the hash filter * @sleep_ok: call is allowed to sleep * * Sets the 64-bit inexact-match hash filter for a virtual interface. */ int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, bool ucast, u64 vec, bool sleep_ok) { struct fw_vi_mac_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | V_FW_VI_ENABLE_CMD_VIID(viid)); c.freemacs_to_len16 = htonl(F_FW_VI_MAC_CMD_HASHVECEN | V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1)); c.u.hash.hashvec = cpu_to_be64(vec); return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); } /** * t4_enable_vi - enable/disable a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * * Enables/disables a virtual interface. */ int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, bool rx_en, bool tx_en) { struct fw_vi_enable_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid)); c.ien_to_len16 = htonl(V_FW_VI_ENABLE_CMD_IEN(rx_en) | V_FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_identify_port - identify a VI's port by blinking its LED * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @nblinks: how many times to blink LED at 2.5 Hz * * Identifies a VI's port by blinking its LED. */ int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, unsigned int nblinks) { struct fw_vi_enable_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid)); c.ien_to_len16 = htonl(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); c.blinkdur = htons(nblinks); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_iq_start_stop - enable/disable an ingress queue and its FLs * @adap: the adapter * @mbox: mailbox to use for the FW command * @start: %true to enable the queues, %false to disable them * @pf: the PF owning the queues * @vf: the VF owning the queues * @iqid: ingress queue id * @fl0id: FL0 queue id or 0xffff if no attached FL0 * @fl1id: FL1 queue id or 0xffff if no attached FL1 * * Starts or stops an ingress queue and its associated FLs, if any. */ int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start, unsigned int pf, unsigned int vf, unsigned int iqid, unsigned int fl0id, unsigned int fl1id) { struct fw_iq_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | V_FW_IQ_CMD_VFN(vf)); c.alloc_to_len16 = htonl(V_FW_IQ_CMD_IQSTART(start) | V_FW_IQ_CMD_IQSTOP(!start) | FW_LEN16(c)); c.iqid = htons(iqid); c.fl0id = htons(fl0id); c.fl1id = htons(fl1id); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_iq_free - free an ingress queue and its FLs * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queues * @vf: the VF owning the queues * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) * @iqid: ingress queue id * @fl0id: FL0 queue id or 0xffff if no attached FL0 * @fl1id: FL1 queue id or 0xffff if no attached FL1 * * Frees an ingress queue and its associated FLs, if any. */ int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int iqtype, unsigned int iqid, unsigned int fl0id, unsigned int fl1id) { struct fw_iq_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | V_FW_IQ_CMD_VFN(vf)); c.alloc_to_len16 = htonl(F_FW_IQ_CMD_FREE | FW_LEN16(c)); c.type_to_iqandstindex = htonl(V_FW_IQ_CMD_TYPE(iqtype)); c.iqid = htons(iqid); c.fl0id = htons(fl0id); c.fl1id = htons(fl1id); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_eth_eq_free - free an Ethernet egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees an Ethernet egress queue. */ int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_eth_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(pf) | V_FW_EQ_ETH_CMD_VFN(vf)); c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); c.eqid_pkd = htonl(V_FW_EQ_ETH_CMD_EQID(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_ctrl_eq_free - free a control egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees a control egress queue. */ int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_ctrl_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(pf) | V_FW_EQ_CTRL_CMD_VFN(vf)); c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_EQID(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_ofld_eq_free - free an offload egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees a control egress queue. */ int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_ofld_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(pf) | V_FW_EQ_OFLD_CMD_VFN(vf)); c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); c.eqid_pkd = htonl(V_FW_EQ_OFLD_CMD_EQID(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_handle_fw_rpl - process a FW reply message * @adap: the adapter * @rpl: start of the FW message * * Processes a FW message, such as link state change messages. */ int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) { u8 opcode = *(const u8 *)rpl; const struct fw_port_cmd *p = (const void *)rpl; unsigned int action = G_FW_PORT_CMD_ACTION(ntohl(p->action_to_len16)); if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) { /* link/module state change message */ int speed = 0, fc = 0, i; int chan = G_FW_PORT_CMD_PORTID(ntohl(p->op_to_portid)); struct port_info *pi = NULL; struct link_config *lc; u32 stat = ntohl(p->u.info.lstatus_to_modtype); int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0; u32 mod = G_FW_PORT_CMD_MODTYPE(stat); if (stat & F_FW_PORT_CMD_RXPAUSE) fc |= PAUSE_RX; if (stat & F_FW_PORT_CMD_TXPAUSE) fc |= PAUSE_TX; if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) speed = SPEED_100; else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) speed = SPEED_1000; else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) speed = SPEED_10000; for_each_port(adap, i) { pi = adap2pinfo(adap, i); if (pi->tx_chan == chan) break; } lc = &pi->link_cfg; if (link_ok != lc->link_ok || speed != lc->speed || fc != lc->fc) { /* something changed */ lc->link_ok = link_ok; lc->speed = speed; lc->fc = fc; t4_os_link_changed(adap, i, link_ok); } if (mod != pi->mod_type) { pi->mod_type = mod; t4_os_portmod_changed(adap, i); } } else { CH_WARN_RATELIMIT(adap, "Unknown firmware reply 0x%x (0x%x)\n", opcode, action); return -EINVAL; } return 0; } /** * get_pci_mode - determine a card's PCI mode * @adapter: the adapter * @p: where to store the PCI settings * * Determines a card's PCI mode and associated parameters, such as speed * and width. */ static void __devinit get_pci_mode(struct adapter *adapter, struct pci_params *p) { u16 val; u32 pcie_cap; pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); if (pcie_cap) { t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val); p->speed = val & PCI_EXP_LNKSTA_CLS; p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; } } /** * init_link_config - initialize a link's SW state * @lc: structure holding the link state * @caps: link capabilities * * Initializes the SW state maintained for each link, including the link's * capabilities and default speed/flow-control/autonegotiation settings. */ static void __devinit init_link_config(struct link_config *lc, unsigned int caps) { lc->supported = caps; lc->requested_speed = 0; lc->speed = 0; lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; if (lc->supported & FW_PORT_CAP_ANEG) { lc->advertising = lc->supported & ADVERT_MASK; lc->autoneg = AUTONEG_ENABLE; lc->requested_fc |= PAUSE_AUTONEG; } else { lc->advertising = 0; lc->autoneg = AUTONEG_DISABLE; } } static int __devinit wait_dev_ready(struct adapter *adap) { u32 whoami; whoami = t4_read_reg(adap, A_PL_WHOAMI); if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS) return 0; msleep(500); whoami = t4_read_reg(adap, A_PL_WHOAMI); return (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS ? 0 : -EIO); } static int __devinit get_flash_params(struct adapter *adapter) { int ret; u32 info = 0; ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID); if (!ret) ret = sf1_read(adapter, 3, 0, 1, &info); t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ if (ret < 0) return ret; if ((info & 0xff) != 0x20) /* not a Numonix flash */ return -EINVAL; info >>= 16; /* log2 of size */ if (info >= 0x14 && info < 0x18) adapter->params.sf_nsec = 1 << (info - 16); else if (info == 0x18) adapter->params.sf_nsec = 64; else return -EINVAL; adapter->params.sf_size = 1 << info; return 0; } static void __devinit set_pcie_completion_timeout(struct adapter *adapter, u8 range) { u16 val; u32 pcie_cap; pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); if (pcie_cap) { t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val); val &= 0xfff0; val |= range ; t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val); } } /** * t4_prep_adapter - prepare SW and HW for operation * @adapter: the adapter * @reset: if true perform a HW reset * * Initialize adapter SW state for the various HW modules, set initial * values for some adapter tunables, take PHYs out of reset, and * initialize the MDIO interface. */ int __devinit t4_prep_adapter(struct adapter *adapter) { int ret; ret = wait_dev_ready(adapter); if (ret < 0) return ret; get_pci_mode(adapter, &adapter->params.pci); adapter->params.rev = t4_read_reg(adapter, A_PL_REV); /* T4A1 chip is no longer supported */ if (adapter->params.rev == 1) { CH_ALERT(adapter, "T4 rev 1 chip is no longer supported\n"); return -EINVAL; } adapter->params.pci.vpd_cap_addr = t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD); ret = get_flash_params(adapter); if (ret < 0) return ret; ret = get_vpd_params(adapter, &adapter->params.vpd); if (ret < 0) return ret; if (t4_read_reg(adapter, A_PCIE_REVISION) != 0) { /* FPGA */ adapter->params.cim_la_size = 2 * CIMLA_SIZE; } else { /* ASIC */ adapter->params.cim_la_size = CIMLA_SIZE; } init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); /* * Default port and clock for debugging in case we can't reach FW. */ adapter->params.nports = 1; adapter->params.portvec = 1; adapter->params.vpd.cclk = 50000; /* Set pci completion timeout value to 4 seconds. */ set_pcie_completion_timeout(adapter, 0xd); return 0; } int __devinit t4_port_init(struct port_info *p, int mbox, int pf, int vf) { u8 addr[6]; int ret, i, j; struct fw_port_cmd c; unsigned int rss_size; adapter_t *adap = p->adapter; memset(&c, 0, sizeof(c)); for (i = 0, j = -1; i <= p->port_id; i++) { do { j++; } while ((adap->params.portvec & (1 << j)) == 0); } c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_READ | V_FW_PORT_CMD_PORTID(j)); c.action_to_len16 = htonl( V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) | FW_LEN16(c)); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret) return ret; ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size); if (ret < 0) return ret; p->viid = ret; p->tx_chan = j; p->lport = j; p->rss_size = rss_size; t4_os_set_hw_addr(adap, p->port_id, addr); ret = ntohl(c.u.info.lstatus_to_modtype); p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ? G_FW_PORT_CMD_MDIOADDR(ret) : -1; p->port_type = G_FW_PORT_CMD_PTYPE(ret); p->mod_type = G_FW_PORT_CMD_MODTYPE(ret); init_link_config(&p->link_cfg, ntohs(c.u.info.pcap)); return 0; } int t4_config_scheduler(struct adapter *adapter, int mode, int level, int pktsize, int sched_class, int port, int unit, int rate, int weight, int minrate, int maxrate) { struct fw_sched_cmd cmd, rpl; if (rate < 0 || unit < 0) return -EINVAL; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE); cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(sizeof(cmd)/16)); cmd.u.params.sc = 1; cmd.u.params.level = level; cmd.u.params.mode = mode; cmd.u.params.ch = port; cmd.u.params.cl = sched_class; cmd.u.params.rate = rate; cmd.u.params.unit = unit; switch (level) { case FW_SCHED_PARAMS_LEVEL_CH_WRR: case FW_SCHED_PARAMS_LEVEL_CL_WRR: cmd.u.params.weight = cpu_to_be16(weight); break; case FW_SCHED_PARAMS_LEVEL_CH_RL: case FW_SCHED_PARAMS_LEVEL_CL_RL: cmd.u.params.max = cpu_to_be32(maxrate); cmd.u.params.min = cpu_to_be32(minrate); cmd.u.params.pktsize = cpu_to_be16(pktsize); break; default: return -EINVAL; } return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl, 1); }