Current Path : /usr/src/sys/dev/mly/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/dev/mly/mly.c |
/*- * Copyright (c) 2000, 2001 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: release/9.1.0/sys/dev/mly/mly.c 233024 2012-03-16 08:46:58Z scottl $ */ #include <sys/param.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/bus.h> #include <sys/conf.h> #include <sys/ctype.h> #include <sys/ioccom.h> #include <sys/stat.h> #include <machine/bus.h> #include <machine/resource.h> #include <sys/rman.h> #include <cam/cam.h> #include <cam/cam_ccb.h> #include <cam/cam_periph.h> #include <cam/cam_sim.h> #include <cam/cam_xpt_sim.h> #include <cam/scsi/scsi_all.h> #include <cam/scsi/scsi_message.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <dev/mly/mlyreg.h> #include <dev/mly/mlyio.h> #include <dev/mly/mlyvar.h> #include <dev/mly/mly_tables.h> static int mly_probe(device_t dev); static int mly_attach(device_t dev); static int mly_pci_attach(struct mly_softc *sc); static int mly_detach(device_t dev); static int mly_shutdown(device_t dev); static void mly_intr(void *arg); static int mly_sg_map(struct mly_softc *sc); static void mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error); static int mly_mmbox_map(struct mly_softc *sc); static void mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error); static void mly_free(struct mly_softc *sc); static int mly_get_controllerinfo(struct mly_softc *sc); static void mly_scan_devices(struct mly_softc *sc); static void mly_rescan_btl(struct mly_softc *sc, int bus, int target); static void mly_complete_rescan(struct mly_command *mc); static int mly_get_eventstatus(struct mly_softc *sc); static int mly_enable_mmbox(struct mly_softc *sc); static int mly_flush(struct mly_softc *sc); static int mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length); static void mly_check_event(struct mly_softc *sc); static void mly_fetch_event(struct mly_softc *sc); static void mly_complete_event(struct mly_command *mc); static void mly_process_event(struct mly_softc *sc, struct mly_event *me); static void mly_periodic(void *data); static int mly_immediate_command(struct mly_command *mc); static int mly_start(struct mly_command *mc); static void mly_done(struct mly_softc *sc); static void mly_complete(void *context, int pending); static int mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp); static void mly_release_command(struct mly_command *mc); static void mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error); static int mly_alloc_commands(struct mly_softc *sc); static void mly_release_commands(struct mly_softc *sc); static void mly_map_command(struct mly_command *mc); static void mly_unmap_command(struct mly_command *mc); static int mly_cam_attach(struct mly_softc *sc); static void mly_cam_detach(struct mly_softc *sc); static void mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target); static void mly_cam_action(struct cam_sim *sim, union ccb *ccb); static int mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio); static void mly_cam_poll(struct cam_sim *sim); static void mly_cam_complete(struct mly_command *mc); static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target); static int mly_name_device(struct mly_softc *sc, int bus, int target); static int mly_fwhandshake(struct mly_softc *sc); static void mly_describe_controller(struct mly_softc *sc); #ifdef MLY_DEBUG static void mly_printstate(struct mly_softc *sc); static void mly_print_command(struct mly_command *mc); static void mly_print_packet(struct mly_command *mc); static void mly_panic(struct mly_softc *sc, char *reason); static int mly_timeout(struct mly_softc *sc); #endif void mly_print_controller(int controller); static d_open_t mly_user_open; static d_close_t mly_user_close; static d_ioctl_t mly_user_ioctl; static int mly_user_command(struct mly_softc *sc, struct mly_user_command *uc); static int mly_user_health(struct mly_softc *sc, struct mly_user_health *uh); #define MLY_CMD_TIMEOUT 20 static device_method_t mly_methods[] = { /* Device interface */ DEVMETHOD(device_probe, mly_probe), DEVMETHOD(device_attach, mly_attach), DEVMETHOD(device_detach, mly_detach), DEVMETHOD(device_shutdown, mly_shutdown), { 0, 0 } }; static driver_t mly_pci_driver = { "mly", mly_methods, sizeof(struct mly_softc) }; static devclass_t mly_devclass; DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0); MODULE_DEPEND(mly, pci, 1, 1, 1); MODULE_DEPEND(mly, cam, 1, 1, 1); static struct cdevsw mly_cdevsw = { .d_version = D_VERSION, .d_flags = D_NEEDGIANT, .d_open = mly_user_open, .d_close = mly_user_close, .d_ioctl = mly_user_ioctl, .d_name = "mly", }; /******************************************************************************** ******************************************************************************** Device Interface ******************************************************************************** ********************************************************************************/ static struct mly_ident { u_int16_t vendor; u_int16_t device; u_int16_t subvendor; u_int16_t subdevice; int hwif; char *desc; } mly_identifiers[] = { {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"}, {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"}, {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX, "Mylex AcceleRAID 352"}, {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX, "Mylex AcceleRAID 170"}, {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX, "Mylex AcceleRAID 160"}, {0, 0, 0, 0, 0, 0} }; /******************************************************************************** * Compare the provided PCI device with the list we support. */ static int mly_probe(device_t dev) { struct mly_ident *m; debug_called(1); for (m = mly_identifiers; m->vendor != 0; m++) { if ((m->vendor == pci_get_vendor(dev)) && (m->device == pci_get_device(dev)) && ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) && (m->subdevice == pci_get_subdevice(dev))))) { device_set_desc(dev, m->desc); return(BUS_PROBE_DEFAULT); /* allow room to be overridden */ } } return(ENXIO); } /******************************************************************************** * Initialise the controller and softc */ static int mly_attach(device_t dev) { struct mly_softc *sc = device_get_softc(dev); int error; debug_called(1); sc->mly_dev = dev; #ifdef MLY_DEBUG if (device_get_unit(sc->mly_dev) == 0) mly_softc0 = sc; #endif /* * Do PCI-specific initialisation. */ if ((error = mly_pci_attach(sc)) != 0) goto out; /* * Initialise per-controller queues. */ mly_initq_free(sc); mly_initq_busy(sc); mly_initq_complete(sc); /* * Initialise command-completion task. */ TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc); /* disable interrupts before we start talking to the controller */ MLY_MASK_INTERRUPTS(sc); /* * Wait for the controller to come ready, handshake with the firmware if required. * This is typically only necessary on platforms where the controller BIOS does not * run. */ if ((error = mly_fwhandshake(sc))) goto out; /* * Allocate initial command buffers. */ if ((error = mly_alloc_commands(sc))) goto out; /* * Obtain controller feature information */ if ((error = mly_get_controllerinfo(sc))) goto out; /* * Reallocate command buffers now we know how many we want. */ mly_release_commands(sc); if ((error = mly_alloc_commands(sc))) goto out; /* * Get the current event counter for health purposes, populate the initial * health status buffer. */ if ((error = mly_get_eventstatus(sc))) goto out; /* * Enable memory-mailbox mode. */ if ((error = mly_enable_mmbox(sc))) goto out; /* * Attach to CAM. */ if ((error = mly_cam_attach(sc))) goto out; /* * Print a little information about the controller */ mly_describe_controller(sc); /* * Mark all attached devices for rescan. */ mly_scan_devices(sc); /* * Instigate the first status poll immediately. Rescan completions won't * happen until interrupts are enabled, which should still be before * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay". */ mly_periodic((void *)sc); /* * Create the control device. */ sc->mly_dev_t = make_dev(&mly_cdevsw, 0, UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR, "mly%d", device_get_unit(sc->mly_dev)); sc->mly_dev_t->si_drv1 = sc; /* enable interrupts now */ MLY_UNMASK_INTERRUPTS(sc); #ifdef MLY_DEBUG timeout((timeout_t *)mly_timeout, sc, MLY_CMD_TIMEOUT * hz); #endif out: if (error != 0) mly_free(sc); return(error); } /******************************************************************************** * Perform PCI-specific initialisation. */ static int mly_pci_attach(struct mly_softc *sc) { int i, error; u_int32_t command; debug_called(1); /* assume failure is 'not configured' */ error = ENXIO; /* * Verify that the adapter is correctly set up in PCI space. * * XXX we shouldn't do this; the PCI code should. */ command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2); command |= PCIM_CMD_BUSMASTEREN; pci_write_config(sc->mly_dev, PCIR_COMMAND, command, 2); command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2); if (!(command & PCIM_CMD_BUSMASTEREN)) { mly_printf(sc, "can't enable busmaster feature\n"); goto fail; } if ((command & PCIM_CMD_MEMEN) == 0) { mly_printf(sc, "memory window not available\n"); goto fail; } /* * Allocate the PCI register window. */ sc->mly_regs_rid = PCIR_BAR(0); /* first base address register */ if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev, SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) { mly_printf(sc, "can't allocate register window\n"); goto fail; } sc->mly_btag = rman_get_bustag(sc->mly_regs_resource); sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource); /* * Allocate and connect our interrupt. */ sc->mly_irq_rid = 0; if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ, &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) { mly_printf(sc, "can't allocate interrupt\n"); goto fail; } if (bus_setup_intr(sc->mly_dev, sc->mly_irq, INTR_TYPE_CAM | INTR_ENTROPY, NULL, mly_intr, sc, &sc->mly_intr)) { mly_printf(sc, "can't set up interrupt\n"); goto fail; } /* assume failure is 'out of memory' */ error = ENOMEM; /* * Allocate the parent bus DMA tag appropriate for our PCI interface. * * Note that all of these controllers are 64-bit capable. */ if (bus_dma_tag_create(bus_get_dma_tag(sc->mly_dev),/* PCI parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &sc->mly_parent_dmat)) { mly_printf(sc, "can't allocate parent DMA tag\n"); goto fail; } /* * Create DMA tag for mapping buffers into controller-addressable space. */ if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ busdma_lock_mutex, /* lockfunc */ &Giant, /* lockarg */ &sc->mly_buffer_dmat)) { mly_printf(sc, "can't allocate buffer DMA tag\n"); goto fail; } /* * Initialise the DMA tag for command packets. */ if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->mly_packet_dmat)) { mly_printf(sc, "can't allocate command packet DMA tag\n"); goto fail; } /* * Detect the hardware interface version */ for (i = 0; mly_identifiers[i].vendor != 0; i++) { if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) && (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) { sc->mly_hwif = mly_identifiers[i].hwif; switch(sc->mly_hwif) { case MLY_HWIF_I960RX: debug(1, "set hardware up for i960RX"); sc->mly_doorbell_true = 0x00; sc->mly_command_mailbox = MLY_I960RX_COMMAND_MAILBOX; sc->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX; sc->mly_idbr = MLY_I960RX_IDBR; sc->mly_odbr = MLY_I960RX_ODBR; sc->mly_error_status = MLY_I960RX_ERROR_STATUS; sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS; sc->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK; break; case MLY_HWIF_STRONGARM: debug(1, "set hardware up for StrongARM"); sc->mly_doorbell_true = 0xff; /* doorbell 'true' is 0 */ sc->mly_command_mailbox = MLY_STRONGARM_COMMAND_MAILBOX; sc->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX; sc->mly_idbr = MLY_STRONGARM_IDBR; sc->mly_odbr = MLY_STRONGARM_ODBR; sc->mly_error_status = MLY_STRONGARM_ERROR_STATUS; sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS; sc->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK; break; } break; } } /* * Create the scatter/gather mappings. */ if ((error = mly_sg_map(sc))) goto fail; /* * Allocate and map the memory mailbox */ if ((error = mly_mmbox_map(sc))) goto fail; error = 0; fail: return(error); } /******************************************************************************** * Shut the controller down and detach all our resources. */ static int mly_detach(device_t dev) { int error; if ((error = mly_shutdown(dev)) != 0) return(error); mly_free(device_get_softc(dev)); return(0); } /******************************************************************************** * Bring the controller to a state where it can be safely left alone. * * Note that it should not be necessary to wait for any outstanding commands, * as they should be completed prior to calling here. * * XXX this applies for I/O, but not status polls; we should beware of * the case where a status command is running while we detach. */ static int mly_shutdown(device_t dev) { struct mly_softc *sc = device_get_softc(dev); debug_called(1); if (sc->mly_state & MLY_STATE_OPEN) return(EBUSY); /* kill the periodic event */ untimeout(mly_periodic, sc, sc->mly_periodic); /* flush controller */ mly_printf(sc, "flushing cache..."); printf("%s\n", mly_flush(sc) ? "failed" : "done"); MLY_MASK_INTERRUPTS(sc); return(0); } /******************************************************************************* * Take an interrupt, or be poked by other code to look for interrupt-worthy * status. */ static void mly_intr(void *arg) { struct mly_softc *sc = (struct mly_softc *)arg; debug_called(2); mly_done(sc); }; /******************************************************************************** ******************************************************************************** Bus-dependant Resource Management ******************************************************************************** ********************************************************************************/ /******************************************************************************** * Allocate memory for the scatter/gather tables */ static int mly_sg_map(struct mly_softc *sc) { size_t segsize; debug_called(1); /* * Create a single tag describing a region large enough to hold all of * the s/g lists we will need. */ segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES; if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */ 1, 0, /* alignment,boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ segsize, 1, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->mly_sg_dmat)) { mly_printf(sc, "can't allocate scatter/gather DMA tag\n"); return(ENOMEM); } /* * Allocate enough s/g maps for all commands and permanently map them into * controller-visible space. * * XXX this assumes we can get enough space for all the s/g maps in one * contiguous slab. */ if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table, BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) { mly_printf(sc, "can't allocate s/g table\n"); return(ENOMEM); } if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table, segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0) return (ENOMEM); return(0); } /******************************************************************************** * Save the physical address of the base of the s/g table. */ static void mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct mly_softc *sc = (struct mly_softc *)arg; debug_called(1); /* save base of s/g table's address in bus space */ sc->mly_sg_busaddr = segs->ds_addr; } /******************************************************************************** * Allocate memory for the memory-mailbox interface */ static int mly_mmbox_map(struct mly_softc *sc) { /* * Create a DMA tag for a single contiguous region large enough for the * memory mailbox structure. */ if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */ 1, 0, /* alignment,boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sizeof(struct mly_mmbox), 1, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->mly_mmbox_dmat)) { mly_printf(sc, "can't allocate memory mailbox DMA tag\n"); return(ENOMEM); } /* * Allocate the buffer */ if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) { mly_printf(sc, "can't allocate memory mailbox\n"); return(ENOMEM); } if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox, sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc, BUS_DMA_NOWAIT) != 0) return (ENOMEM); bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox)); return(0); } /******************************************************************************** * Save the physical address of the memory mailbox */ static void mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct mly_softc *sc = (struct mly_softc *)arg; debug_called(1); sc->mly_mmbox_busaddr = segs->ds_addr; } /******************************************************************************** * Free all of the resources associated with (sc) * * Should not be called if the controller is active. */ static void mly_free(struct mly_softc *sc) { debug_called(1); /* Remove the management device */ destroy_dev(sc->mly_dev_t); /* detach from CAM */ mly_cam_detach(sc); /* release command memory */ mly_release_commands(sc); /* throw away the controllerinfo structure */ if (sc->mly_controllerinfo != NULL) free(sc->mly_controllerinfo, M_DEVBUF); /* throw away the controllerparam structure */ if (sc->mly_controllerparam != NULL) free(sc->mly_controllerparam, M_DEVBUF); /* destroy data-transfer DMA tag */ if (sc->mly_buffer_dmat) bus_dma_tag_destroy(sc->mly_buffer_dmat); /* free and destroy DMA memory and tag for s/g lists */ if (sc->mly_sg_table) { bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap); bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap); } if (sc->mly_sg_dmat) bus_dma_tag_destroy(sc->mly_sg_dmat); /* free and destroy DMA memory and tag for memory mailbox */ if (sc->mly_mmbox) { bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap); bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap); } if (sc->mly_mmbox_dmat) bus_dma_tag_destroy(sc->mly_mmbox_dmat); /* disconnect the interrupt handler */ if (sc->mly_intr) bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr); if (sc->mly_irq != NULL) bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq); /* destroy the parent DMA tag */ if (sc->mly_parent_dmat) bus_dma_tag_destroy(sc->mly_parent_dmat); /* release the register window mapping */ if (sc->mly_regs_resource != NULL) bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource); } /******************************************************************************** ******************************************************************************** Command Wrappers ******************************************************************************** ********************************************************************************/ /******************************************************************************** * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc. */ static int mly_get_controllerinfo(struct mly_softc *sc) { struct mly_command_ioctl mci; u_int8_t status; int error; debug_called(1); if (sc->mly_controllerinfo != NULL) free(sc->mly_controllerinfo, M_DEVBUF); /* build the getcontrollerinfo ioctl and send it */ bzero(&mci, sizeof(mci)); sc->mly_controllerinfo = NULL; mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO; if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo), &status, NULL, NULL))) return(error); if (status != 0) return(EIO); if (sc->mly_controllerparam != NULL) free(sc->mly_controllerparam, M_DEVBUF); /* build the getcontrollerparameter ioctl and send it */ bzero(&mci, sizeof(mci)); sc->mly_controllerparam = NULL; mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER; if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam), &status, NULL, NULL))) return(error); if (status != 0) return(EIO); return(0); } /******************************************************************************** * Schedule all possible devices for a rescan. * */ static void mly_scan_devices(struct mly_softc *sc) { int bus, target; debug_called(1); /* * Clear any previous BTL information. */ bzero(&sc->mly_btl, sizeof(sc->mly_btl)); /* * Mark all devices as requiring a rescan, and let the next * periodic scan collect them. */ for (bus = 0; bus < sc->mly_cam_channels; bus++) if (MLY_BUS_IS_VALID(sc, bus)) for (target = 0; target < MLY_MAX_TARGETS; target++) sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN; } /******************************************************************************** * Rescan a device, possibly as a consequence of getting an event which suggests * that it may have changed. * * If we suffer resource starvation, we can abandon the rescan as we'll be * retried. */ static void mly_rescan_btl(struct mly_softc *sc, int bus, int target) { struct mly_command *mc; struct mly_command_ioctl *mci; debug_called(1); /* check that this bus is valid */ if (!MLY_BUS_IS_VALID(sc, bus)) return; /* get a command */ if (mly_alloc_command(sc, &mc)) return; /* set up the data buffer */ if ((mc->mc_data = malloc(sizeof(union mly_devinfo), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) { mly_release_command(mc); return; } mc->mc_flags |= MLY_CMD_DATAIN; mc->mc_complete = mly_complete_rescan; /* * Build the ioctl. */ mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl; mci->opcode = MDACMD_IOCTL; mci->addr.phys.controller = 0; mci->timeout.value = 30; mci->timeout.scale = MLY_TIMEOUT_SECONDS; if (MLY_BUS_IS_VIRTUAL(sc, bus)) { mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid); mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID; mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target); debug(1, "logical device %d", mci->addr.log.logdev); } else { mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid); mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID; mci->addr.phys.lun = 0; mci->addr.phys.target = target; mci->addr.phys.channel = bus; debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target); } /* * Dispatch the command. If we successfully send the command, clear the rescan * bit. */ if (mly_start(mc) != 0) { mly_release_command(mc); } else { sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN; /* success */ } } /******************************************************************************** * Handle the completion of a rescan operation */ static void mly_complete_rescan(struct mly_command *mc) { struct mly_softc *sc = mc->mc_sc; struct mly_ioctl_getlogdevinfovalid *ldi; struct mly_ioctl_getphysdevinfovalid *pdi; struct mly_command_ioctl *mci; struct mly_btl btl, *btlp; int bus, target, rescan; debug_called(1); /* * Recover the bus and target from the command. We need these even in * the case where we don't have a useful response. */ mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl; if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) { bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev); target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev); } else { bus = mci->addr.phys.channel; target = mci->addr.phys.target; } /* XXX validate bus/target? */ /* the default result is 'no device' */ bzero(&btl, sizeof(btl)); /* if the rescan completed OK, we have possibly-new BTL data */ if (mc->mc_status == 0) { if (mc->mc_length == sizeof(*ldi)) { ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data; if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) || (MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) { mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n", bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number), MLY_LOGDEV_TARGET(sc, ldi->logical_device_number)); /* XXX what can we do about this? */ } btl.mb_flags = MLY_BTL_LOGICAL; btl.mb_type = ldi->raid_level; btl.mb_state = ldi->state; debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number, mly_describe_code(mly_table_device_type, ldi->raid_level), mly_describe_code(mly_table_device_state, ldi->state)); } else if (mc->mc_length == sizeof(*pdi)) { pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data; if ((pdi->channel != bus) || (pdi->target != target)) { mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n", bus, target, pdi->channel, pdi->target); /* XXX what can we do about this? */ } btl.mb_flags = MLY_BTL_PHYSICAL; btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL; btl.mb_state = pdi->state; btl.mb_speed = pdi->speed; btl.mb_width = pdi->width; if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED) sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED; debug(1, "BTL rescan for %d:%d returns %s", bus, target, mly_describe_code(mly_table_device_state, pdi->state)); } else { mly_printf(sc, "BTL rescan result invalid\n"); } } free(mc->mc_data, M_DEVBUF); mly_release_command(mc); /* * Decide whether we need to rescan the device. */ rescan = 0; /* device type changes (usually between 'nothing' and 'something') */ btlp = &sc->mly_btl[bus][target]; if (btl.mb_flags != btlp->mb_flags) { debug(1, "flags changed, rescanning"); rescan = 1; } /* XXX other reasons? */ /* * Update BTL information. */ *btlp = btl; /* * Perform CAM rescan if required. */ if (rescan) mly_cam_rescan_btl(sc, bus, target); } /******************************************************************************** * Get the current health status and set the 'next event' counter to suit. */ static int mly_get_eventstatus(struct mly_softc *sc) { struct mly_command_ioctl mci; struct mly_health_status *mh; u_int8_t status; int error; /* build the gethealthstatus ioctl and send it */ bzero(&mci, sizeof(mci)); mh = NULL; mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS; if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL))) return(error); if (status != 0) return(EIO); /* get the event counter */ sc->mly_event_change = mh->change_counter; sc->mly_event_waiting = mh->next_event; sc->mly_event_counter = mh->next_event; /* save the health status into the memory mailbox */ bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh)); debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event); free(mh, M_DEVBUF); return(0); } /******************************************************************************** * Enable the memory mailbox mode. */ static int mly_enable_mmbox(struct mly_softc *sc) { struct mly_command_ioctl mci; u_int8_t *sp, status; int error; debug_called(1); /* build the ioctl and send it */ bzero(&mci, sizeof(mci)); mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX; /* set buffer addresses */ mci.param.setmemorymailbox.command_mailbox_physaddr = sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command); mci.param.setmemorymailbox.status_mailbox_physaddr = sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status); mci.param.setmemorymailbox.health_buffer_physaddr = sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health); /* set buffer sizes - abuse of data_size field is revolting */ sp = (u_int8_t *)&mci.data_size; sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024); sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024; mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024; debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox, mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0], mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1], mci.param.setmemorymailbox.health_buffer_physaddr, mci.param.setmemorymailbox.health_buffer_size); if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL))) return(error); if (status != 0) return(EIO); sc->mly_state |= MLY_STATE_MMBOX_ACTIVE; debug(1, "memory mailbox active"); return(0); } /******************************************************************************** * Flush all pending I/O from the controller. */ static int mly_flush(struct mly_softc *sc) { struct mly_command_ioctl mci; u_int8_t status; int error; debug_called(1); /* build the ioctl */ bzero(&mci, sizeof(mci)); mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA; mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER; /* pass it off to the controller */ if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL))) return(error); return((status == 0) ? 0 : EIO); } /******************************************************************************** * Perform an ioctl command. * * If (data) is not NULL, the command requires data transfer. If (*data) is NULL * the command requires data transfer from the controller, and we will allocate * a buffer for it. If (*data) is not NULL, the command requires data transfer * to the controller. * * XXX passing in the whole ioctl structure is ugly. Better ideas? * * XXX we don't even try to handle the case where datasize > 4k. We should. */ static int mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length) { struct mly_command *mc; struct mly_command_ioctl *mci; int error; debug_called(1); mc = NULL; if (mly_alloc_command(sc, &mc)) { error = ENOMEM; goto out; } /* copy the ioctl structure, but save some important fields and then fixup */ mci = &mc->mc_packet->ioctl; ioctl->sense_buffer_address = mci->sense_buffer_address; ioctl->maximum_sense_size = mci->maximum_sense_size; *mci = *ioctl; mci->opcode = MDACMD_IOCTL; mci->timeout.value = 30; mci->timeout.scale = MLY_TIMEOUT_SECONDS; /* handle the data buffer */ if (data != NULL) { if (*data == NULL) { /* allocate data buffer */ if ((mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT)) == NULL) { error = ENOMEM; goto out; } mc->mc_flags |= MLY_CMD_DATAIN; } else { mc->mc_data = *data; mc->mc_flags |= MLY_CMD_DATAOUT; } mc->mc_length = datasize; mc->mc_packet->generic.data_size = datasize; } /* run the command */ if ((error = mly_immediate_command(mc))) goto out; /* clean up and return any data */ *status = mc->mc_status; if ((mc->mc_sense > 0) && (sense_buffer != NULL)) { bcopy(mc->mc_packet, sense_buffer, mc->mc_sense); *sense_length = mc->mc_sense; goto out; } /* should we return a data pointer? */ if ((data != NULL) && (*data == NULL)) *data = mc->mc_data; /* command completed OK */ error = 0; out: if (mc != NULL) { /* do we need to free a data buffer we allocated? */ if (error && (mc->mc_data != NULL) && (*data == NULL)) free(mc->mc_data, M_DEVBUF); mly_release_command(mc); } return(error); } /******************************************************************************** * Check for event(s) outstanding in the controller. */ static void mly_check_event(struct mly_softc *sc) { /* * The controller may have updated the health status information, * so check for it here. Note that the counters are all in host memory, * so this check is very cheap. Also note that we depend on checking on * completion */ if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) { sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter; debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change, sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event); sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event; /* wake up anyone that might be interested in this */ wakeup(&sc->mly_event_change); } if (sc->mly_event_counter != sc->mly_event_waiting) mly_fetch_event(sc); } /******************************************************************************** * Fetch one event from the controller. * * If we fail due to resource starvation, we'll be retried the next time a * command completes. */ static void mly_fetch_event(struct mly_softc *sc) { struct mly_command *mc; struct mly_command_ioctl *mci; int s; u_int32_t event; debug_called(1); /* get a command */ if (mly_alloc_command(sc, &mc)) return; /* set up the data buffer */ if ((mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) { mly_release_command(mc); return; } mc->mc_length = sizeof(struct mly_event); mc->mc_flags |= MLY_CMD_DATAIN; mc->mc_complete = mly_complete_event; /* * Get an event number to fetch. It's possible that we've raced with another * context for the last event, in which case there will be no more events. */ s = splcam(); if (sc->mly_event_counter == sc->mly_event_waiting) { mly_release_command(mc); splx(s); return; } event = sc->mly_event_counter++; splx(s); /* * Build the ioctl. * * At this point we are committed to sending this request, as it * will be the only one constructed for this particular event number. */ mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl; mci->opcode = MDACMD_IOCTL; mci->data_size = sizeof(struct mly_event); mci->addr.phys.lun = (event >> 16) & 0xff; mci->addr.phys.target = (event >> 24) & 0xff; mci->addr.phys.channel = 0; mci->addr.phys.controller = 0; mci->timeout.value = 30; mci->timeout.scale = MLY_TIMEOUT_SECONDS; mci->sub_ioctl = MDACIOCTL_GETEVENT; mci->param.getevent.sequence_number_low = event & 0xffff; debug(1, "fetch event %u", event); /* * Submit the command. * * Note that failure of mly_start() will result in this event never being * fetched. */ if (mly_start(mc) != 0) { mly_printf(sc, "couldn't fetch event %u\n", event); mly_release_command(mc); } } /******************************************************************************** * Handle the completion of an event poll. */ static void mly_complete_event(struct mly_command *mc) { struct mly_softc *sc = mc->mc_sc; struct mly_event *me = (struct mly_event *)mc->mc_data; debug_called(1); /* * If the event was successfully fetched, process it. */ if (mc->mc_status == SCSI_STATUS_OK) { mly_process_event(sc, me); free(me, M_DEVBUF); } mly_release_command(mc); /* * Check for another event. */ mly_check_event(sc); } /******************************************************************************** * Process a controller event. */ static void mly_process_event(struct mly_softc *sc, struct mly_event *me) { struct scsi_sense_data_fixed *ssd; char *fp, *tp; int bus, target, event, class, action; ssd = (struct scsi_sense_data_fixed *)&me->sense[0]; /* * Errors can be reported using vendor-unique sense data. In this case, the * event code will be 0x1c (Request sense data present), the sense key will * be 0x09 (vendor specific), the MSB of the ASC will be set, and the * actual event code will be a 16-bit value comprised of the ASCQ (low byte) * and low seven bits of the ASC (low seven bits of the high byte). */ if ((me->code == 0x1c) && ((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) && (ssd->add_sense_code & 0x80)) { event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual; } else { event = me->code; } /* look up event, get codes */ fp = mly_describe_code(mly_table_event, event); debug(1, "Event %d code 0x%x", me->sequence_number, me->code); /* quiet event? */ class = fp[0]; if (isupper(class) && bootverbose) class = tolower(class); /* get action code, text string */ action = fp[1]; tp = &fp[2]; /* * Print some information about the event. * * This code uses a table derived from the corresponding portion of the Linux * driver, and thus the parser is very similar. */ switch(class) { case 'p': /* error on physical device */ mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp); if (action == 'r') sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN; break; case 'l': /* error on logical unit */ case 'm': /* message about logical unit */ bus = MLY_LOGDEV_BUS(sc, me->lun); target = MLY_LOGDEV_TARGET(sc, me->lun); mly_name_device(sc, bus, target); mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp); if (action == 'r') sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN; break; break; case 's': /* report of sense data */ if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) || (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) && (ssd->add_sense_code == 0x04) && ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02)))) break; /* ignore NO_SENSE or NOT_READY in one case */ mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp); mly_printf(sc, " sense key %d asc %02x ascq %02x\n", ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual); mly_printf(sc, " info %4D csi %4D\n", ssd->info, "", ssd->cmd_spec_info, ""); if (action == 'r') sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN; break; case 'e': mly_printf(sc, tp, me->target, me->lun); printf("\n"); break; case 'c': mly_printf(sc, "controller %s\n", tp); break; case '?': mly_printf(sc, "%s - %d\n", tp, me->code); break; default: /* probably a 'noisy' event being ignored */ break; } } /******************************************************************************** * Perform periodic activities. */ static void mly_periodic(void *data) { struct mly_softc *sc = (struct mly_softc *)data; int bus, target; debug_called(2); /* * Scan devices. */ for (bus = 0; bus < sc->mly_cam_channels; bus++) { if (MLY_BUS_IS_VALID(sc, bus)) { for (target = 0; target < MLY_MAX_TARGETS; target++) { /* ignore the controller in this scan */ if (target == sc->mly_controllerparam->initiator_id) continue; /* perform device rescan? */ if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN) mly_rescan_btl(sc, bus, target); } } } /* check for controller events */ mly_check_event(sc); /* reschedule ourselves */ sc->mly_periodic = timeout(mly_periodic, sc, MLY_PERIODIC_INTERVAL * hz); } /******************************************************************************** ******************************************************************************** Command Processing ******************************************************************************** ********************************************************************************/ /******************************************************************************** * Run a command and wait for it to complete. * */ static int mly_immediate_command(struct mly_command *mc) { struct mly_softc *sc = mc->mc_sc; int error, s; debug_called(1); /* spinning at splcam is ugly, but we're only used during controller init */ s = splcam(); if ((error = mly_start(mc))) { splx(s); return(error); } if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) { /* sleep on the command */ while(!(mc->mc_flags & MLY_CMD_COMPLETE)) { tsleep(mc, PRIBIO, "mlywait", 0); } } else { /* spin and collect status while we do */ while(!(mc->mc_flags & MLY_CMD_COMPLETE)) { mly_done(mc->mc_sc); } } splx(s); return(0); } /******************************************************************************** * Deliver a command to the controller. * * XXX it would be good to just queue commands that we can't submit immediately * and send them later, but we probably want a wrapper for that so that * we don't hang on a failed submission for an immediate command. */ static int mly_start(struct mly_command *mc) { struct mly_softc *sc = mc->mc_sc; union mly_command_packet *pkt; int s; debug_called(2); /* * Set the command up for delivery to the controller. */ mly_map_command(mc); mc->mc_packet->generic.command_id = mc->mc_slot; #ifdef MLY_DEBUG mc->mc_timestamp = time_second; #endif s = splcam(); /* * Do we have to use the hardware mailbox? */ if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) { /* * Check to see if the controller is ready for us. */ if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) { splx(s); return(EBUSY); } mc->mc_flags |= MLY_CMD_BUSY; /* * It's ready, send the command. */ MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys); MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT); } else { /* use memory-mailbox mode */ pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index]; /* check to see if the next index is free yet */ if (pkt->mmbox.flag != 0) { splx(s); return(EBUSY); } mc->mc_flags |= MLY_CMD_BUSY; /* copy in new command */ bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data)); /* barrier to ensure completion of previous write before we write the flag */ bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0, BUS_SPACE_BARRIER_WRITE); /* copy flag last */ pkt->mmbox.flag = mc->mc_packet->mmbox.flag; /* barrier to ensure completion of previous write before we notify the controller */ bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0, BUS_SPACE_BARRIER_WRITE); /* signal controller, update index */ MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT); sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS; } mly_enqueue_busy(mc); splx(s); return(0); } /******************************************************************************** * Pick up command status from the controller, schedule a completion event */ static void mly_done(struct mly_softc *sc) { struct mly_command *mc; union mly_status_packet *sp; u_int16_t slot; int s, worked; s = splcam(); worked = 0; /* pick up hardware-mailbox commands */ if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) { slot = MLY_GET_REG2(sc, sc->mly_status_mailbox); if (slot < MLY_SLOT_MAX) { mc = &sc->mly_command[slot - MLY_SLOT_START]; mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2); mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3); mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4); mly_remove_busy(mc); mc->mc_flags &= ~MLY_CMD_BUSY; mly_enqueue_complete(mc); worked = 1; } else { /* slot 0xffff may mean "extremely bogus command" */ mly_printf(sc, "got HM completion for illegal slot %u\n", slot); } /* unconditionally acknowledge status */ MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY); MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK); } /* pick up memory-mailbox commands */ if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) { for (;;) { sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index]; /* check for more status */ if (sp->mmbox.flag == 0) break; /* get slot number */ slot = sp->status.command_id; if (slot < MLY_SLOT_MAX) { mc = &sc->mly_command[slot - MLY_SLOT_START]; mc->mc_status = sp->status.status; mc->mc_sense = sp->status.sense_length; mc->mc_resid = sp->status.residue; mly_remove_busy(mc); mc->mc_flags &= ~MLY_CMD_BUSY; mly_enqueue_complete(mc); worked = 1; } else { /* slot 0xffff may mean "extremely bogus command" */ mly_printf(sc, "got AM completion for illegal slot %u at %d\n", slot, sc->mly_mmbox_status_index); } /* clear and move to next index */ sp->mmbox.flag = 0; sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS; } /* acknowledge that we have collected status value(s) */ MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY); } splx(s); if (worked) { if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) taskqueue_enqueue(taskqueue_swi_giant, &sc->mly_task_complete); else mly_complete(sc, 0); } } /******************************************************************************** * Process completed commands */ static void mly_complete(void *context, int pending) { struct mly_softc *sc = (struct mly_softc *)context; struct mly_command *mc; void (* mc_complete)(struct mly_command *mc); debug_called(2); /* * Spin pulling commands off the completed queue and processing them. */ while ((mc = mly_dequeue_complete(sc)) != NULL) { /* * Free controller resources, mark command complete. * * Note that as soon as we mark the command complete, it may be freed * out from under us, so we need to save the mc_complete field in * order to later avoid dereferencing mc. (We would not expect to * have a polling/sleeping consumer with mc_complete != NULL). */ mly_unmap_command(mc); mc_complete = mc->mc_complete; mc->mc_flags |= MLY_CMD_COMPLETE; /* * Call completion handler or wake up sleeping consumer. */ if (mc_complete != NULL) { mc_complete(mc); } else { wakeup(mc); } } /* * XXX if we are deferring commands due to controller-busy status, we should * retry submitting them here. */ } /******************************************************************************** ******************************************************************************** Command Buffer Management ******************************************************************************** ********************************************************************************/ /******************************************************************************** * Allocate a command. */ static int mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp) { struct mly_command *mc; debug_called(3); if ((mc = mly_dequeue_free(sc)) == NULL) return(ENOMEM); *mcp = mc; return(0); } /******************************************************************************** * Release a command back to the freelist. */ static void mly_release_command(struct mly_command *mc) { debug_called(3); /* * Fill in parts of the command that may cause confusion if * a consumer doesn't when we are later allocated. */ mc->mc_data = NULL; mc->mc_flags = 0; mc->mc_complete = NULL; mc->mc_private = NULL; /* * By default, we set up to overwrite the command packet with * sense information. */ mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys; mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet); mly_enqueue_free(mc); } /******************************************************************************** * Map helper for command allocation. */ static void mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct mly_softc *sc = (struct mly_softc *)arg; debug_called(1); sc->mly_packetphys = segs[0].ds_addr; } /******************************************************************************** * Allocate and initialise command and packet structures. * * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our * allocation to that number. If we don't yet know how many commands the * controller supports, allocate a very small set (suitable for initialisation * purposes only). */ static int mly_alloc_commands(struct mly_softc *sc) { struct mly_command *mc; int i, ncmd; if (sc->mly_controllerinfo == NULL) { ncmd = 4; } else { ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands); } /* * Allocate enough space for all the command packets in one chunk and * map them permanently into controller-visible space. */ if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet, BUS_DMA_NOWAIT, &sc->mly_packetmap)) { return(ENOMEM); } if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet, ncmd * sizeof(union mly_command_packet), mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0) return (ENOMEM); for (i = 0; i < ncmd; i++) { mc = &sc->mly_command[i]; bzero(mc, sizeof(*mc)); mc->mc_sc = sc; mc->mc_slot = MLY_SLOT_START + i; mc->mc_packet = sc->mly_packet + i; mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet)); if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap)) mly_release_command(mc); } return(0); } /******************************************************************************** * Free all the storage held by commands. * * Must be called with all commands on the free list. */ static void mly_release_commands(struct mly_softc *sc) { struct mly_command *mc; /* throw away command buffer DMA maps */ while (mly_alloc_command(sc, &mc) == 0) bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap); /* release the packet storage */ if (sc->mly_packet != NULL) { bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap); bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap); sc->mly_packet = NULL; } } /******************************************************************************** * Command-mapping helper function - populate this command's s/g table * with the s/g entries for its data. */ static void mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct mly_command *mc = (struct mly_command *)arg; struct mly_softc *sc = mc->mc_sc; struct mly_command_generic *gen = &(mc->mc_packet->generic); struct mly_sg_entry *sg; int i, tabofs; debug_called(2); /* can we use the transfer structure directly? */ if (nseg <= 2) { sg = &gen->transfer.direct.sg[0]; gen->command_control.extended_sg_table = 0; } else { tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES); sg = sc->mly_sg_table + tabofs; gen->transfer.indirect.entries[0] = nseg; gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry)); gen->command_control.extended_sg_table = 1; } /* copy the s/g table */ for (i = 0; i < nseg; i++) { sg[i].physaddr = segs[i].ds_addr; sg[i].length = segs[i].ds_len; } } #if 0 /******************************************************************************** * Command-mapping helper function - save the cdb's physical address. * * We don't support 'large' SCSI commands at this time, so this is unused. */ static void mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct mly_command *mc = (struct mly_command *)arg; debug_called(2); /* XXX can we safely assume that a CDB will never cross a page boundary? */ if ((segs[0].ds_addr % PAGE_SIZE) > ((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE)) panic("cdb crosses page boundary"); /* fix up fields in the command packet */ mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr; } #endif /******************************************************************************** * Map a command into controller-visible space */ static void mly_map_command(struct mly_command *mc) { struct mly_softc *sc = mc->mc_sc; debug_called(2); /* don't map more than once */ if (mc->mc_flags & MLY_CMD_MAPPED) return; /* does the command have a data buffer? */ if (mc->mc_data != NULL) { bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap, mc->mc_data, mc->mc_length, mly_map_command_sg, mc, 0); if (mc->mc_flags & MLY_CMD_DATAIN) bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD); if (mc->mc_flags & MLY_CMD_DATAOUT) bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE); } mc->mc_flags |= MLY_CMD_MAPPED; } /******************************************************************************** * Unmap a command from controller-visible space */ static void mly_unmap_command(struct mly_command *mc) { struct mly_softc *sc = mc->mc_sc; debug_called(2); if (!(mc->mc_flags & MLY_CMD_MAPPED)) return; /* does the command have a data buffer? */ if (mc->mc_data != NULL) { if (mc->mc_flags & MLY_CMD_DATAIN) bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD); if (mc->mc_flags & MLY_CMD_DATAOUT) bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap); } mc->mc_flags &= ~MLY_CMD_MAPPED; } /******************************************************************************** ******************************************************************************** CAM interface ******************************************************************************** ********************************************************************************/ /******************************************************************************** * Attach the physical and virtual SCSI busses to CAM. * * Physical bus numbering starts from 0, virtual bus numbering from one greater * than the highest physical bus. Physical busses are only registered if * the kernel environment variable "hw.mly.register_physical_channels" is set. * * When we refer to a "bus", we are referring to the bus number registered with * the SIM, wheras a "channel" is a channel number given to the adapter. In order * to keep things simple, we map these 1:1, so "bus" and "channel" may be used * interchangeably. */ static int mly_cam_attach(struct mly_softc *sc) { struct cam_devq *devq; int chn, i; debug_called(1); /* * Allocate a devq for all our channels combined. */ if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) { mly_printf(sc, "can't allocate CAM SIM queue\n"); return(ENOMEM); } /* * If physical channel registration has been requested, register these first. * Note that we enable tagged command queueing for physical channels. */ if (testenv("hw.mly.register_physical_channels")) { chn = 0; for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) { if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc, device_get_unit(sc->mly_dev), &Giant, sc->mly_controllerinfo->maximum_parallel_commands, 1, devq)) == NULL) { return(ENOMEM); } if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) { mly_printf(sc, "CAM XPT phsyical channel registration failed\n"); return(ENXIO); } debug(1, "registered physical channel %d", chn); } } /* * Register our virtual channels, with bus numbers matching channel numbers. */ chn = sc->mly_controllerinfo->physical_channels_present; for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) { if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc, device_get_unit(sc->mly_dev), &Giant, sc->mly_controllerinfo->maximum_parallel_commands, 0, devq)) == NULL) { return(ENOMEM); } if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) { mly_printf(sc, "CAM XPT virtual channel registration failed\n"); return(ENXIO); } debug(1, "registered virtual channel %d", chn); } /* * This is the total number of channels that (might have been) registered with * CAM. Some may not have been; check the mly_cam_sim array to be certain. */ sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present + sc->mly_controllerinfo->virtual_channels_present; return(0); } /******************************************************************************** * Detach from CAM */ static void mly_cam_detach(struct mly_softc *sc) { int i; debug_called(1); for (i = 0; i < sc->mly_cam_channels; i++) { if (sc->mly_cam_sim[i] != NULL) { xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i])); cam_sim_free(sc->mly_cam_sim[i], 0); } } if (sc->mly_cam_devq != NULL) cam_simq_free(sc->mly_cam_devq); } /************************************************************************ * Rescan a device. */ static void mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target) { union ccb *ccb; debug_called(1); if ((ccb = xpt_alloc_ccb()) == NULL) { mly_printf(sc, "rescan failed (can't allocate CCB)\n"); return; } if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) { mly_printf(sc, "rescan failed (can't create path)\n"); xpt_free_ccb(ccb); return; } debug(1, "rescan target %d:%d", bus, target); xpt_rescan(ccb); } /******************************************************************************** * Handle an action requested by CAM */ static void mly_cam_action(struct cam_sim *sim, union ccb *ccb) { struct mly_softc *sc = cam_sim_softc(sim); debug_called(2); switch (ccb->ccb_h.func_code) { /* perform SCSI I/O */ case XPT_SCSI_IO: if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio)) return; break; /* perform geometry calculations */ case XPT_CALC_GEOMETRY: { struct ccb_calc_geometry *ccg = &ccb->ccg; u_int32_t secs_per_cylinder; debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun); if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) { ccg->heads = 255; ccg->secs_per_track = 63; } else { /* MLY_BIOSGEOM_2G */ ccg->heads = 128; ccg->secs_per_track = 32; } secs_per_cylinder = ccg->heads * ccg->secs_per_track; ccg->cylinders = ccg->volume_size / secs_per_cylinder; ccb->ccb_h.status = CAM_REQ_CMP; break; } /* handle path attribute inquiry */ case XPT_PATH_INQ: { struct ccb_pathinq *cpi = &ccb->cpi; debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun); cpi->version_num = 1; cpi->hba_inquiry = PI_TAG_ABLE; /* XXX extra flags for physical channels? */ cpi->target_sprt = 0; cpi->hba_misc = 0; cpi->max_target = MLY_MAX_TARGETS - 1; cpi->max_lun = MLY_MAX_LUNS - 1; cpi->initiator_id = sc->mly_controllerparam->initiator_id; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->bus_id = cam_sim_bus(sim); cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */ cpi->transport = XPORT_SPI; cpi->transport_version = 2; cpi->protocol = PROTO_SCSI; cpi->protocol_version = SCSI_REV_2; ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_GET_TRAN_SETTINGS: { struct ccb_trans_settings *cts = &ccb->cts; int bus, target; struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi; struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi; cts->protocol = PROTO_SCSI; cts->protocol_version = SCSI_REV_2; cts->transport = XPORT_SPI; cts->transport_version = 2; scsi->flags = 0; scsi->valid = 0; spi->flags = 0; spi->valid = 0; bus = cam_sim_bus(sim); target = cts->ccb_h.target_id; debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target); /* logical device? */ if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) { /* nothing special for these */ /* physical device? */ } else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) { /* allow CAM to try tagged transactions */ scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; scsi->valid |= CTS_SCSI_VALID_TQ; /* convert speed (MHz) to usec */ if (sc->mly_btl[bus][target].mb_speed == 0) { spi->sync_period = 1000000 / 5; } else { spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed; } /* convert bus width to CAM internal encoding */ switch (sc->mly_btl[bus][target].mb_width) { case 32: spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT; break; case 16: spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; break; case 8: default: spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; break; } spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH; /* not a device, bail out */ } else { cts->ccb_h.status = CAM_REQ_CMP_ERR; break; } /* disconnect always OK */ spi->flags |= CTS_SPI_FLAGS_DISC_ENB; spi->valid |= CTS_SPI_VALID_DISC; cts->ccb_h.status = CAM_REQ_CMP; break; } default: /* we can't do this */ debug(2, "unspported func_code = 0x%x", ccb->ccb_h.func_code); ccb->ccb_h.status = CAM_REQ_INVALID; break; } xpt_done(ccb); } /******************************************************************************** * Handle an I/O operation requested by CAM */ static int mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio) { struct mly_softc *sc = cam_sim_softc(sim); struct mly_command *mc; struct mly_command_scsi_small *ss; int bus, target; int error; int s; bus = cam_sim_bus(sim); target = csio->ccb_h.target_id; debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun); /* validate bus number */ if (!MLY_BUS_IS_VALID(sc, bus)) { debug(0, " invalid bus %d", bus); csio->ccb_h.status = CAM_REQ_CMP_ERR; } /* check for I/O attempt to a protected device */ if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) { debug(2, " device protected"); csio->ccb_h.status = CAM_REQ_CMP_ERR; } /* check for I/O attempt to nonexistent device */ if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) { debug(2, " device %d:%d does not exist", bus, target); csio->ccb_h.status = CAM_REQ_CMP_ERR; } /* XXX increase if/when we support large SCSI commands */ if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) { debug(0, " command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB); csio->ccb_h.status = CAM_REQ_CMP_ERR; } /* check that the CDB pointer is not to a physical address */ if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) { debug(0, " CDB pointer is to physical address"); csio->ccb_h.status = CAM_REQ_CMP_ERR; } /* if there is data transfer, it must be to/from a virtual address */ if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { if (csio->ccb_h.flags & CAM_DATA_PHYS) { /* we can't map it */ debug(0, " data pointer is to physical address"); csio->ccb_h.status = CAM_REQ_CMP_ERR; } if (csio->ccb_h.flags & CAM_SCATTER_VALID) { /* we want to do the s/g setup */ debug(0, " data has premature s/g setup"); csio->ccb_h.status = CAM_REQ_CMP_ERR; } } /* abandon aborted ccbs or those that have failed validation */ if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { debug(2, "abandoning CCB due to abort/validation failure"); return(EINVAL); } /* * Get a command, or push the ccb back to CAM and freeze the queue. */ if ((error = mly_alloc_command(sc, &mc))) { s = splcam(); xpt_freeze_simq(sim, 1); csio->ccb_h.status |= CAM_REQUEUE_REQ; sc->mly_qfrzn_cnt++; splx(s); return(error); } /* build the command */ mc->mc_data = csio->data_ptr; mc->mc_length = csio->dxfer_len; mc->mc_complete = mly_cam_complete; mc->mc_private = csio; /* save the bus number in the ccb for later recovery XXX should be a better way */ csio->ccb_h.sim_priv.entries[0].field = bus; /* build the packet for the controller */ ss = &mc->mc_packet->scsi_small; ss->opcode = MDACMD_SCSI; if (csio->ccb_h.flags & CAM_DIS_DISCONNECT) ss->command_control.disable_disconnect = 1; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) ss->command_control.data_direction = MLY_CCB_WRITE; ss->data_size = csio->dxfer_len; ss->addr.phys.lun = csio->ccb_h.target_lun; ss->addr.phys.target = csio->ccb_h.target_id; ss->addr.phys.channel = bus; if (csio->ccb_h.timeout < (60 * 1000)) { ss->timeout.value = csio->ccb_h.timeout / 1000; ss->timeout.scale = MLY_TIMEOUT_SECONDS; } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) { ss->timeout.value = csio->ccb_h.timeout / (60 * 1000); ss->timeout.scale = MLY_TIMEOUT_MINUTES; } else { ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000); /* overflow? */ ss->timeout.scale = MLY_TIMEOUT_HOURS; } ss->maximum_sense_size = csio->sense_len; ss->cdb_length = csio->cdb_len; if (csio->ccb_h.flags & CAM_CDB_POINTER) { bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len); } else { bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len); } /* give the command to the controller */ if ((error = mly_start(mc))) { s = splcam(); xpt_freeze_simq(sim, 1); csio->ccb_h.status |= CAM_REQUEUE_REQ; sc->mly_qfrzn_cnt++; splx(s); return(error); } return(0); } /******************************************************************************** * Check for possibly-completed commands. */ static void mly_cam_poll(struct cam_sim *sim) { struct mly_softc *sc = cam_sim_softc(sim); debug_called(2); mly_done(sc); } /******************************************************************************** * Handle completion of a command - pass results back through the CCB */ static void mly_cam_complete(struct mly_command *mc) { struct mly_softc *sc = mc->mc_sc; struct ccb_scsiio *csio = (struct ccb_scsiio *)mc->mc_private; struct scsi_inquiry_data *inq = (struct scsi_inquiry_data *)csio->data_ptr; struct mly_btl *btl; u_int8_t cmd; int bus, target; int s; debug_called(2); csio->scsi_status = mc->mc_status; switch(mc->mc_status) { case SCSI_STATUS_OK: /* * In order to report logical device type and status, we overwrite * the result of the INQUIRY command to logical devices. */ bus = csio->ccb_h.sim_priv.entries[0].field; target = csio->ccb_h.target_id; /* XXX validate bus/target? */ if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) { if (csio->ccb_h.flags & CAM_CDB_POINTER) { cmd = *csio->cdb_io.cdb_ptr; } else { cmd = csio->cdb_io.cdb_bytes[0]; } if (cmd == INQUIRY) { btl = &sc->mly_btl[bus][target]; padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8); padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16); padstr(inq->revision, "", 4); } } debug(2, "SCSI_STATUS_OK"); csio->ccb_h.status = CAM_REQ_CMP; break; case SCSI_STATUS_CHECK_COND: debug(1, "SCSI_STATUS_CHECK_COND sense %d resid %d", mc->mc_sense, mc->mc_resid); csio->ccb_h.status = CAM_SCSI_STATUS_ERROR; bzero(&csio->sense_data, SSD_FULL_SIZE); bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense); csio->sense_len = mc->mc_sense; csio->ccb_h.status |= CAM_AUTOSNS_VALID; csio->resid = mc->mc_resid; /* XXX this is a signed value... */ break; case SCSI_STATUS_BUSY: debug(1, "SCSI_STATUS_BUSY"); csio->ccb_h.status = CAM_SCSI_BUSY; break; default: debug(1, "unknown status 0x%x", csio->scsi_status); csio->ccb_h.status = CAM_REQ_CMP_ERR; break; } s = splcam(); if (sc->mly_qfrzn_cnt) { csio->ccb_h.status |= CAM_RELEASE_SIMQ; sc->mly_qfrzn_cnt--; } splx(s); xpt_done((union ccb *)csio); mly_release_command(mc); } /******************************************************************************** * Find a peripheral attahed at (bus),(target) */ static struct cam_periph * mly_find_periph(struct mly_softc *sc, int bus, int target) { struct cam_periph *periph; struct cam_path *path; int status; status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0); if (status == CAM_REQ_CMP) { periph = cam_periph_find(path, NULL); xpt_free_path(path); } else { periph = NULL; } return(periph); } /******************************************************************************** * Name the device at (bus)(target) */ static int mly_name_device(struct mly_softc *sc, int bus, int target) { struct cam_periph *periph; if ((periph = mly_find_periph(sc, bus, target)) != NULL) { sprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number); return(0); } sc->mly_btl[bus][target].mb_name[0] = 0; return(ENOENT); } /******************************************************************************** ******************************************************************************** Hardware Control ******************************************************************************** ********************************************************************************/ /******************************************************************************** * Handshake with the firmware while the card is being initialised. */ static int mly_fwhandshake(struct mly_softc *sc) { u_int8_t error, param0, param1; int spinup = 0; debug_called(1); /* set HM_STSACK and let the firmware initialise */ MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK); DELAY(1000); /* too short? */ /* if HM_STSACK is still true, the controller is initialising */ if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) return(0); mly_printf(sc, "controller initialisation started\n"); /* spin waiting for initialisation to finish, or for a message to be delivered */ while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) { /* check for a message */ if (MLY_ERROR_VALID(sc)) { error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY; param0 = MLY_GET_REG(sc, sc->mly_command_mailbox); param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1); switch(error) { case MLY_MSG_SPINUP: if (!spinup) { mly_printf(sc, "drive spinup in progress\n"); spinup = 1; /* only print this once (should print drive being spun?) */ } break; case MLY_MSG_RACE_RECOVERY_FAIL: mly_printf(sc, "mirror race recovery failed, one or more drives offline\n"); break; case MLY_MSG_RACE_IN_PROGRESS: mly_printf(sc, "mirror race recovery in progress\n"); break; case MLY_MSG_RACE_ON_CRITICAL: mly_printf(sc, "mirror race recovery on a critical drive\n"); break; case MLY_MSG_PARITY_ERROR: mly_printf(sc, "FATAL MEMORY PARITY ERROR\n"); return(ENXIO); default: mly_printf(sc, "unknown initialisation code 0x%x\n", error); } } } return(0); } /******************************************************************************** ******************************************************************************** Debugging and Diagnostics ******************************************************************************** ********************************************************************************/ /******************************************************************************** * Print some information about the controller. */ static void mly_describe_controller(struct mly_softc *sc) { struct mly_ioctl_getcontrollerinfo *mi = sc->mly_controllerinfo; mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n", mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "", mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build, /* XXX turn encoding? */ mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day, mi->memory_size); if (bootverbose) { mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n", mly_describe_code(mly_table_oemname, mi->oem_information), mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type, mi->interface_speed, mi->interface_width, mi->interface_name); mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n", mi->memory_size, mi->memory_speed, mi->memory_width, mly_describe_code(mly_table_memorytype, mi->memory_type), mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "", mi->cache_size); mly_printf(sc, "CPU: %s @ %dMHz\n", mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed); if (mi->l2cache_size != 0) mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size); if (mi->exmemory_size != 0) mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n", mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width, mly_describe_code(mly_table_memorytype, mi->exmemory_type), mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": ""); mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed"); mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n", mi->maximum_block_count, mi->maximum_sg_entries); mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n", mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline); mly_printf(sc, "physical devices present %d\n", mi->physical_devices_present); mly_printf(sc, "physical disks present/offline %d/%d\n", mi->physical_disks_present, mi->physical_disks_offline); mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n", mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s", mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s", mi->virtual_channels_possible); mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands); mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n", mi->flash_size, mi->flash_age, mi->flash_maximum_age); } } #ifdef MLY_DEBUG /******************************************************************************** * Print some controller state */ static void mly_printstate(struct mly_softc *sc) { mly_printf(sc, "IDBR %02x ODBR %02x ERROR %02x (%x %x %x)\n", MLY_GET_REG(sc, sc->mly_idbr), MLY_GET_REG(sc, sc->mly_odbr), MLY_GET_REG(sc, sc->mly_error_status), sc->mly_idbr, sc->mly_odbr, sc->mly_error_status); mly_printf(sc, "IMASK %02x ISTATUS %02x\n", MLY_GET_REG(sc, sc->mly_interrupt_mask), MLY_GET_REG(sc, sc->mly_interrupt_status)); mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n", MLY_GET_REG(sc, sc->mly_command_mailbox), MLY_GET_REG(sc, sc->mly_command_mailbox + 1), MLY_GET_REG(sc, sc->mly_command_mailbox + 2), MLY_GET_REG(sc, sc->mly_command_mailbox + 3), MLY_GET_REG(sc, sc->mly_command_mailbox + 4), MLY_GET_REG(sc, sc->mly_command_mailbox + 5), MLY_GET_REG(sc, sc->mly_command_mailbox + 6), MLY_GET_REG(sc, sc->mly_command_mailbox + 7)); mly_printf(sc, "STATUS %02x %02x %02x %02x %02x %02x %02x %02x\n", MLY_GET_REG(sc, sc->mly_status_mailbox), MLY_GET_REG(sc, sc->mly_status_mailbox + 1), MLY_GET_REG(sc, sc->mly_status_mailbox + 2), MLY_GET_REG(sc, sc->mly_status_mailbox + 3), MLY_GET_REG(sc, sc->mly_status_mailbox + 4), MLY_GET_REG(sc, sc->mly_status_mailbox + 5), MLY_GET_REG(sc, sc->mly_status_mailbox + 6), MLY_GET_REG(sc, sc->mly_status_mailbox + 7)); mly_printf(sc, " %04x %08x\n", MLY_GET_REG2(sc, sc->mly_status_mailbox), MLY_GET_REG4(sc, sc->mly_status_mailbox + 4)); } struct mly_softc *mly_softc0 = NULL; void mly_printstate0(void) { if (mly_softc0 != NULL) mly_printstate(mly_softc0); } /******************************************************************************** * Print a command */ static void mly_print_command(struct mly_command *mc) { struct mly_softc *sc = mc->mc_sc; mly_printf(sc, "COMMAND @ %p\n", mc); mly_printf(sc, " slot %d\n", mc->mc_slot); mly_printf(sc, " status 0x%x\n", mc->mc_status); mly_printf(sc, " sense len %d\n", mc->mc_sense); mly_printf(sc, " resid %d\n", mc->mc_resid); mly_printf(sc, " packet %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys); if (mc->mc_packet != NULL) mly_print_packet(mc); mly_printf(sc, " data %p/%d\n", mc->mc_data, mc->mc_length); mly_printf(sc, " flags %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n"); mly_printf(sc, " complete %p\n", mc->mc_complete); mly_printf(sc, " private %p\n", mc->mc_private); } /******************************************************************************** * Print a command packet */ static void mly_print_packet(struct mly_command *mc) { struct mly_softc *sc = mc->mc_sc; struct mly_command_generic *ge = (struct mly_command_generic *)mc->mc_packet; struct mly_command_scsi_small *ss = (struct mly_command_scsi_small *)mc->mc_packet; struct mly_command_scsi_large *sl = (struct mly_command_scsi_large *)mc->mc_packet; struct mly_command_ioctl *io = (struct mly_command_ioctl *)mc->mc_packet; int transfer; mly_printf(sc, " command_id %d\n", ge->command_id); mly_printf(sc, " opcode %d\n", ge->opcode); mly_printf(sc, " command_control fua %d dpo %d est %d dd %s nas %d ddis %d\n", ge->command_control.force_unit_access, ge->command_control.disable_page_out, ge->command_control.extended_sg_table, (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ", ge->command_control.no_auto_sense, ge->command_control.disable_disconnect); mly_printf(sc, " data_size %d\n", ge->data_size); mly_printf(sc, " sense_buffer_address 0x%llx\n", ge->sense_buffer_address); mly_printf(sc, " lun %d\n", ge->addr.phys.lun); mly_printf(sc, " target %d\n", ge->addr.phys.target); mly_printf(sc, " channel %d\n", ge->addr.phys.channel); mly_printf(sc, " logical device %d\n", ge->addr.log.logdev); mly_printf(sc, " controller %d\n", ge->addr.phys.controller); mly_printf(sc, " timeout %d %s\n", ge->timeout.value, (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" : ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours")); mly_printf(sc, " maximum_sense_size %d\n", ge->maximum_sense_size); switch(ge->opcode) { case MDACMD_SCSIPT: case MDACMD_SCSI: mly_printf(sc, " cdb length %d\n", ss->cdb_length); mly_printf(sc, " cdb %*D\n", ss->cdb_length, ss->cdb, " "); transfer = 1; break; case MDACMD_SCSILC: case MDACMD_SCSILCPT: mly_printf(sc, " cdb length %d\n", sl->cdb_length); mly_printf(sc, " cdb 0x%llx\n", sl->cdb_physaddr); transfer = 1; break; case MDACMD_IOCTL: mly_printf(sc, " sub_ioctl 0x%x\n", io->sub_ioctl); switch(io->sub_ioctl) { case MDACIOCTL_SETMEMORYMAILBOX: mly_printf(sc, " health_buffer_size %d\n", io->param.setmemorymailbox.health_buffer_size); mly_printf(sc, " health_buffer_phys 0x%llx\n", io->param.setmemorymailbox.health_buffer_physaddr); mly_printf(sc, " command_mailbox 0x%llx\n", io->param.setmemorymailbox.command_mailbox_physaddr); mly_printf(sc, " status_mailbox 0x%llx\n", io->param.setmemorymailbox.status_mailbox_physaddr); transfer = 0; break; case MDACIOCTL_SETREALTIMECLOCK: case MDACIOCTL_GETHEALTHSTATUS: case MDACIOCTL_GETCONTROLLERINFO: case MDACIOCTL_GETLOGDEVINFOVALID: case MDACIOCTL_GETPHYSDEVINFOVALID: case MDACIOCTL_GETPHYSDEVSTATISTICS: case MDACIOCTL_GETLOGDEVSTATISTICS: case MDACIOCTL_GETCONTROLLERSTATISTICS: case MDACIOCTL_GETBDT_FOR_SYSDRIVE: case MDACIOCTL_CREATENEWCONF: case MDACIOCTL_ADDNEWCONF: case MDACIOCTL_GETDEVCONFINFO: case MDACIOCTL_GETFREESPACELIST: case MDACIOCTL_MORE: case MDACIOCTL_SETPHYSDEVPARAMETER: case MDACIOCTL_GETPHYSDEVPARAMETER: case MDACIOCTL_GETLOGDEVPARAMETER: case MDACIOCTL_SETLOGDEVPARAMETER: mly_printf(sc, " param %10D\n", io->param.data.param, " "); transfer = 1; break; case MDACIOCTL_GETEVENT: mly_printf(sc, " event %d\n", io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16)); transfer = 1; break; case MDACIOCTL_SETRAIDDEVSTATE: mly_printf(sc, " state %d\n", io->param.setraiddevstate.state); transfer = 0; break; case MDACIOCTL_XLATEPHYSDEVTORAIDDEV: mly_printf(sc, " raid_device %d\n", io->param.xlatephysdevtoraiddev.raid_device); mly_printf(sc, " controller %d\n", io->param.xlatephysdevtoraiddev.controller); mly_printf(sc, " channel %d\n", io->param.xlatephysdevtoraiddev.channel); mly_printf(sc, " target %d\n", io->param.xlatephysdevtoraiddev.target); mly_printf(sc, " lun %d\n", io->param.xlatephysdevtoraiddev.lun); transfer = 0; break; case MDACIOCTL_GETGROUPCONFINFO: mly_printf(sc, " group %d\n", io->param.getgroupconfinfo.group); transfer = 1; break; case MDACIOCTL_GET_SUBSYSTEM_DATA: case MDACIOCTL_SET_SUBSYSTEM_DATA: case MDACIOCTL_STARTDISOCVERY: case MDACIOCTL_INITPHYSDEVSTART: case MDACIOCTL_INITPHYSDEVSTOP: case MDACIOCTL_INITRAIDDEVSTART: case MDACIOCTL_INITRAIDDEVSTOP: case MDACIOCTL_REBUILDRAIDDEVSTART: case MDACIOCTL_REBUILDRAIDDEVSTOP: case MDACIOCTL_MAKECONSISTENTDATASTART: case MDACIOCTL_MAKECONSISTENTDATASTOP: case MDACIOCTL_CONSISTENCYCHECKSTART: case MDACIOCTL_CONSISTENCYCHECKSTOP: case MDACIOCTL_RESETDEVICE: case MDACIOCTL_FLUSHDEVICEDATA: case MDACIOCTL_PAUSEDEVICE: case MDACIOCTL_UNPAUSEDEVICE: case MDACIOCTL_LOCATEDEVICE: case MDACIOCTL_SETMASTERSLAVEMODE: case MDACIOCTL_DELETERAIDDEV: case MDACIOCTL_REPLACEINTERNALDEV: case MDACIOCTL_CLEARCONF: case MDACIOCTL_GETCONTROLLERPARAMETER: case MDACIOCTL_SETCONTRLLERPARAMETER: case MDACIOCTL_CLEARCONFSUSPMODE: case MDACIOCTL_STOREIMAGE: case MDACIOCTL_READIMAGE: case MDACIOCTL_FLASHIMAGES: case MDACIOCTL_RENAMERAIDDEV: default: /* no idea what to print */ transfer = 0; break; } break; case MDACMD_IOCTLCHECK: case MDACMD_MEMCOPY: default: transfer = 0; break; /* print nothing */ } if (transfer) { if (ge->command_control.extended_sg_table) { mly_printf(sc, " sg table 0x%llx/%d\n", ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]); } else { mly_printf(sc, " 0000 0x%llx/%lld\n", ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length); mly_printf(sc, " 0001 0x%llx/%lld\n", ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length); } } } /******************************************************************************** * Panic in a slightly informative fashion */ static void mly_panic(struct mly_softc *sc, char *reason) { mly_printstate(sc); panic(reason); } /******************************************************************************** * Print queue statistics, callable from DDB. */ void mly_print_controller(int controller) { struct mly_softc *sc; if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) { printf("mly: controller %d invalid\n", controller); } else { device_printf(sc->mly_dev, "queue curr max\n"); device_printf(sc->mly_dev, "free %04d/%04d\n", sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max); device_printf(sc->mly_dev, "busy %04d/%04d\n", sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max); device_printf(sc->mly_dev, "complete %04d/%04d\n", sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max); } } #endif /******************************************************************************** ******************************************************************************** Control device interface ******************************************************************************** ********************************************************************************/ /******************************************************************************** * Accept an open operation on the control device. */ static int mly_user_open(struct cdev *dev, int flags, int fmt, struct thread *td) { struct mly_softc *sc = dev->si_drv1; sc->mly_state |= MLY_STATE_OPEN; return(0); } /******************************************************************************** * Accept the last close on the control device. */ static int mly_user_close(struct cdev *dev, int flags, int fmt, struct thread *td) { struct mly_softc *sc = dev->si_drv1; sc->mly_state &= ~MLY_STATE_OPEN; return (0); } /******************************************************************************** * Handle controller-specific control operations. */ static int mly_user_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int32_t flag, struct thread *td) { struct mly_softc *sc = (struct mly_softc *)dev->si_drv1; struct mly_user_command *uc = (struct mly_user_command *)addr; struct mly_user_health *uh = (struct mly_user_health *)addr; switch(cmd) { case MLYIO_COMMAND: return(mly_user_command(sc, uc)); case MLYIO_HEALTH: return(mly_user_health(sc, uh)); default: return(ENOIOCTL); } } /******************************************************************************** * Execute a command passed in from userspace. * * The control structure contains the actual command for the controller, as well * as the user-space data pointer and data size, and an optional sense buffer * size/pointer. On completion, the data size is adjusted to the command * residual, and the sense buffer size to the size of the returned sense data. * */ static int mly_user_command(struct mly_softc *sc, struct mly_user_command *uc) { struct mly_command *mc; int error, s; /* allocate a command */ if (mly_alloc_command(sc, &mc)) { error = ENOMEM; goto out; /* XXX Linux version will wait for a command */ } /* handle data size/direction */ mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength; if (mc->mc_length > 0) { if ((mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_NOWAIT)) == NULL) { error = ENOMEM; goto out; } } if (uc->DataTransferLength > 0) { mc->mc_flags |= MLY_CMD_DATAIN; bzero(mc->mc_data, mc->mc_length); } if (uc->DataTransferLength < 0) { mc->mc_flags |= MLY_CMD_DATAOUT; if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0) goto out; } /* copy the controller command */ bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox)); /* clear command completion handler so that we get woken up */ mc->mc_complete = NULL; /* execute the command */ if ((error = mly_start(mc)) != 0) goto out; s = splcam(); while (!(mc->mc_flags & MLY_CMD_COMPLETE)) tsleep(mc, PRIBIO, "mlyioctl", 0); splx(s); /* return the data to userspace */ if (uc->DataTransferLength > 0) if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0) goto out; /* return the sense buffer to userspace */ if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) { if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer, min(uc->RequestSenseLength, mc->mc_sense))) != 0) goto out; } /* return command results to userspace (caller will copy out) */ uc->DataTransferLength = mc->mc_resid; uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense); uc->CommandStatus = mc->mc_status; error = 0; out: if (mc->mc_data != NULL) free(mc->mc_data, M_DEVBUF); if (mc != NULL) mly_release_command(mc); return(error); } /******************************************************************************** * Return health status to userspace. If the health change index in the user * structure does not match that currently exported by the controller, we * return the current status immediately. Otherwise, we block until either * interrupted or new status is delivered. */ static int mly_user_health(struct mly_softc *sc, struct mly_user_health *uh) { struct mly_health_status mh; int error, s; /* fetch the current health status from userspace */ if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0) return(error); /* spin waiting for a status update */ s = splcam(); error = EWOULDBLOCK; while ((error != 0) && (sc->mly_event_change == mh.change_counter)) error = tsleep(&sc->mly_event_change, PRIBIO | PCATCH, "mlyhealth", 0); splx(s); /* copy the controller's health status buffer out (there is a race here if it changes again) */ error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer)); return(error); } #ifdef MLY_DEBUG static int mly_timeout(struct mly_softc *sc) { struct mly_command *mc; int deadline; deadline = time_second - MLY_CMD_TIMEOUT; TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) { if ((mc->mc_timestamp < deadline)) { device_printf(sc->mly_dev, "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc, (int)(time_second - mc->mc_timestamp)); } } timeout((timeout_t *)mly_timeout, sc, MLY_CMD_TIMEOUT * hz); return (0); } #endif