Current Path : /usr/src/sys/dev/ral/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/dev/ral/rt2661.c |
/* $FreeBSD: release/9.1.0/sys/dev/ral/rt2661.c 234753 2012-04-28 09:15:01Z dim $ */ /*- * Copyright (c) 2006 * Damien Bergamini <damien.bergamini@free.fr> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/ral/rt2661.c 234753 2012-04-28 09:15:01Z dim $"); /*- * Ralink Technology RT2561, RT2561S and RT2661 chipset driver * http://www.ralinktech.com/ */ #include <sys/param.h> #include <sys/sysctl.h> #include <sys/sockio.h> #include <sys/mbuf.h> #include <sys/kernel.h> #include <sys/socket.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/module.h> #include <sys/bus.h> #include <sys/endian.h> #include <sys/firmware.h> #include <machine/bus.h> #include <machine/resource.h> #include <sys/rman.h> #include <net/bpf.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_types.h> #include <net80211/ieee80211_var.h> #include <net80211/ieee80211_radiotap.h> #include <net80211/ieee80211_regdomain.h> #include <net80211/ieee80211_ratectl.h> #include <netinet/in.h> #include <netinet/in_systm.h> #include <netinet/in_var.h> #include <netinet/ip.h> #include <netinet/if_ether.h> #include <dev/ral/rt2661reg.h> #include <dev/ral/rt2661var.h> #define RAL_DEBUG #ifdef RAL_DEBUG #define DPRINTF(sc, fmt, ...) do { \ if (sc->sc_debug > 0) \ printf(fmt, __VA_ARGS__); \ } while (0) #define DPRINTFN(sc, n, fmt, ...) do { \ if (sc->sc_debug >= (n)) \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, fmt, ...) #define DPRINTFN(sc, n, fmt, ...) #endif static struct ieee80211vap *rt2661_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void rt2661_vap_delete(struct ieee80211vap *); static void rt2661_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int rt2661_alloc_tx_ring(struct rt2661_softc *, struct rt2661_tx_ring *, int); static void rt2661_reset_tx_ring(struct rt2661_softc *, struct rt2661_tx_ring *); static void rt2661_free_tx_ring(struct rt2661_softc *, struct rt2661_tx_ring *); static int rt2661_alloc_rx_ring(struct rt2661_softc *, struct rt2661_rx_ring *, int); static void rt2661_reset_rx_ring(struct rt2661_softc *, struct rt2661_rx_ring *); static void rt2661_free_rx_ring(struct rt2661_softc *, struct rt2661_rx_ring *); static int rt2661_newstate(struct ieee80211vap *, enum ieee80211_state, int); static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t); static void rt2661_rx_intr(struct rt2661_softc *); static void rt2661_tx_intr(struct rt2661_softc *); static void rt2661_tx_dma_intr(struct rt2661_softc *, struct rt2661_tx_ring *); static void rt2661_mcu_beacon_expire(struct rt2661_softc *); static void rt2661_mcu_wakeup(struct rt2661_softc *); static void rt2661_mcu_cmd_intr(struct rt2661_softc *); static void rt2661_scan_start(struct ieee80211com *); static void rt2661_scan_end(struct ieee80211com *); static void rt2661_set_channel(struct ieee80211com *); static void rt2661_setup_tx_desc(struct rt2661_softc *, struct rt2661_tx_desc *, uint32_t, uint16_t, int, int, const bus_dma_segment_t *, int, int); static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *, struct ieee80211_node *, int); static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *, struct ieee80211_node *); static void rt2661_start_locked(struct ifnet *); static void rt2661_start(struct ifnet *); static int rt2661_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void rt2661_watchdog(void *); static int rt2661_ioctl(struct ifnet *, u_long, caddr_t); static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t); static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t); static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t); static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t); static void rt2661_select_antenna(struct rt2661_softc *); static void rt2661_enable_mrr(struct rt2661_softc *); static void rt2661_set_txpreamble(struct rt2661_softc *); static void rt2661_set_basicrates(struct rt2661_softc *, const struct ieee80211_rateset *); static void rt2661_select_band(struct rt2661_softc *, struct ieee80211_channel *); static void rt2661_set_chan(struct rt2661_softc *, struct ieee80211_channel *); static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *); static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *); static void rt2661_update_promisc(struct ifnet *); static int rt2661_wme_update(struct ieee80211com *) __unused; static void rt2661_update_slot(struct ifnet *); static const char *rt2661_get_rf(int); static void rt2661_read_eeprom(struct rt2661_softc *, uint8_t macaddr[IEEE80211_ADDR_LEN]); static int rt2661_bbp_init(struct rt2661_softc *); static void rt2661_init_locked(struct rt2661_softc *); static void rt2661_init(void *); static void rt2661_stop_locked(struct rt2661_softc *); static void rt2661_stop(void *); static int rt2661_load_microcode(struct rt2661_softc *); #ifdef notyet static void rt2661_rx_tune(struct rt2661_softc *); static void rt2661_radar_start(struct rt2661_softc *); static int rt2661_radar_stop(struct rt2661_softc *); #endif static int rt2661_prepare_beacon(struct rt2661_softc *, struct ieee80211vap *); static void rt2661_enable_tsf_sync(struct rt2661_softc *); static void rt2661_enable_tsf(struct rt2661_softc *); static int rt2661_get_rssi(struct rt2661_softc *, uint8_t); static const struct { uint32_t reg; uint32_t val; } rt2661_def_mac[] = { RT2661_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2661_def_bbp[] = { RT2661_DEF_BBP }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rt2661_rf5225_1[] = { RT2661_RF5225_1 }, rt2661_rf5225_2[] = { RT2661_RF5225_2 }; int rt2661_attach(device_t dev, int id) { struct rt2661_softc *sc = device_get_softc(dev); struct ieee80211com *ic; struct ifnet *ifp; uint32_t val; int error, ac, ntries; uint8_t bands; uint8_t macaddr[IEEE80211_ADDR_LEN]; sc->sc_id = id; sc->sc_dev = dev; ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); if (ifp == NULL) { device_printf(sc->sc_dev, "can not if_alloc()\n"); return ENOMEM; } ic = ifp->if_l2com; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); /* wait for NIC to initialize */ for (ntries = 0; ntries < 1000; ntries++) { if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0) break; DELAY(1000); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for NIC to initialize\n"); error = EIO; goto fail1; } /* retrieve RF rev. no and various other things from EEPROM */ rt2661_read_eeprom(sc, macaddr); device_printf(dev, "MAC/BBP RT%X, RF %s\n", val, rt2661_get_rf(sc->rf_rev)); /* * Allocate Tx and Rx rings. */ for (ac = 0; ac < 4; ac++) { error = rt2661_alloc_tx_ring(sc, &sc->txq[ac], RT2661_TX_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Tx ring %d\n", ac); goto fail2; } } error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Mgt ring\n"); goto fail2; } error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Rx ring\n"); goto fail3; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = rt2661_init; ifp->if_ioctl = rt2661_ioctl; ifp->if_start = rt2661_start; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; IFQ_SET_READY(&ifp->if_snd); ic->ic_ifp = ifp; ic->ic_opmode = IEEE80211_M_STA; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ | IEEE80211_C_HOSTAP /* hostap mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_AHDEMO /* adhoc demo mode */ | IEEE80211_C_WDS /* 4-address traffic works */ | IEEE80211_C_MBSS /* mesh point link mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ #ifdef notyet | IEEE80211_C_TXFRAG /* handle tx frags */ | IEEE80211_C_WME /* 802.11e */ #endif ; bands = 0; setbit(&bands, IEEE80211_MODE_11B); setbit(&bands, IEEE80211_MODE_11G); if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) setbit(&bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, &bands); ieee80211_ifattach(ic, macaddr); #if 0 ic->ic_wme.wme_update = rt2661_wme_update; #endif ic->ic_scan_start = rt2661_scan_start; ic->ic_scan_end = rt2661_scan_end; ic->ic_set_channel = rt2661_set_channel; ic->ic_updateslot = rt2661_update_slot; ic->ic_update_promisc = rt2661_update_promisc; ic->ic_raw_xmit = rt2661_raw_xmit; ic->ic_vap_create = rt2661_vap_create; ic->ic_vap_delete = rt2661_vap_delete; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RT2661_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RT2661_RX_RADIOTAP_PRESENT); #ifdef RAL_DEBUG SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "debug msgs"); #endif if (bootverbose) ieee80211_announce(ic); return 0; fail3: rt2661_free_tx_ring(sc, &sc->mgtq); fail2: while (--ac >= 0) rt2661_free_tx_ring(sc, &sc->txq[ac]); fail1: mtx_destroy(&sc->sc_mtx); if_free(ifp); return error; } int rt2661_detach(void *xsc) { struct rt2661_softc *sc = xsc; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; RAL_LOCK(sc); rt2661_stop_locked(sc); RAL_UNLOCK(sc); ieee80211_ifdetach(ic); rt2661_free_tx_ring(sc, &sc->txq[0]); rt2661_free_tx_ring(sc, &sc->txq[1]); rt2661_free_tx_ring(sc, &sc->txq[2]); rt2661_free_tx_ring(sc, &sc->txq[3]); rt2661_free_tx_ring(sc, &sc->mgtq); rt2661_free_rx_ring(sc, &sc->rxq); if_free(ifp); mtx_destroy(&sc->sc_mtx); return 0; } static struct ieee80211vap * rt2661_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ifnet *ifp = ic->ic_ifp; struct rt2661_vap *rvp; struct ieee80211vap *vap; switch (opmode) { case IEEE80211_M_STA: case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: case IEEE80211_M_MONITOR: case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: /* XXXRP: TBD */ if (!TAILQ_EMPTY(&ic->ic_vaps)) { if_printf(ifp, "only 1 vap supported\n"); return NULL; } if (opmode == IEEE80211_M_STA) flags |= IEEE80211_CLONE_NOBEACONS; break; case IEEE80211_M_WDS: if (TAILQ_EMPTY(&ic->ic_vaps) || ic->ic_opmode != IEEE80211_M_HOSTAP) { if_printf(ifp, "wds only supported in ap mode\n"); return NULL; } /* * Silently remove any request for a unique * bssid; WDS vap's always share the local * mac address. */ flags &= ~IEEE80211_CLONE_BSSID; break; default: if_printf(ifp, "unknown opmode %d\n", opmode); return NULL; } rvp = (struct rt2661_vap *) malloc(sizeof(struct rt2661_vap), M_80211_VAP, M_NOWAIT | M_ZERO); if (rvp == NULL) return NULL; vap = &rvp->ral_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); /* override state transition machine */ rvp->ral_newstate = vap->iv_newstate; vap->iv_newstate = rt2661_newstate; #if 0 vap->iv_update_beacon = rt2661_beacon_update; #endif ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); if (TAILQ_FIRST(&ic->ic_vaps) == vap) ic->ic_opmode = opmode; return vap; } static void rt2661_vap_delete(struct ieee80211vap *vap) { struct rt2661_vap *rvp = RT2661_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(rvp, M_80211_VAP); } void rt2661_shutdown(void *xsc) { struct rt2661_softc *sc = xsc; rt2661_stop(sc); } void rt2661_suspend(void *xsc) { struct rt2661_softc *sc = xsc; rt2661_stop(sc); } void rt2661_resume(void *xsc) { struct rt2661_softc *sc = xsc; struct ifnet *ifp = sc->sc_ifp; if (ifp->if_flags & IFF_UP) rt2661_init(sc); } static void rt2661_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring, int count) { int i, error; ring->count = count; ring->queued = 0; ring->cur = ring->next = ring->stat = 0; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_TX_DESC_SIZE, 1, count * RT2661_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * RT2661_TX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2661_MAX_SCATTER, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { error = bus_dmamap_create(ring->data_dmat, 0, &ring->data[i].map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } } return 0; fail: rt2661_free_tx_ring(sc, ring); return error; } static void rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) { struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; int i; for (i = 0; i < ring->count; i++) { desc = &ring->desc[i]; data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } desc->flags = 0; } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = ring->stat = 0; } static void rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) { struct rt2661_tx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->ni != NULL) ieee80211_free_node(data->ni); if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring, int count) { struct rt2661_rx_desc *desc; struct rt2661_rx_data *data; bus_addr_t physaddr; int i, error; ring->count = count; ring->cur = ring->next = 0; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_RX_DESC_SIZE, 1, count * RT2661_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * RT2661_RX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } /* * Pre-allocate Rx buffers and populate Rx ring. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { desc = &sc->rxq.desc[i]; data = &sc->rxq.data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } desc->flags = htole32(RT2661_RX_BUSY); desc->physaddr = htole32(physaddr); } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); return 0; fail: rt2661_free_rx_ring(sc, ring); return error; } static void rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) { int i; for (i = 0; i < ring->count; i++) ring->desc[i].flags = htole32(RT2661_RX_BUSY); bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; } static void rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) { struct rt2661_rx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int rt2661_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct rt2661_vap *rvp = RT2661_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct rt2661_softc *sc = ic->ic_ifp->if_softc; int error; if (nstate == IEEE80211_S_INIT && vap->iv_state == IEEE80211_S_RUN) { uint32_t tmp; /* abort TSF synchronization */ tmp = RAL_READ(sc, RT2661_TXRX_CSR9); RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff); } error = rvp->ral_newstate(vap, nstate, arg); if (error == 0 && nstate == IEEE80211_S_RUN) { struct ieee80211_node *ni = vap->iv_bss; if (vap->iv_opmode != IEEE80211_M_MONITOR) { rt2661_enable_mrr(sc); rt2661_set_txpreamble(sc); rt2661_set_basicrates(sc, &ni->ni_rates); rt2661_set_bssid(sc, ni->ni_bssid); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_MBSS) { error = rt2661_prepare_beacon(sc, vap); if (error != 0) return error; } if (vap->iv_opmode != IEEE80211_M_MONITOR) rt2661_enable_tsf_sync(sc); else rt2661_enable_tsf(sc); } return error; } /* * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or * 93C66). */ static uint16_t rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ RT2661_EEPROM_CTL(sc, 0); RT2661_EEPROM_CTL(sc, RT2661_S); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); RT2661_EEPROM_CTL(sc, RT2661_S); /* write start bit (1) */ RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); /* write READ opcode (10) */ RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); RT2661_EEPROM_CTL(sc, RT2661_S); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); /* write address (A5-A0 or A7-A0) */ n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7; for (; n >= 0; n--) { RT2661_EEPROM_CTL(sc, RT2661_S | (((addr >> n) & 1) << RT2661_SHIFT_D)); RT2661_EEPROM_CTL(sc, RT2661_S | (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C); } RT2661_EEPROM_CTL(sc, RT2661_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); tmp = RAL_READ(sc, RT2661_E2PROM_CSR); val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n; RT2661_EEPROM_CTL(sc, RT2661_S); } RT2661_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ RT2661_EEPROM_CTL(sc, RT2661_S); RT2661_EEPROM_CTL(sc, 0); RT2661_EEPROM_CTL(sc, RT2661_C); return val; } static void rt2661_tx_intr(struct rt2661_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct rt2661_tx_ring *txq; struct rt2661_tx_data *data; uint32_t val; int qid, retrycnt; struct ieee80211vap *vap; for (;;) { struct ieee80211_node *ni; struct mbuf *m; val = RAL_READ(sc, RT2661_STA_CSR4); if (!(val & RT2661_TX_STAT_VALID)) break; /* retrieve the queue in which this frame was sent */ qid = RT2661_TX_QID(val); txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq; /* retrieve rate control algorithm context */ data = &txq->data[txq->stat]; m = data->m; data->m = NULL; ni = data->ni; data->ni = NULL; /* if no frame has been sent, ignore */ if (ni == NULL) continue; else vap = ni->ni_vap; switch (RT2661_TX_RESULT(val)) { case RT2661_TX_SUCCESS: retrycnt = RT2661_TX_RETRYCNT(val); DPRINTFN(sc, 10, "data frame sent successfully after " "%d retries\n", retrycnt); if (data->rix != IEEE80211_FIXED_RATE_NONE) ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &retrycnt, NULL); ifp->if_opackets++; break; case RT2661_TX_RETRY_FAIL: retrycnt = RT2661_TX_RETRYCNT(val); DPRINTFN(sc, 9, "%s\n", "sending data frame failed (too much retries)"); if (data->rix != IEEE80211_FIXED_RATE_NONE) ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_FAILURE, &retrycnt, NULL); ifp->if_oerrors++; break; default: /* other failure */ device_printf(sc->sc_dev, "sending data frame failed 0x%08x\n", val); ifp->if_oerrors++; } DPRINTFN(sc, 15, "tx done q=%d idx=%u\n", qid, txq->stat); txq->queued--; if (++txq->stat >= txq->count) /* faster than % count */ txq->stat = 0; if (m->m_flags & M_TXCB) ieee80211_process_callback(ni, m, RT2661_TX_RESULT(val) != RT2661_TX_SUCCESS); m_freem(m); ieee80211_free_node(ni); } sc->sc_tx_timer = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; rt2661_start_locked(ifp); } static void rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq) { struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_POSTREAD); for (;;) { desc = &txq->desc[txq->next]; data = &txq->data[txq->next]; if ((le32toh(desc->flags) & RT2661_TX_BUSY) || !(le32toh(desc->flags) & RT2661_TX_VALID)) break; bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->data_dmat, data->map); /* descriptor is no longer valid */ desc->flags &= ~htole32(RT2661_TX_VALID); DPRINTFN(sc, 15, "tx dma done q=%p idx=%u\n", txq, txq->next); if (++txq->next >= txq->count) /* faster than % count */ txq->next = 0; } bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); } static void rt2661_rx_intr(struct rt2661_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct rt2661_rx_desc *desc; struct rt2661_rx_data *data; bus_addr_t physaddr; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *mnew, *m; int error; bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_POSTREAD); for (;;) { int8_t rssi, nf; desc = &sc->rxq.desc[sc->rxq.cur]; data = &sc->rxq.data[sc->rxq.cur]; if (le32toh(desc->flags) & RT2661_RX_BUSY) break; if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) || (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) { /* * This should not happen since we did not request * to receive those frames when we filled TXRX_CSR0. */ DPRINTFN(sc, 5, "PHY or CRC error flags 0x%08x\n", le32toh(desc->flags)); ifp->if_ierrors++; goto skip; } if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) { ifp->if_ierrors++; goto skip; } /* * Try to allocate a new mbuf for this ring element and load it * before processing the current mbuf. If the ring element * cannot be loaded, drop the received packet and reuse the old * mbuf. In the unlikely case that the old mbuf can't be * reloaded either, explicitly panic. */ mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { ifp->if_ierrors++; goto skip; } bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxq.data_dmat, data->map); error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(mnew, void *), MCLBYTES, rt2661_dma_map_addr, &physaddr, 0); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr, &physaddr, 0); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", device_get_name(sc->sc_dev)); } ifp->if_ierrors++; goto skip; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; desc->physaddr = htole32(physaddr); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; rssi = rt2661_get_rssi(sc, desc->rssi); /* Error happened during RSSI conversion. */ if (rssi < 0) rssi = -30; /* XXX ignored by net80211 */ nf = RT2661_NOISE_FLOOR; if (ieee80211_radiotap_active(ic)) { struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap; uint32_t tsf_lo, tsf_hi; /* get timestamp (low and high 32 bits) */ tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13); tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12); tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); tap->wr_flags = 0; tap->wr_rate = ieee80211_plcp2rate(desc->rate, (desc->flags & htole32(RT2661_RX_OFDM)) ? IEEE80211_T_OFDM : IEEE80211_T_CCK); tap->wr_antsignal = nf + rssi; tap->wr_antnoise = nf; } sc->sc_flags |= RAL_INPUT_RUNNING; RAL_UNLOCK(sc); wh = mtod(m, struct ieee80211_frame *); /* send the frame to the 802.11 layer */ ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, nf); RAL_LOCK(sc); sc->sc_flags &= ~RAL_INPUT_RUNNING; skip: desc->flags |= htole32(RT2661_RX_BUSY); DPRINTFN(sc, 15, "rx intr idx=%u\n", sc->rxq.cur); sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT; } bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_PREWRITE); } /* ARGSUSED */ static void rt2661_mcu_beacon_expire(struct rt2661_softc *sc) { /* do nothing */ } static void rt2661_mcu_wakeup(struct rt2661_softc *sc) { RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16); RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7); RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18); RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20); /* send wakeup command to MCU */ rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0); } static void rt2661_mcu_cmd_intr(struct rt2661_softc *sc) { RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR); RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); } void rt2661_intr(void *arg) { struct rt2661_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; uint32_t r1, r2; RAL_LOCK(sc); /* disable MAC and MCU interrupts */ RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); /* don't re-enable interrupts if we're shutting down */ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { RAL_UNLOCK(sc); return; } r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR); RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1); r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR); RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2); if (r1 & RT2661_MGT_DONE) rt2661_tx_dma_intr(sc, &sc->mgtq); if (r1 & RT2661_RX_DONE) rt2661_rx_intr(sc); if (r1 & RT2661_TX0_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[0]); if (r1 & RT2661_TX1_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[1]); if (r1 & RT2661_TX2_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[2]); if (r1 & RT2661_TX3_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[3]); if (r1 & RT2661_TX_DONE) rt2661_tx_intr(sc); if (r2 & RT2661_MCU_CMD_DONE) rt2661_mcu_cmd_intr(sc); if (r2 & RT2661_MCU_BEACON_EXPIRE) rt2661_mcu_beacon_expire(sc); if (r2 & RT2661_MCU_WAKEUP) rt2661_mcu_wakeup(sc); /* re-enable MAC and MCU interrupts */ RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); RAL_UNLOCK(sc); } static uint8_t rt2661_plcp_signal(int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; } return 0xff; /* XXX unsupported/unknown rate */ } static void rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc, uint32_t flags, uint16_t xflags, int len, int rate, const bus_dma_segment_t *segs, int nsegs, int ac) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint16_t plcp_length; int i, remainder; desc->flags = htole32(flags); desc->flags |= htole32(len << 16); desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID); desc->xflags = htole16(xflags); desc->xflags |= htole16(nsegs << 13); desc->wme = htole16( RT2661_QID(ac) | RT2661_AIFSN(2) | RT2661_LOGCWMIN(4) | RT2661_LOGCWMAX(10)); /* * Remember in which queue this frame was sent. This field is driver * private data only. It will be made available by the NIC in STA_CSR4 * on Tx interrupts. */ desc->qid = ac; /* setup PLCP fields */ desc->plcp_signal = rt2661_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { desc->flags |= htole32(RT2661_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2661_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } /* RT2x61 supports scatter with up to 5 segments */ for (i = 0; i < nsegs; i++) { desc->addr[i] = htole32(segs[i].ds_addr); desc->len [i] = htole16(segs[i].ds_len); } } static int rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; bus_dma_segment_t segs[RT2661_MAX_SCATTER]; uint16_t dur; uint32_t flags = 0; /* XXX HWSEQ */ int nsegs, rate, error; desc = &sc->mgtq.desc[sc->mgtq.cur]; data = &sc->mgtq.data[sc->mgtq.cur]; rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } } error = bus_dmamap_load_mbuf_sg(sc->mgtq.data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (ieee80211_radiotap_active_vap(vap)) { struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; ieee80211_radiotap_tx(vap, m0); } data->m = m0; data->ni = ni; /* management frames are not taken into account for amrr */ data->rix = IEEE80211_FIXED_RATE_NONE; wh = mtod(m0, struct ieee80211_frame *); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2661_TX_NEED_ACK; dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to add timestamp in probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) flags |= RT2661_TX_TIMESTAMP; } rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */, m0->m_pkthdr.len, rate, segs, nsegs, RT2661_QID_MGT); bus_dmamap_sync(sc->mgtq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->mgtq.desc_dmat, sc->mgtq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(sc, 10, "sending mgt frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->mgtq.cur, rate); /* kick mgt */ sc->mgtq.queued++; sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT; RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT); return 0; } static int rt2661_sendprot(struct rt2661_softc *sc, int ac, const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) { struct ieee80211com *ic = ni->ni_ic; struct rt2661_tx_ring *txq = &sc->txq[ac]; const struct ieee80211_frame *wh; struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; struct mbuf *mprot; int protrate, ackrate, pktlen, flags, isshort, error; uint16_t dur; bus_dma_segment_t segs[RT2661_MAX_SCATTER]; int nsegs; KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("protection %d", prot)); wh = mtod(m, const struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; protrate = ieee80211_ctl_rate(ic->ic_rt, rate); ackrate = ieee80211_ack_rate(ic->ic_rt, rate); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags = RT2661_TX_MORE_FRAG; if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags |= RT2661_TX_NEED_ACK; mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else { mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); } if (mprot == NULL) { /* XXX stat + msg */ return ENOBUFS; } data = &txq->data[txq->cur]; desc = &txq->desc[txq->cur]; error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, mprot, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(mprot); return error; } data->m = mprot; data->ni = ieee80211_ref_node(ni); /* ctl frames are not taken into account for amrr */ data->rix = IEEE80211_FIXED_RATE_NONE; rt2661_setup_tx_desc(sc, desc, flags, 0, mprot->m_pkthdr.len, protrate, segs, 1, ac); bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); txq->queued++; txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; return 0; } static int rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, int ac) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct rt2661_tx_ring *txq = &sc->txq[ac]; struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k; const struct chanAccParams *cap; struct mbuf *mnew; bus_dma_segment_t segs[RT2661_MAX_SCATTER]; uint16_t dur; uint32_t flags; int error, nsegs, rate, noack = 0; wh = mtod(m0, struct ieee80211_frame *); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { rate = tp->mcastrate; } else if (m0->m_flags & M_EAPOL) { rate = tp->mgmtrate; } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { rate = tp->ucastrate; } else { (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; } rate &= IEEE80211_RATE_VAL; if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { cap = &ic->ic_wme.wme_chanParams; noack = cap->cap_wmeParams[ac].wmep_noackPolicy; } if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } flags = 0; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { int prot = IEEE80211_PROT_NONE; if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) prot = IEEE80211_PROT_RTSCTS; else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) prot = ic->ic_protmode; if (prot != IEEE80211_PROT_NONE) { error = rt2661_sendprot(sc, ac, m0, ni, prot, rate); if (error) { m_freem(m0); return error; } flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS; } } data = &txq->data[txq->cur]; desc = &txq->desc[txq->cur]; error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { mnew = m_defrag(m0, M_DONTWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m0); return ENOBUFS; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } /* packet header have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; ieee80211_radiotap_tx(vap, m0); } data->m = m0; data->ni = ni; /* remember link conditions for rate adaptation algorithm */ if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { data->rix = ni->ni_txrate; /* XXX probably need last rssi value and not avg */ data->rssi = ic->ic_node_getrssi(ni); } else data->rix = IEEE80211_FIXED_RATE_NONE; if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2661_TX_NEED_ACK; dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); } rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate, segs, nsegs, ac); bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(sc, 10, "sending data frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, txq->cur, rate); /* kick Tx */ txq->queued++; txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1 << ac); return 0; } static void rt2661_start_locked(struct ifnet *ifp) { struct rt2661_softc *sc = ifp->if_softc; struct mbuf *m; struct ieee80211_node *ni; int ac; RAL_LOCK_ASSERT(sc); /* prevent management frames from being sent if we're not ready */ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING) || sc->sc_invalid) return; for (;;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; ac = M_WME_GETAC(m); if (sc->txq[ac].queued >= RT2661_TX_RING_COUNT - 1) { /* there is no place left in this ring */ IFQ_DRV_PREPEND(&ifp->if_snd, m); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (rt2661_tx_data(sc, m, ni, ac) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } sc->sc_tx_timer = 5; } } static void rt2661_start(struct ifnet *ifp) { struct rt2661_softc *sc = ifp->if_softc; RAL_LOCK(sc); rt2661_start_locked(ifp); RAL_UNLOCK(sc); } static int rt2661_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = ic->ic_ifp; struct rt2661_softc *sc = ifp->if_softc; RAL_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { RAL_UNLOCK(sc); m_freem(m); ieee80211_free_node(ni); return ENETDOWN; } if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; RAL_UNLOCK(sc); m_freem(m); ieee80211_free_node(ni); return ENOBUFS; /* XXX */ } ifp->if_opackets++; /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. * XXX raw path */ if (rt2661_tx_mgt(sc, m, ni) != 0) goto bad; sc->sc_tx_timer = 5; RAL_UNLOCK(sc); return 0; bad: ifp->if_oerrors++; ieee80211_free_node(ni); RAL_UNLOCK(sc); return EIO; /* XXX */ } static void rt2661_watchdog(void *arg) { struct rt2661_softc *sc = (struct rt2661_softc *)arg; struct ifnet *ifp = sc->sc_ifp; RAL_LOCK_ASSERT(sc); KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running")); if (sc->sc_invalid) /* card ejected */ return; if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) { if_printf(ifp, "device timeout\n"); rt2661_init_locked(sc); ifp->if_oerrors++; /* NB: callout is reset in rt2661_init() */ return; } callout_reset(&sc->watchdog_ch, hz, rt2661_watchdog, sc); } static int rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct rt2661_softc *sc = ifp->if_softc; struct ieee80211com *ic = ifp->if_l2com; struct ifreq *ifr = (struct ifreq *) data; int error = 0, startall = 0; switch (cmd) { case SIOCSIFFLAGS: RAL_LOCK(sc); if (ifp->if_flags & IFF_UP) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { rt2661_init_locked(sc); startall = 1; } else rt2661_update_promisc(ifp); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) rt2661_stop_locked(sc); } RAL_UNLOCK(sc); if (startall) ieee80211_start_all(ic); break; case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); break; case SIOCGIFADDR: error = ether_ioctl(ifp, cmd, data); break; default: error = EINVAL; break; } return error; } static void rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to BBP\n"); return; } tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val; RAL_WRITE(sc, RT2661_PHY_CSR3, tmp); DPRINTFN(sc, 15, "BBP R%u <- 0x%02x\n", reg, val); } static uint8_t rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg) { uint32_t val; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not read from BBP\n"); return 0; } val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8; RAL_WRITE(sc, RT2661_PHY_CSR3, val); for (ntries = 0; ntries < 100; ntries++) { val = RAL_READ(sc, RT2661_PHY_CSR3); if (!(val & RT2661_BBP_BUSY)) return val & 0xff; DELAY(1); } device_printf(sc->sc_dev, "could not read from BBP\n"); return 0; } static void rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 | (reg & 3); RAL_WRITE(sc, RT2661_PHY_CSR4, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(sc, 15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff); } static int rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg) { if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) return EIO; /* there is already a command pending */ RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg); RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd); return 0; } static void rt2661_select_antenna(struct rt2661_softc *sc) { uint8_t bbp4, bbp77; uint32_t tmp; bbp4 = rt2661_bbp_read(sc, 4); bbp77 = rt2661_bbp_read(sc, 77); /* TBD */ /* make sure Rx is disabled before switching antenna */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0); RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); rt2661_bbp_write(sc, 4, bbp4); rt2661_bbp_write(sc, 77, bbp77); /* restore Rx filter */ RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); } /* * Enable multi-rate retries for frames sent at OFDM rates. * In 802.11b/g mode, allow fallback to CCK rates. */ static void rt2661_enable_mrr(struct rt2661_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t tmp; tmp = RAL_READ(sc, RT2661_TXRX_CSR4); tmp &= ~RT2661_MRR_CCK_FALLBACK; if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) tmp |= RT2661_MRR_CCK_FALLBACK; tmp |= RT2661_MRR_ENABLED; RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); } static void rt2661_set_txpreamble(struct rt2661_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t tmp; tmp = RAL_READ(sc, RT2661_TXRX_CSR4); tmp &= ~RT2661_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2661_SHORT_PREAMBLE; RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); } static void rt2661_set_basicrates(struct rt2661_softc *sc, const struct ieee80211_rateset *rs) { #define RV(r) ((r) & IEEE80211_RATE_VAL) struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t mask = 0; uint8_t rate; int i; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; if (!(rate & IEEE80211_RATE_BASIC)) continue; mask |= 1 << ic->ic_rt->rateCodeToIndex[RV(rate)]; } RAL_WRITE(sc, RT2661_TXRX_CSR5, mask); DPRINTF(sc, "Setting basic rate mask to 0x%x\n", mask); #undef RV } /* * Reprogram MAC/BBP to switch to a new band. Values taken from the reference * driver. */ static void rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c) { uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; uint32_t tmp; /* update all BBP registers that depend on the band */ bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; if (IEEE80211_IS_CHAN_5GHZ(c)) { bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; } if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; } rt2661_bbp_write(sc, 17, bbp17); rt2661_bbp_write(sc, 96, bbp96); rt2661_bbp_write(sc, 104, bbp104); if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { rt2661_bbp_write(sc, 75, 0x80); rt2661_bbp_write(sc, 86, 0x80); rt2661_bbp_write(sc, 88, 0x80); } rt2661_bbp_write(sc, 35, bbp35); rt2661_bbp_write(sc, 97, bbp97); rt2661_bbp_write(sc, 98, bbp98); tmp = RAL_READ(sc, RT2661_PHY_CSR0); tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ); if (IEEE80211_IS_CHAN_2GHZ(c)) tmp |= RT2661_PA_PE_2GHZ; else tmp |= RT2661_PA_PE_5GHZ; RAL_WRITE(sc, RT2661_PHY_CSR0, tmp); } static void rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; const struct rfprog *rfprog; uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT; int8_t power; u_int i, chan; chan = ieee80211_chan2ieee(ic, c); KASSERT(chan != 0 && chan != IEEE80211_CHAN_ANY, ("chan 0x%x", chan)); /* select the appropriate RF settings based on what EEPROM says */ rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); power = sc->txpow[i]; if (power < 0) { bbp94 += power; power = 0; } else if (power > 31) { bbp94 += power - 31; power = 31; } /* * If we are switching from the 2GHz band to the 5GHz band or * vice-versa, BBP registers need to be reprogrammed. */ if (c->ic_flags != sc->sc_curchan->ic_flags) { rt2661_select_band(sc, c); rt2661_select_antenna(sc); } sc->sc_curchan = c; rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); DELAY(200); rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1); rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); DELAY(200); rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); /* enable smart mode for MIMO-capable RFs */ bbp3 = rt2661_bbp_read(sc, 3); bbp3 &= ~RT2661_SMART_MODE; if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529) bbp3 |= RT2661_SMART_MODE; rt2661_bbp_write(sc, 3, bbp3); if (bbp94 != RT2661_BBPR94_DEFAULT) rt2661_bbp_write(sc, 94, bbp94); /* 5GHz radio needs a 1ms delay here */ if (IEEE80211_IS_CHAN_5GHZ(c)) DELAY(1000); } static void rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; RAL_WRITE(sc, RT2661_MAC_CSR4, tmp); tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16; RAL_WRITE(sc, RT2661_MAC_CSR5, tmp); } static void rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; RAL_WRITE(sc, RT2661_MAC_CSR2, tmp); tmp = addr[4] | addr[5] << 8; RAL_WRITE(sc, RT2661_MAC_CSR3, tmp); } static void rt2661_update_promisc(struct ifnet *ifp) { struct rt2661_softc *sc = ifp->if_softc; uint32_t tmp; tmp = RAL_READ(sc, RT2661_TXRX_CSR0); tmp &= ~RT2661_DROP_NOT_TO_ME; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2661_DROP_NOT_TO_ME; RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); DPRINTF(sc, "%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving"); } /* * Update QoS (802.11e) settings for each h/w Tx ring. */ static int rt2661_wme_update(struct ieee80211com *ic) { struct rt2661_softc *sc = ic->ic_ifp->if_softc; const struct wmeParams *wmep; wmep = ic->ic_wme.wme_chanParams.cap_wmeParams; /* XXX: not sure about shifts. */ /* XXX: the reference driver plays with AC_VI settings too. */ /* update TxOp */ RAL_WRITE(sc, RT2661_AC_TXOP_CSR0, wmep[WME_AC_BE].wmep_txopLimit << 16 | wmep[WME_AC_BK].wmep_txopLimit); RAL_WRITE(sc, RT2661_AC_TXOP_CSR1, wmep[WME_AC_VI].wmep_txopLimit << 16 | wmep[WME_AC_VO].wmep_txopLimit); /* update CWmin */ RAL_WRITE(sc, RT2661_CWMIN_CSR, wmep[WME_AC_BE].wmep_logcwmin << 12 | wmep[WME_AC_BK].wmep_logcwmin << 8 | wmep[WME_AC_VI].wmep_logcwmin << 4 | wmep[WME_AC_VO].wmep_logcwmin); /* update CWmax */ RAL_WRITE(sc, RT2661_CWMAX_CSR, wmep[WME_AC_BE].wmep_logcwmax << 12 | wmep[WME_AC_BK].wmep_logcwmax << 8 | wmep[WME_AC_VI].wmep_logcwmax << 4 | wmep[WME_AC_VO].wmep_logcwmax); /* update Aifsn */ RAL_WRITE(sc, RT2661_AIFSN_CSR, wmep[WME_AC_BE].wmep_aifsn << 12 | wmep[WME_AC_BK].wmep_aifsn << 8 | wmep[WME_AC_VI].wmep_aifsn << 4 | wmep[WME_AC_VO].wmep_aifsn); return 0; } static void rt2661_update_slot(struct ifnet *ifp) { struct rt2661_softc *sc = ifp->if_softc; struct ieee80211com *ic = ifp->if_l2com; uint8_t slottime; uint32_t tmp; slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; tmp = RAL_READ(sc, RT2661_MAC_CSR9); tmp = (tmp & ~0xff) | slottime; RAL_WRITE(sc, RT2661_MAC_CSR9, tmp); } static const char * rt2661_get_rf(int rev) { switch (rev) { case RT2661_RF_5225: return "RT5225"; case RT2661_RF_5325: return "RT5325 (MIMO XR)"; case RT2661_RF_2527: return "RT2527"; case RT2661_RF_2529: return "RT2529 (MIMO XR)"; default: return "unknown"; } } static void rt2661_read_eeprom(struct rt2661_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) { uint16_t val; int i; /* read MAC address */ val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01); macaddr[0] = val & 0xff; macaddr[1] = val >> 8; val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23); macaddr[2] = val & 0xff; macaddr[3] = val >> 8; val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45); macaddr[4] = val & 0xff; macaddr[5] = val >> 8; val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA); /* XXX: test if different from 0xffff? */ sc->rf_rev = (val >> 11) & 0x1f; sc->hw_radio = (val >> 10) & 0x1; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; DPRINTF(sc, "RF revision=%d\n", sc->rf_rev); val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2); sc->ext_5ghz_lna = (val >> 6) & 0x1; sc->ext_2ghz_lna = (val >> 4) & 0x1; DPRINTF(sc, "External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", sc->ext_2ghz_lna, sc->ext_5ghz_lna); val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET); if ((val & 0xff) != 0xff) sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) sc->rssi_2ghz_corr = 0; val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET); if ((val & 0xff) != 0xff) sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) sc->rssi_5ghz_corr = 0; /* adjust RSSI correction for external low-noise amplifier */ if (sc->ext_2ghz_lna) sc->rssi_2ghz_corr -= 14; if (sc->ext_5ghz_lna) sc->rssi_5ghz_corr -= 14; DPRINTF(sc, "RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET); if ((val >> 8) != 0xff) sc->rfprog = (val >> 8) & 0x3; if ((val & 0xff) != 0xff) sc->rffreq = val & 0xff; DPRINTF(sc, "RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq); /* read Tx power for all a/b/g channels */ for (i = 0; i < 19; i++) { val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i); sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */ DPRINTF(sc, "Channel=%d Tx power=%d\n", rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]); sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */ DPRINTF(sc, "Channel=%d Tx power=%d\n", rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]); } /* read vendor-specific BBP values */ for (i = 0; i < 16; i++) { val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i); if (val == 0 || val == 0xffff) continue; /* skip invalid entries */ sc->bbp_prom[i].reg = val >> 8; sc->bbp_prom[i].val = val & 0xff; DPRINTF(sc, "BBP R%d=%02x\n", sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } } static int rt2661_bbp_init(struct rt2661_softc *sc) { #define N(a) (sizeof (a) / sizeof ((a)[0])) int i, ntries; uint8_t val; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { val = rt2661_bbp_read(sc, 0); if (val != 0 && val != 0xff) break; DELAY(100); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP\n"); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < N(rt2661_def_bbp); i++) { rt2661_bbp_write(sc, rt2661_def_bbp[i].reg, rt2661_def_bbp[i].val); } /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0) continue; rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } return 0; #undef N } static void rt2661_init_locked(struct rt2661_softc *sc) { #define N(a) (sizeof (a) / sizeof ((a)[0])) struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; uint32_t tmp, sta[3]; int i, error, ntries; RAL_LOCK_ASSERT(sc); if ((sc->sc_flags & RAL_FW_LOADED) == 0) { error = rt2661_load_microcode(sc); if (error != 0) { if_printf(ifp, "%s: could not load 8051 microcode, error %d\n", __func__, error); return; } sc->sc_flags |= RAL_FW_LOADED; } rt2661_stop_locked(sc); /* initialize Tx rings */ RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr); RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr); RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr); RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr); /* initialize Mgt ring */ RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr); /* initialize Rx ring */ RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr); /* initialize Tx rings sizes */ RAL_WRITE(sc, RT2661_TX_RING_CSR0, RT2661_TX_RING_COUNT << 24 | RT2661_TX_RING_COUNT << 16 | RT2661_TX_RING_COUNT << 8 | RT2661_TX_RING_COUNT); RAL_WRITE(sc, RT2661_TX_RING_CSR1, RT2661_TX_DESC_WSIZE << 16 | RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */ RT2661_MGT_RING_COUNT); /* initialize Rx rings */ RAL_WRITE(sc, RT2661_RX_RING_CSR, RT2661_RX_DESC_BACK << 16 | RT2661_RX_DESC_WSIZE << 8 | RT2661_RX_RING_COUNT); /* XXX: some magic here */ RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa); /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */ RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f); /* load base address of Rx ring */ RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2); /* initialize MAC registers to default values */ for (i = 0; i < N(rt2661_def_mac); i++) RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val); rt2661_set_macaddr(sc, IF_LLADDR(ifp)); /* set host ready */ RAL_WRITE(sc, RT2661_MAC_CSR1, 3); RAL_WRITE(sc, RT2661_MAC_CSR1, 0); /* wait for BBP/RF to wakeup */ for (ntries = 0; ntries < 1000; ntries++) { if (RAL_READ(sc, RT2661_MAC_CSR12) & 8) break; DELAY(1000); } if (ntries == 1000) { printf("timeout waiting for BBP/RF to wakeup\n"); rt2661_stop_locked(sc); return; } if (rt2661_bbp_init(sc) != 0) { rt2661_stop_locked(sc); return; } /* select default channel */ sc->sc_curchan = ic->ic_curchan; rt2661_select_band(sc, sc->sc_curchan); rt2661_select_antenna(sc); rt2661_set_chan(sc, sc->sc_curchan); /* update Rx filter */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff; tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR | RT2661_DROP_ACKCTS; if (ic->ic_opmode != IEEE80211_M_HOSTAP && ic->ic_opmode != IEEE80211_M_MBSS) tmp |= RT2661_DROP_TODS; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2661_DROP_NOT_TO_ME; } RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); /* clear STA registers */ RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta)); /* initialize ASIC */ RAL_WRITE(sc, RT2661_MAC_CSR1, 4); /* clear any pending interrupt */ RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); /* enable interrupts */ RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); /* kick Rx */ RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_RUNNING; callout_reset(&sc->watchdog_ch, hz, rt2661_watchdog, sc); #undef N } static void rt2661_init(void *priv) { struct rt2661_softc *sc = priv; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; RAL_LOCK(sc); rt2661_init_locked(sc); RAL_UNLOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) ieee80211_start_all(ic); /* start all vap's */ } void rt2661_stop_locked(struct rt2661_softc *sc) { struct ifnet *ifp = sc->sc_ifp; uint32_t tmp; volatile int *flags = &sc->sc_flags; while (*flags & RAL_INPUT_RUNNING) msleep(sc, &sc->sc_mtx, 0, "ralrunning", hz/10); callout_stop(&sc->watchdog_ch); sc->sc_tx_timer = 0; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); /* abort Tx (for all 5 Tx rings) */ RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16); /* disable Rx (value remains after reset!) */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0); RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); /* reset ASIC */ RAL_WRITE(sc, RT2661_MAC_CSR1, 3); RAL_WRITE(sc, RT2661_MAC_CSR1, 0); /* disable interrupts */ RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffffff); RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); /* clear any pending interrupt */ RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff); /* reset Tx and Rx rings */ rt2661_reset_tx_ring(sc, &sc->txq[0]); rt2661_reset_tx_ring(sc, &sc->txq[1]); rt2661_reset_tx_ring(sc, &sc->txq[2]); rt2661_reset_tx_ring(sc, &sc->txq[3]); rt2661_reset_tx_ring(sc, &sc->mgtq); rt2661_reset_rx_ring(sc, &sc->rxq); } } void rt2661_stop(void *priv) { struct rt2661_softc *sc = priv; RAL_LOCK(sc); rt2661_stop_locked(sc); RAL_UNLOCK(sc); } static int rt2661_load_microcode(struct rt2661_softc *sc) { struct ifnet *ifp = sc->sc_ifp; const struct firmware *fp; const char *imagename; int ntries, error; RAL_LOCK_ASSERT(sc); switch (sc->sc_id) { case 0x0301: imagename = "rt2561sfw"; break; case 0x0302: imagename = "rt2561fw"; break; case 0x0401: imagename = "rt2661fw"; break; default: if_printf(ifp, "%s: unexpected pci device id 0x%x, " "don't know how to retrieve firmware\n", __func__, sc->sc_id); return EINVAL; } RAL_UNLOCK(sc); fp = firmware_get(imagename); RAL_LOCK(sc); if (fp == NULL) { if_printf(ifp, "%s: unable to retrieve firmware image %s\n", __func__, imagename); return EINVAL; } /* * Load 8051 microcode into NIC. */ /* reset 8051 */ RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); /* cancel any pending Host to MCU command */ RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0); RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0); /* write 8051's microcode */ RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL); RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, fp->data, fp->datasize); RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); /* kick 8051's ass */ RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0); /* wait for 8051 to initialize */ for (ntries = 0; ntries < 500; ntries++) { if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY) break; DELAY(100); } if (ntries == 500) { if_printf(ifp, "%s: timeout waiting for MCU to initialize\n", __func__); error = EIO; } else error = 0; firmware_put(fp, FIRMWARE_UNLOAD); return error; } #ifdef notyet /* * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and * false CCA count. This function is called periodically (every seconds) when * in the RUN state. Values taken from the reference driver. */ static void rt2661_rx_tune(struct rt2661_softc *sc) { uint8_t bbp17; uint16_t cca; int lo, hi, dbm; /* * Tuning range depends on operating band and on the presence of an * external low-noise amplifier. */ lo = 0x20; if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan)) lo += 0x08; if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna)) lo += 0x10; hi = lo + 0x20; /* retrieve false CCA count since last call (clear on read) */ cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff; if (dbm >= -35) { bbp17 = 0x60; } else if (dbm >= -58) { bbp17 = hi; } else if (dbm >= -66) { bbp17 = lo + 0x10; } else if (dbm >= -74) { bbp17 = lo + 0x08; } else { /* RSSI < -74dBm, tune using false CCA count */ bbp17 = sc->bbp17; /* current value */ hi -= 2 * (-74 - dbm); if (hi < lo) hi = lo; if (bbp17 > hi) { bbp17 = hi; } else if (cca > 512) { if (++bbp17 > hi) bbp17 = hi; } else if (cca < 100) { if (--bbp17 < lo) bbp17 = lo; } } if (bbp17 != sc->bbp17) { rt2661_bbp_write(sc, 17, bbp17); sc->bbp17 = bbp17; } } /* * Enter/Leave radar detection mode. * This is for 802.11h additional regulatory domains. */ static void rt2661_radar_start(struct rt2661_softc *sc) { uint32_t tmp; /* disable Rx */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0); RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); rt2661_bbp_write(sc, 82, 0x20); rt2661_bbp_write(sc, 83, 0x00); rt2661_bbp_write(sc, 84, 0x40); /* save current BBP registers values */ sc->bbp18 = rt2661_bbp_read(sc, 18); sc->bbp21 = rt2661_bbp_read(sc, 21); sc->bbp22 = rt2661_bbp_read(sc, 22); sc->bbp16 = rt2661_bbp_read(sc, 16); sc->bbp17 = rt2661_bbp_read(sc, 17); sc->bbp64 = rt2661_bbp_read(sc, 64); rt2661_bbp_write(sc, 18, 0xff); rt2661_bbp_write(sc, 21, 0x3f); rt2661_bbp_write(sc, 22, 0x3f); rt2661_bbp_write(sc, 16, 0xbd); rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34); rt2661_bbp_write(sc, 64, 0x21); /* restore Rx filter */ RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); } static int rt2661_radar_stop(struct rt2661_softc *sc) { uint8_t bbp66; /* read radar detection result */ bbp66 = rt2661_bbp_read(sc, 66); /* restore BBP registers values */ rt2661_bbp_write(sc, 16, sc->bbp16); rt2661_bbp_write(sc, 17, sc->bbp17); rt2661_bbp_write(sc, 18, sc->bbp18); rt2661_bbp_write(sc, 21, sc->bbp21); rt2661_bbp_write(sc, 22, sc->bbp22); rt2661_bbp_write(sc, 64, sc->bbp64); return bbp66 == 1; } #endif static int rt2661_prepare_beacon(struct rt2661_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_beacon_offsets bo; struct rt2661_tx_desc desc; struct mbuf *m0; int rate; m0 = ieee80211_beacon_alloc(vap->iv_bss, &bo); if (m0 == NULL) { device_printf(sc->sc_dev, "could not allocate beacon frame\n"); return ENOBUFS; } /* send beacons at the lowest available rate */ rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan) ? 12 : 2; rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ, m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT); /* copy the first 24 bytes of Tx descriptor into NIC memory */ RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24); /* copy beacon header and payload into NIC memory */ RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), m0->m_pkthdr.len); m_freem(m0); return 0; } /* * Enable TSF synchronization and tell h/w to start sending beacons for IBSS * and HostAP operating modes. */ static void rt2661_enable_tsf_sync(struct rt2661_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; if (vap->iv_opmode != IEEE80211_M_STA) { /* * Change default 16ms TBTT adjustment to 8ms. * Must be done before enabling beacon generation. */ RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8); } tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000; /* set beacon interval (in 1/16ms unit) */ tmp |= vap->iv_bss->ni_intval * 16; tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT; if (vap->iv_opmode == IEEE80211_M_STA) tmp |= RT2661_TSF_MODE(1); else tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON; RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp); } static void rt2661_enable_tsf(struct rt2661_softc *sc) { RAL_WRITE(sc, RT2661_TXRX_CSR9, (RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000) | RT2661_TSF_TICKING | RT2661_TSF_MODE(2)); } /* * Retrieve the "Received Signal Strength Indicator" from the raw values * contained in Rx descriptors. The computation depends on which band the * frame was received. Correction values taken from the reference driver. */ static int rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw) { int lna, agc, rssi; lna = (raw >> 5) & 0x3; agc = raw & 0x1f; if (lna == 0) { /* * No mapping available. * * NB: Since RSSI is relative to noise floor, -1 is * adequate for caller to know error happened. */ return -1; } rssi = (2 * agc) - RT2661_NOISE_FLOOR; if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) { rssi += sc->rssi_2ghz_corr; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 74; else if (lna == 3) rssi -= 90; } else { rssi += sc->rssi_5ghz_corr; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 86; else if (lna == 3) rssi -= 100; } return rssi; } static void rt2661_scan_start(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct rt2661_softc *sc = ifp->if_softc; uint32_t tmp; /* abort TSF synchronization */ tmp = RAL_READ(sc, RT2661_TXRX_CSR9); RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0xffffff); rt2661_set_bssid(sc, ifp->if_broadcastaddr); } static void rt2661_scan_end(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct rt2661_softc *sc = ifp->if_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); rt2661_enable_tsf_sync(sc); /* XXX keep local copy */ rt2661_set_bssid(sc, vap->iv_bss->ni_bssid); } static void rt2661_set_channel(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct rt2661_softc *sc = ifp->if_softc; RAL_LOCK(sc); rt2661_set_chan(sc, ic->ic_curchan); RAL_UNLOCK(sc); }