Current Path : /usr/src/sys/dev/sfxge/common/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/dev/sfxge/common/efsys.h |
/*- * Copyright (c) 2010-2011 Solarflare Communications, Inc. * All rights reserved. * * This software was developed in part by Philip Paeps under contract for * Solarflare Communications, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: release/9.1.0/sys/dev/sfxge/common/efsys.h 228100 2011-11-28 20:28:23Z philip $ */ #ifndef _SYS_EFSYS_H #define _SYS_EFSYS_H #ifdef __cplusplus extern "C" { #endif #include <sys/param.h> #include <sys/bus.h> #include <sys/endian.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/mutex.h> #include <sys/rwlock.h> #include <sys/sdt.h> #include <sys/systm.h> #include <machine/bus.h> #include <machine/endian.h> #define EFSYS_HAS_UINT64 1 #define EFSYS_USE_UINT64 0 #if _BYTE_ORDER == _BIG_ENDIAN #define EFSYS_IS_BIG_ENDIAN 1 #define EFSYS_IS_LITTLE_ENDIAN 0 #elif _BYTE_ORDER == _LITTLE_ENDIAN #define EFSYS_IS_BIG_ENDIAN 0 #define EFSYS_IS_LITTLE_ENDIAN 1 #endif #include "efx_types.h" /* Common code requires this */ #if __FreeBSD_version < 800068 #define memmove(d, s, l) bcopy(s, d, l) #endif /* FreeBSD equivalents of Solaris things */ #ifndef _NOTE #define _NOTE(s) #endif #ifndef B_FALSE #define B_FALSE FALSE #endif #ifndef B_TRUE #define B_TRUE TRUE #endif #ifndef IS_P2ALIGNED #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0) #endif #ifndef P2ROUNDUP #define P2ROUNDUP(x, align) (-(-(x) & -(align))) #endif #ifndef IS2P #define ISP2(x) (((x) & ((x) - 1)) == 0) #endif #define ENOTACTIVE EINVAL /* Memory type to use on FreeBSD */ MALLOC_DECLARE(M_SFXGE); /* Machine dependend prefetch wrappers */ #if defined(__i386__) || defined(__amd64__) static __inline void prefetch_read_many(void *addr) { __asm__( "prefetcht0 (%0)" : : "r" (addr)); } static __inline void prefetch_read_once(void *addr) { __asm__( "prefetchnta (%0)" : : "r" (addr)); } #elif defined(__sparc64__) static __inline void prefetch_read_many(void *addr) { __asm__( "prefetch [%0], 0" : : "r" (addr)); } static __inline void prefetch_read_once(void *addr) { __asm__( "prefetch [%0], 1" : : "r" (addr)); } #else static __inline void prefetch_read_many(void *addr) { } static __inline void prefetch_read_once(void *addr) { } #endif #if defined(__i386__) || defined(__amd64__) #include <vm/vm.h> #include <vm/pmap.h> #endif static __inline void sfxge_map_mbuf_fast(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf *m, bus_dma_segment_t *seg) { #if defined(__i386__) || defined(__amd64__) seg->ds_addr = pmap_kextract(mtod(m, vm_offset_t)); seg->ds_len = m->m_len; #else int nsegstmp; bus_dmamap_load_mbuf_sg(tag, map, m, seg, &nsegstmp, 0); #endif } /* Modifiers used for DOS builds */ #define __cs #define __far /* Modifiers used for Windows builds */ #define __in #define __in_opt #define __in_ecount(_n) #define __in_ecount_opt(_n) #define __in_bcount(_n) #define __in_bcount_opt(_n) #define __out #define __out_opt #define __out_ecount(_n) #define __out_ecount_opt(_n) #define __out_bcount(_n) #define __out_bcount_opt(_n) #define __deref_out #define __inout #define __inout_opt #define __inout_ecount(_n) #define __inout_ecount_opt(_n) #define __inout_bcount(_n) #define __inout_bcount_opt(_n) #define __inout_bcount_full_opt(_n) #define __deref_out_bcount_opt(n) #define __checkReturn #define __drv_when(_p, _c) /* Code inclusion options */ #define EFSYS_OPT_NAMES 1 #define EFSYS_OPT_FALCON 0 #define EFSYS_OPT_FALCON_NIC_CFG_OVERRIDE 0 #define EFSYS_OPT_SIENA 1 #ifdef DEBUG #define EFSYS_OPT_CHECK_REG 1 #else #define EFSYS_OPT_CHECK_REG 0 #endif #define EFSYS_OPT_MCDI 1 #define EFSYS_OPT_MAC_FALCON_GMAC 0 #define EFSYS_OPT_MAC_FALCON_XMAC 0 #define EFSYS_OPT_MAC_STATS 1 #define EFSYS_OPT_LOOPBACK 0 #define EFSYS_OPT_MON_NULL 0 #define EFSYS_OPT_MON_LM87 0 #define EFSYS_OPT_MON_MAX6647 0 #define EFSYS_OPT_MON_SIENA 0 #define EFSYS_OPT_MON_STATS 0 #define EFSYS_OPT_PHY_NULL 0 #define EFSYS_OPT_PHY_QT2022C2 0 #define EFSYS_OPT_PHY_SFX7101 0 #define EFSYS_OPT_PHY_TXC43128 0 #define EFSYS_OPT_PHY_PM8358 0 #define EFSYS_OPT_PHY_SFT9001 0 #define EFSYS_OPT_PHY_QT2025C 0 #define EFSYS_OPT_PHY_STATS 1 #define EFSYS_OPT_PHY_PROPS 0 #define EFSYS_OPT_PHY_BIST 1 #define EFSYS_OPT_PHY_LED_CONTROL 1 #define EFSYS_OPT_PHY_FLAGS 0 #define EFSYS_OPT_VPD 1 #define EFSYS_OPT_NVRAM 1 #define EFSYS_OPT_NVRAM_FALCON_BOOTROM 0 #define EFSYS_OPT_NVRAM_SFT9001 0 #define EFSYS_OPT_NVRAM_SFX7101 0 #define EFSYS_OPT_BOOTCFG 0 #define EFSYS_OPT_PCIE_TUNE 0 #define EFSYS_OPT_DIAG 0 #define EFSYS_OPT_WOL 1 #define EFSYS_OPT_RX_SCALE 1 #define EFSYS_OPT_QSTATS 1 #define EFSYS_OPT_FILTER 0 #define EFSYS_OPT_RX_SCATTER 0 #define EFSYS_OPT_RX_HDR_SPLIT 0 #define EFSYS_OPT_EV_PREFETCH 0 #define EFSYS_OPT_DECODE_INTR_FATAL 1 /* ID */ typedef struct __efsys_identifier_s efsys_identifier_t; /* PROBE */ #ifndef KDTRACE_HOOKS #define EFSYS_PROBE(_name) #define EFSYS_PROBE1(_name, _type1, _arg1) #define EFSYS_PROBE2(_name, _type1, _arg1, _type2, _arg2) #define EFSYS_PROBE3(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3) #define EFSYS_PROBE4(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4) #define EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5) #define EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6) #define EFSYS_PROBE7(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6, _type7, _arg7) #else /* KDTRACE_HOOKS */ #define EFSYS_PROBE(_name) \ DTRACE_PROBE(_name) #define EFSYS_PROBE1(_name, _type1, _arg1) \ DTRACE_PROBE1(_name, _type1, _arg1) #define EFSYS_PROBE2(_name, _type1, _arg1, _type2, _arg2) \ DTRACE_PROBE2(_name, _type1, _arg1, _type2, _arg2) #define EFSYS_PROBE3(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3) \ DTRACE_PROBE3(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3) #define EFSYS_PROBE4(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4) \ DTRACE_PROBE4(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4) #ifdef DTRACE_PROBE5 #define EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5) \ DTRACE_PROBE5(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5) #else #define EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5) \ DTRACE_PROBE4(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4) #endif #ifdef DTRACE_PROBE6 #define EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6) \ DTRACE_PROBE6(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6) #else #define EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6) \ EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5) #endif #ifdef DTRACE_PROBE7 #define EFSYS_PROBE7(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6, _type7, _arg7) \ DTRACE_PROBE7(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6, _type7, _arg7) #else #define EFSYS_PROBE7(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6, _type7, _arg7) \ EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2, \ _type3, _arg3, _type4, _arg4, _type5, _arg5, \ _type6, _arg6) #endif #endif /* KDTRACE_HOOKS */ /* DMA */ typedef uint64_t efsys_dma_addr_t; typedef struct efsys_mem_s { bus_dma_tag_t esm_tag; bus_dmamap_t esm_map; caddr_t esm_base; efsys_dma_addr_t esm_addr; size_t esm_size; } efsys_mem_t; #define EFSYS_MEM_ZERO(_esmp, _size) \ do { \ (void) memset((_esmp)->esm_base, 0, (_size)); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_MEM_READD(_esmp, _offset, _edp) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_dword_t)), \ ("not power of 2 aligned")); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ (_edp)->ed_u32[0] = *addr; \ \ EFSYS_PROBE2(mem_readd, unsigned int, (_offset), \ uint32_t, (_edp)->ed_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_MEM_READQ(_esmp, _offset, _eqp) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ (_eqp)->eq_u32[0] = *addr++; \ (_eqp)->eq_u32[1] = *addr; \ \ EFSYS_PROBE3(mem_readq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_MEM_READO(_esmp, _offset, _eop) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ (_eop)->eo_u32[0] = *addr++; \ (_eop)->eo_u32[1] = *addr++; \ (_eop)->eo_u32[2] = *addr++; \ (_eop)->eo_u32[3] = *addr; \ \ EFSYS_PROBE5(mem_reado, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_MEM_WRITED(_esmp, _offset, _edp) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_dword_t)), \ ("not power of 2 aligned")); \ \ EFSYS_PROBE2(mem_writed, unsigned int, (_offset), \ uint32_t, (_edp)->ed_u32[0]); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ *addr = (_edp)->ed_u32[0]; \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_MEM_WRITEQ(_esmp, _offset, _eqp) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ EFSYS_PROBE3(mem_writeq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ *addr++ = (_eqp)->eq_u32[0]; \ *addr = (_eqp)->eq_u32[1]; \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_MEM_WRITEO(_esmp, _offset, _eop) \ do { \ uint32_t *addr; \ \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ EFSYS_PROBE5(mem_writeo, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ addr = (void *)((_esmp)->esm_base + (_offset)); \ \ *addr++ = (_eop)->eo_u32[0]; \ *addr++ = (_eop)->eo_u32[1]; \ *addr++ = (_eop)->eo_u32[2]; \ *addr = (_eop)->eo_u32[3]; \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_MEM_ADDR(_esmp) \ ((_esmp)->esm_addr) /* BAR */ typedef struct efsys_bar_s { struct mtx esb_lock; bus_space_tag_t esb_tag; bus_space_handle_t esb_handle; int esb_rid; struct resource *esb_res; } efsys_bar_t; #define EFSYS_BAR_READD(_esbp, _offset, _edp, _lock) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_dword_t)), \ ("not power of 2 aligned")); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ mtx_lock(&((_esbp)->esb_lock)); \ \ (_edp)->ed_u32[0] = bus_space_read_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, (_offset)); \ \ EFSYS_PROBE2(bar_readd, unsigned int, (_offset), \ uint32_t, (_edp)->ed_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ mtx_unlock(&((_esbp)->esb_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_BAR_READQ(_esbp, _offset, _eqp) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ mtx_lock(&((_esbp)->esb_lock)); \ \ (_eqp)->eq_u32[0] = bus_space_read_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, (_offset)); \ (_eqp)->eq_u32[1] = bus_space_read_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, (_offset+4)); \ \ EFSYS_PROBE3(bar_readq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ mtx_unlock(&((_esbp)->esb_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_BAR_READO(_esbp, _offset, _eop, _lock) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ mtx_lock(&((_esbp)->esb_lock)); \ \ (_eop)->eo_u32[0] = bus_space_read_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, (_offset)); \ (_eop)->eo_u32[1] = bus_space_read_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, (_offset+4)); \ (_eop)->eo_u32[2] = bus_space_read_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, (_offset+8)); \ (_eop)->eo_u32[3] = bus_space_read_4((_esbp)->esb_tag, \ (_esbp)->esb_handle, (_offset+12)); \ \ EFSYS_PROBE5(bar_reado, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ mtx_unlock(&((_esbp)->esb_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_BAR_WRITED(_esbp, _offset, _edp, _lock) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_dword_t)), \ ("not power of 2 aligned")); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ mtx_lock(&((_esbp)->esb_lock)); \ \ EFSYS_PROBE2(bar_writed, unsigned int, (_offset), \ uint32_t, (_edp)->ed_u32[0]); \ \ bus_space_write_4((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset), (_edp)->ed_u32[0]); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ mtx_unlock(&((_esbp)->esb_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_BAR_WRITEQ(_esbp, _offset, _eqp) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_qword_t)), \ ("not power of 2 aligned")); \ \ mtx_lock(&((_esbp)->esb_lock)); \ \ EFSYS_PROBE3(bar_writeq, unsigned int, (_offset), \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ \ bus_space_write_4((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset), (_eqp)->eq_u32[0]); \ bus_space_write_4((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset+4), (_eqp)->eq_u32[1]); \ \ mtx_unlock(&((_esbp)->esb_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_BAR_WRITEO(_esbp, _offset, _eop, _lock) \ do { \ _NOTE(CONSTANTCONDITION) \ KASSERT(IS_P2ALIGNED(_offset, sizeof (efx_oword_t)), \ ("not power of 2 aligned")); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ mtx_lock(&((_esbp)->esb_lock)); \ \ EFSYS_PROBE5(bar_writeo, unsigned int, (_offset), \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ \ bus_space_write_4((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset), (_eop)->eo_u32[0]); \ bus_space_write_4((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset+4), (_eop)->eo_u32[1]); \ bus_space_write_4((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset+8), (_eop)->eo_u32[2]); \ bus_space_write_4((_esbp)->esb_tag, (_esbp)->esb_handle,\ (_offset+12), (_eop)->eo_u32[3]); \ \ _NOTE(CONSTANTCONDITION) \ if (_lock) \ mtx_unlock(&((_esbp)->esb_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* SPIN */ #define EFSYS_SPIN(_us) \ do { \ DELAY(_us); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_SLEEP EFSYS_SPIN /* BARRIERS */ /* Strict ordering guaranteed by devacc.devacc_attr_dataorder */ #define EFSYS_MEM_READ_BARRIER() #define EFSYS_PIO_WRITE_BARRIER() /* TIMESTAMP */ typedef clock_t efsys_timestamp_t; #define EFSYS_TIMESTAMP(_usp) \ do { \ clock_t now; \ \ now = ticks; \ *(_usp) = now * hz / 1000000; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* KMEM */ #define EFSYS_KMEM_ALLOC(_esip, _size, _p) \ do { \ (_esip) = (_esip); \ (_p) = malloc((_size), M_SFXGE, M_WAITOK|M_ZERO); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_KMEM_FREE(_esip, _size, _p) \ do { \ (void) (_esip); \ (void) (_size); \ free((_p), M_SFXGE); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* LOCK */ typedef struct mtx efsys_lock_t; #define EFSYS_LOCK_MAGIC 0x000010c4 #define EFSYS_LOCK(_lockp, _state) \ do { \ mtx_lock(_lockp); \ (_state) = EFSYS_LOCK_MAGIC; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_UNLOCK(_lockp, _state) \ do { \ if ((_state) != EFSYS_LOCK_MAGIC) \ KASSERT(B_FALSE, ("not locked")); \ mtx_unlock(_lockp); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* PREEMPT */ #define EFSYS_PREEMPT_DISABLE(_state) \ do { \ (_state) = (_state); \ critical_enter(); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_PREEMPT_ENABLE(_state) \ do { \ (_state) = (_state); \ critical_exit(_state); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* STAT */ typedef uint64_t efsys_stat_t; #define EFSYS_STAT_INCR(_knp, _delta) \ do { \ *(_knp) += (_delta); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_DECR(_knp, _delta) \ do { \ *(_knp) -= (_delta); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_SET(_knp, _val) \ do { \ *(_knp) = (_val); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_SET_QWORD(_knp, _valp) \ do { \ *(_knp) = le64toh((_valp)->eq_u64[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_SET_DWORD(_knp, _valp) \ do { \ *(_knp) = le32toh((_valp)->ed_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_INCR_QWORD(_knp, _valp) \ do { \ *(_knp) += le64toh((_valp)->eq_u64[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFSYS_STAT_SUBR_QWORD(_knp, _valp) \ do { \ *(_knp) -= le64toh((_valp)->eq_u64[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* ERR */ extern void sfxge_err(efsys_identifier_t *, unsigned int, uint32_t, uint32_t); #if EFSYS_OPT_DECODE_INTR_FATAL #define EFSYS_ERR(_esip, _code, _dword0, _dword1) \ do { \ sfxge_err((_esip), (_code), (_dword0), (_dword1)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #endif /* ASSERT */ #define EFSYS_ASSERT(_exp) do { \ if (!(_exp)) \ panic(#_exp); \ } while (0) #define EFSYS_ASSERT3(_x, _op, _y, _t) do { \ const _t __x = (_t)(_x); \ const _t __y = (_t)(_y); \ if (!(__x _op __y)) \ panic("assertion failed at %s:%u", __FILE__, __LINE__); \ } while(0) #define EFSYS_ASSERT3U(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, uint64_t) #define EFSYS_ASSERT3S(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, int64_t) #define EFSYS_ASSERT3P(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, uintptr_t) #ifdef __cplusplus } #endif #endif /* _SYS_EFSYS_H */