Current Path : /usr/src/sys/gnu/fs/xfs/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/gnu/fs/xfs/xfs_inode_item.c |
/* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir.h" #include "xfs_dir2.h" #include "xfs_dmapi.h" #include "xfs_mount.h" #include "xfs_trans_priv.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dir_sf.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_inode_item.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_rw.h" kmem_zone_t *xfs_ili_zone; /* inode log item zone */ /* * This returns the number of iovecs needed to log the given inode item. * * We need one iovec for the inode log format structure, one for the * inode core, and possibly one for the inode data/extents/b-tree root * and one for the inode attribute data/extents/b-tree root. */ STATIC uint xfs_inode_item_size( xfs_inode_log_item_t *iip) { uint nvecs; xfs_inode_t *ip; ip = iip->ili_inode; nvecs = 2; /* * Only log the data/extents/b-tree root if there is something * left to log. */ iip->ili_format.ilf_fields |= XFS_ILOG_CORE; switch (ip->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: iip->ili_format.ilf_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV | XFS_ILOG_UUID); if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && (ip->i_d.di_nextents > 0) && (ip->i_df.if_bytes > 0)) { ASSERT(ip->i_df.if_u1.if_extents != NULL); nvecs++; } else { iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; } break; case XFS_DINODE_FMT_BTREE: ASSERT(ip->i_df.if_ext_max == XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t)); iip->ili_format.ilf_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV | XFS_ILOG_UUID); if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && (ip->i_df.if_broot_bytes > 0)) { ASSERT(ip->i_df.if_broot != NULL); nvecs++; } else { ASSERT(!(iip->ili_format.ilf_fields & XFS_ILOG_DBROOT)); #ifdef XFS_TRANS_DEBUG if (iip->ili_root_size > 0) { ASSERT(iip->ili_root_size == ip->i_df.if_broot_bytes); ASSERT(memcmp(iip->ili_orig_root, ip->i_df.if_broot, iip->ili_root_size) == 0); } else { ASSERT(ip->i_df.if_broot_bytes == 0); } #endif iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; } break; case XFS_DINODE_FMT_LOCAL: iip->ili_format.ilf_fields &= ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV | XFS_ILOG_UUID); if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && (ip->i_df.if_bytes > 0)) { ASSERT(ip->i_df.if_u1.if_data != NULL); ASSERT(ip->i_d.di_size > 0); nvecs++; } else { iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; } break; case XFS_DINODE_FMT_DEV: iip->ili_format.ilf_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT | XFS_ILOG_UUID); break; case XFS_DINODE_FMT_UUID: iip->ili_format.ilf_fields &= ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT | XFS_ILOG_DEV); break; default: ASSERT(0); break; } /* * If there are no attributes associated with this file, * then there cannot be anything more to log. * Clear all attribute-related log flags. */ if (!XFS_IFORK_Q(ip)) { iip->ili_format.ilf_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); return nvecs; } /* * Log any necessary attribute data. */ switch (ip->i_d.di_aformat) { case XFS_DINODE_FMT_EXTENTS: iip->ili_format.ilf_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && (ip->i_d.di_anextents > 0) && (ip->i_afp->if_bytes > 0)) { ASSERT(ip->i_afp->if_u1.if_extents != NULL); nvecs++; } else { iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; } break; case XFS_DINODE_FMT_BTREE: iip->ili_format.ilf_fields &= ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && (ip->i_afp->if_broot_bytes > 0)) { ASSERT(ip->i_afp->if_broot != NULL); nvecs++; } else { iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; } break; case XFS_DINODE_FMT_LOCAL: iip->ili_format.ilf_fields &= ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && (ip->i_afp->if_bytes > 0)) { ASSERT(ip->i_afp->if_u1.if_data != NULL); nvecs++; } else { iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; } break; default: ASSERT(0); break; } return nvecs; } /* * This is called to fill in the vector of log iovecs for the * given inode log item. It fills the first item with an inode * log format structure, the second with the on-disk inode structure, * and a possible third and/or fourth with the inode data/extents/b-tree * root and inode attributes data/extents/b-tree root. */ STATIC void xfs_inode_item_format( xfs_inode_log_item_t *iip, xfs_log_iovec_t *log_vector) { uint nvecs; xfs_log_iovec_t *vecp; xfs_inode_t *ip; size_t data_bytes; xfs_bmbt_rec_t *ext_buffer; int nrecs; xfs_mount_t *mp; ip = iip->ili_inode; vecp = log_vector; vecp->i_addr = (xfs_caddr_t)&iip->ili_format; vecp->i_len = sizeof(xfs_inode_log_format_t); XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT); vecp++; nvecs = 1; /* * Clear i_update_core if the timestamps (or any other * non-transactional modification) need flushing/logging * and we're about to log them with the rest of the core. * * This is the same logic as xfs_iflush() but this code can't * run at the same time as xfs_iflush because we're in commit * processing here and so we have the inode lock held in * exclusive mode. Although it doesn't really matter * for the timestamps if both routines were to grab the * timestamps or not. That would be ok. * * We clear i_update_core before copying out the data. * This is for coordination with our timestamp updates * that don't hold the inode lock. They will always * update the timestamps BEFORE setting i_update_core, * so if we clear i_update_core after they set it we * are guaranteed to see their updates to the timestamps * either here. Likewise, if they set it after we clear it * here, we'll see it either on the next commit of this * inode or the next time the inode gets flushed via * xfs_iflush(). This depends on strongly ordered memory * semantics, but we have that. We use the SYNCHRONIZE * macro to make sure that the compiler does not reorder * the i_update_core access below the data copy below. */ if (ip->i_update_core) { ip->i_update_core = 0; SYNCHRONIZE(); } /* * We don't have to worry about re-ordering here because * the update_size field is protected by the inode lock * and we have that held in exclusive mode. */ if (ip->i_update_size) ip->i_update_size = 0; /* * Make sure to get the latest atime from the Linux inode. */ xfs_synchronize_atime(ip); vecp->i_addr = (xfs_caddr_t)&ip->i_d; vecp->i_len = sizeof(xfs_dinode_core_t); XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE); vecp++; nvecs++; iip->ili_format.ilf_fields |= XFS_ILOG_CORE; /* * If this is really an old format inode, then we need to * log it as such. This means that we have to copy the link * count from the new field to the old. We don't have to worry * about the new fields, because nothing trusts them as long as * the old inode version number is there. If the superblock already * has a new version number, then we don't bother converting back. */ mp = ip->i_mount; ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || XFS_SB_VERSION_HASNLINK(&mp->m_sb)); if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { /* * Convert it back. */ ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); ip->i_d.di_onlink = ip->i_d.di_nlink; } else { /* * The superblock version has already been bumped, * so just make the conversion to the new inode * format permanent. */ ip->i_d.di_version = XFS_DINODE_VERSION_2; ip->i_d.di_onlink = 0; memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); } } switch (ip->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV | XFS_ILOG_UUID))); if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { ASSERT(ip->i_df.if_bytes > 0); ASSERT(ip->i_df.if_u1.if_extents != NULL); ASSERT(ip->i_d.di_nextents > 0); ASSERT(iip->ili_extents_buf == NULL); nrecs = ip->i_df.if_bytes / (uint)sizeof(xfs_bmbt_rec_t); ASSERT(nrecs > 0); #ifdef XFS_NATIVE_HOST if (nrecs == ip->i_d.di_nextents) { /* * There are no delayed allocation * extents, so just point to the * real extents array. */ vecp->i_addr = (char *)(ip->i_df.if_u1.if_extents); vecp->i_len = ip->i_df.if_bytes; XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT); } else #endif { /* * There are delayed allocation extents * in the inode, or we need to convert * the extents to on disk format. * Use xfs_iextents_copy() * to copy only the real extents into * a separate buffer. We'll free the * buffer in the unlock routine. */ ext_buffer = kmem_alloc(ip->i_df.if_bytes, KM_SLEEP); iip->ili_extents_buf = ext_buffer; vecp->i_addr = (xfs_caddr_t)ext_buffer; vecp->i_len = xfs_iextents_copy(ip, ext_buffer, XFS_DATA_FORK); XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT); } ASSERT(vecp->i_len <= ip->i_df.if_bytes); iip->ili_format.ilf_dsize = vecp->i_len; vecp++; nvecs++; } break; case XFS_DINODE_FMT_BTREE: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV | XFS_ILOG_UUID))); if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { ASSERT(ip->i_df.if_broot_bytes > 0); ASSERT(ip->i_df.if_broot != NULL); vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot; vecp->i_len = ip->i_df.if_broot_bytes; XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT); vecp++; nvecs++; iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; } break; case XFS_DINODE_FMT_LOCAL: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | XFS_ILOG_DEV | XFS_ILOG_UUID))); if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { ASSERT(ip->i_df.if_bytes > 0); ASSERT(ip->i_df.if_u1.if_data != NULL); ASSERT(ip->i_d.di_size > 0); vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data; /* * Round i_bytes up to a word boundary. * The underlying memory is guaranteed to * to be there by xfs_idata_realloc(). */ data_bytes = roundup(ip->i_df.if_bytes, 4); ASSERT((ip->i_df.if_real_bytes == 0) || (ip->i_df.if_real_bytes == data_bytes)); vecp->i_len = (int)data_bytes; XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL); vecp++; nvecs++; iip->ili_format.ilf_dsize = (unsigned)data_bytes; } break; case XFS_DINODE_FMT_DEV: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | XFS_ILOG_DDATA | XFS_ILOG_UUID))); if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { iip->ili_format.ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev; } break; case XFS_DINODE_FMT_UUID: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | XFS_ILOG_DDATA | XFS_ILOG_DEV))); if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { iip->ili_format.ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid; } break; default: ASSERT(0); break; } /* * If there are no attributes associated with the file, * then we're done. * Assert that no attribute-related log flags are set. */ if (!XFS_IFORK_Q(ip)) { ASSERT(nvecs == iip->ili_item.li_desc->lid_size); iip->ili_format.ilf_size = nvecs; ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); return; } switch (ip->i_d.di_aformat) { case XFS_DINODE_FMT_EXTENTS: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { ASSERT(ip->i_afp->if_bytes > 0); ASSERT(ip->i_afp->if_u1.if_extents != NULL); ASSERT(ip->i_d.di_anextents > 0); #ifdef DEBUG nrecs = ip->i_afp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); #endif ASSERT(nrecs > 0); ASSERT(nrecs == ip->i_d.di_anextents); #ifdef XFS_NATIVE_HOST /* * There are not delayed allocation extents * for attributes, so just point at the array. */ vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents); vecp->i_len = ip->i_afp->if_bytes; #else ASSERT(iip->ili_aextents_buf == NULL); /* * Need to endian flip before logging */ ext_buffer = kmem_alloc(ip->i_afp->if_bytes, KM_SLEEP); iip->ili_aextents_buf = ext_buffer; vecp->i_addr = (xfs_caddr_t)ext_buffer; vecp->i_len = xfs_iextents_copy(ip, ext_buffer, XFS_ATTR_FORK); #endif XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT); iip->ili_format.ilf_asize = vecp->i_len; vecp++; nvecs++; } break; case XFS_DINODE_FMT_BTREE: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { ASSERT(ip->i_afp->if_broot_bytes > 0); ASSERT(ip->i_afp->if_broot != NULL); vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot; vecp->i_len = ip->i_afp->if_broot_bytes; XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT); vecp++; nvecs++; iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; } break; case XFS_DINODE_FMT_LOCAL: ASSERT(!(iip->ili_format.ilf_fields & (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { ASSERT(ip->i_afp->if_bytes > 0); ASSERT(ip->i_afp->if_u1.if_data != NULL); vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data; /* * Round i_bytes up to a word boundary. * The underlying memory is guaranteed to * to be there by xfs_idata_realloc(). */ data_bytes = roundup(ip->i_afp->if_bytes, 4); ASSERT((ip->i_afp->if_real_bytes == 0) || (ip->i_afp->if_real_bytes == data_bytes)); vecp->i_len = (int)data_bytes; XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL); vecp++; nvecs++; iip->ili_format.ilf_asize = (unsigned)data_bytes; } break; default: ASSERT(0); break; } ASSERT(nvecs == iip->ili_item.li_desc->lid_size); iip->ili_format.ilf_size = nvecs; } /* * This is called to pin the inode associated with the inode log * item in memory so it cannot be written out. Do this by calling * xfs_ipin() to bump the pin count in the inode while holding the * inode pin lock. */ STATIC void xfs_inode_item_pin( xfs_inode_log_item_t *iip) { ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); xfs_ipin(iip->ili_inode); } /* * This is called to unpin the inode associated with the inode log * item which was previously pinned with a call to xfs_inode_item_pin(). * Just call xfs_iunpin() on the inode to do this. */ /* ARGSUSED */ STATIC void xfs_inode_item_unpin( xfs_inode_log_item_t *iip, int stale) { xfs_iunpin(iip->ili_inode); } /* ARGSUSED */ STATIC void xfs_inode_item_unpin_remove( xfs_inode_log_item_t *iip, xfs_trans_t *tp) { xfs_iunpin(iip->ili_inode); } /* * This is called to attempt to lock the inode associated with this * inode log item, in preparation for the push routine which does the actual * iflush. Don't sleep on the inode lock or the flush lock. * * If the flush lock is already held, indicating that the inode has * been or is in the process of being flushed, then (ideally) we'd like to * see if the inode's buffer is still incore, and if so give it a nudge. * We delay doing so until the pushbuf routine, though, to avoid holding * the AIL lock across a call to the blackhole which is the buffer cache. * Also we don't want to sleep in any device strategy routines, which can happen * if we do the subsequent bawrite in here. */ STATIC uint xfs_inode_item_trylock( xfs_inode_log_item_t *iip) { register xfs_inode_t *ip; ip = iip->ili_inode; if (xfs_ipincount(ip) > 0) { return XFS_ITEM_PINNED; } if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { return XFS_ITEM_LOCKED; } if (!xfs_iflock_nowait(ip)) { /* * If someone else isn't already trying to push the inode * buffer, we get to do it. */ if (iip->ili_pushbuf_flag == 0) { iip->ili_pushbuf_flag = 1; #ifdef DEBUG iip->ili_push_owner = current_pid(); #endif /* * Inode is left locked in shared mode. * Pushbuf routine gets to unlock it. */ return XFS_ITEM_PUSHBUF; } else { /* * We hold the AIL_LOCK, so we must specify the * NONOTIFY flag so that we won't double trip. */ xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); return XFS_ITEM_FLUSHING; } /* NOTREACHED */ } /* Stale items should force out the iclog */ if (ip->i_flags & XFS_ISTALE) { xfs_ifunlock(ip); xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); return XFS_ITEM_PINNED; } #ifdef DEBUG if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { ASSERT(iip->ili_format.ilf_fields != 0); ASSERT(iip->ili_logged == 0); ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL); } #endif return XFS_ITEM_SUCCESS; } /* * Unlock the inode associated with the inode log item. * Clear the fields of the inode and inode log item that * are specific to the current transaction. If the * hold flags is set, do not unlock the inode. */ STATIC void xfs_inode_item_unlock( xfs_inode_log_item_t *iip) { uint hold; uint iolocked; uint lock_flags; xfs_inode_t *ip; ASSERT(iip != NULL); ASSERT(iip->ili_inode->i_itemp != NULL); ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); ASSERT((!(iip->ili_inode->i_itemp->ili_flags & XFS_ILI_IOLOCKED_EXCL)) || ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE)); ASSERT((!(iip->ili_inode->i_itemp->ili_flags & XFS_ILI_IOLOCKED_SHARED)) || ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS)); /* * Clear the transaction pointer in the inode. */ ip = iip->ili_inode; ip->i_transp = NULL; /* * If the inode needed a separate buffer with which to log * its extents, then free it now. */ if (iip->ili_extents_buf != NULL) { ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); ASSERT(ip->i_d.di_nextents > 0); ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); ASSERT(ip->i_df.if_bytes > 0); kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes); iip->ili_extents_buf = NULL; } if (iip->ili_aextents_buf != NULL) { ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); ASSERT(ip->i_d.di_anextents > 0); ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); ASSERT(ip->i_afp->if_bytes > 0); kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes); iip->ili_aextents_buf = NULL; } /* * Figure out if we should unlock the inode or not. */ hold = iip->ili_flags & XFS_ILI_HOLD; /* * Before clearing out the flags, remember whether we * are holding the inode's IO lock. */ iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY; /* * Clear out the fields of the inode log item particular * to the current transaction. */ iip->ili_ilock_recur = 0; iip->ili_iolock_recur = 0; iip->ili_flags = 0; /* * Unlock the inode if XFS_ILI_HOLD was not set. */ if (!hold) { lock_flags = XFS_ILOCK_EXCL; if (iolocked & XFS_ILI_IOLOCKED_EXCL) { lock_flags |= XFS_IOLOCK_EXCL; } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) { lock_flags |= XFS_IOLOCK_SHARED; } xfs_iput(iip->ili_inode, lock_flags); } } /* * This is called to find out where the oldest active copy of the * inode log item in the on disk log resides now that the last log * write of it completed at the given lsn. Since we always re-log * all dirty data in an inode, the latest copy in the on disk log * is the only one that matters. Therefore, simply return the * given lsn. */ /*ARGSUSED*/ STATIC xfs_lsn_t xfs_inode_item_committed( xfs_inode_log_item_t *iip, xfs_lsn_t lsn) { return (lsn); } /* * The transaction with the inode locked has aborted. The inode * must not be dirty within the transaction (unless we're forcibly * shutting down). We simply unlock just as if the transaction * had been cancelled. */ STATIC void xfs_inode_item_abort( xfs_inode_log_item_t *iip) { xfs_inode_item_unlock(iip); return; } /* * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK * failed to get the inode flush lock but did get the inode locked SHARED. * Here we're trying to see if the inode buffer is incore, and if so whether it's * marked delayed write. If that's the case, we'll initiate a bawrite on that * buffer to expedite the process. * * We aren't holding the AIL_LOCK (or the flush lock) when this gets called, * so it is inherently race-y. */ STATIC void xfs_inode_item_pushbuf( xfs_inode_log_item_t *iip) { xfs_inode_t *ip; xfs_mount_t *mp; xfs_buf_t *bp; uint dopush; ip = iip->ili_inode; ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); /* * The ili_pushbuf_flag keeps others from * trying to duplicate our effort. */ ASSERT(iip->ili_pushbuf_flag != 0); ASSERT(iip->ili_push_owner == current_pid()); /* * If flushlock isn't locked anymore, chances are that the * inode flush completed and the inode was taken off the AIL. * So, just get out. */ if ((valusema(&(ip->i_flock)) > 0) || ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) { iip->ili_pushbuf_flag = 0; xfs_iunlock(ip, XFS_ILOCK_SHARED); return; } mp = ip->i_mount; bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno, iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK); if (bp != NULL) { if (XFS_BUF_ISDELAYWRITE(bp)) { /* * We were racing with iflush because we don't hold * the AIL_LOCK or the flush lock. However, at this point, * we have the buffer, and we know that it's dirty. * So, it's possible that iflush raced with us, and * this item is already taken off the AIL. * If not, we can flush it async. */ dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) && (valusema(&(ip->i_flock)) <= 0)); iip->ili_pushbuf_flag = 0; xfs_iunlock(ip, XFS_ILOCK_SHARED); xfs_buftrace("INODE ITEM PUSH", bp); if (XFS_BUF_ISPINNED(bp)) { xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); } if (dopush) { xfs_bawrite(mp, bp); } else { xfs_buf_relse(bp); } } else { iip->ili_pushbuf_flag = 0; xfs_iunlock(ip, XFS_ILOCK_SHARED); xfs_buf_relse(bp); } return; } /* * We have to be careful about resetting pushbuf flag too early (above). * Even though in theory we can do it as soon as we have the buflock, * we don't want others to be doing work needlessly. They'll come to * this function thinking that pushing the buffer is their * responsibility only to find that the buffer is still locked by * another doing the same thing */ iip->ili_pushbuf_flag = 0; xfs_iunlock(ip, XFS_ILOCK_SHARED); return; } /* * This is called to asynchronously write the inode associated with this * inode log item out to disk. The inode will already have been locked by * a successful call to xfs_inode_item_trylock(). */ STATIC void xfs_inode_item_push( xfs_inode_log_item_t *iip) { xfs_inode_t *ip; ip = iip->ili_inode; ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); ASSERT(valusema(&(ip->i_flock)) <= 0); /* * Since we were able to lock the inode's flush lock and * we found it on the AIL, the inode must be dirty. This * is because the inode is removed from the AIL while still * holding the flush lock in xfs_iflush_done(). Thus, if * we found it in the AIL and were able to obtain the flush * lock without sleeping, then there must not have been * anyone in the process of flushing the inode. */ ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || iip->ili_format.ilf_fields != 0); /* * Write out the inode. The completion routine ('iflush_done') will * pull it from the AIL, mark it clean, unlock the flush lock. */ (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC); xfs_iunlock(ip, XFS_ILOCK_SHARED); return; } /* * XXX rcc - this one really has to do something. Probably needs * to stamp in a new field in the incore inode. */ /* ARGSUSED */ STATIC void xfs_inode_item_committing( xfs_inode_log_item_t *iip, xfs_lsn_t lsn) { iip->ili_last_lsn = lsn; return; } /* * This is the ops vector shared by all buf log items. */ STATIC struct xfs_item_ops xfs_inode_item_ops = { .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size, .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) xfs_inode_item_format, .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin, .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin, .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) xfs_inode_item_unpin_remove, .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock, .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock, .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) xfs_inode_item_committed, .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push, .iop_abort = (void(*)(xfs_log_item_t*))xfs_inode_item_abort, .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf, .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) xfs_inode_item_committing }; /* * Initialize the inode log item for a newly allocated (in-core) inode. */ void xfs_inode_item_init( xfs_inode_t *ip, xfs_mount_t *mp) { xfs_inode_log_item_t *iip; ASSERT(ip->i_itemp == NULL); iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); iip->ili_item.li_type = XFS_LI_INODE; iip->ili_item.li_ops = &xfs_inode_item_ops; iip->ili_item.li_mountp = mp; iip->ili_inode = ip; /* We have zeroed memory. No need ... iip->ili_extents_buf = NULL; iip->ili_pushbuf_flag = 0; */ iip->ili_format.ilf_type = XFS_LI_INODE; iip->ili_format.ilf_ino = ip->i_ino; iip->ili_format.ilf_blkno = ip->i_blkno; iip->ili_format.ilf_len = ip->i_len; iip->ili_format.ilf_boffset = ip->i_boffset; } /* * Free the inode log item and any memory hanging off of it. */ void xfs_inode_item_destroy( xfs_inode_t *ip) { #ifdef XFS_TRANS_DEBUG if (ip->i_itemp->ili_root_size != 0) { kmem_free(ip->i_itemp->ili_orig_root, ip->i_itemp->ili_root_size); } #endif kmem_zone_free(xfs_ili_zone, ip->i_itemp); } /* * This is the inode flushing I/O completion routine. It is called * from interrupt level when the buffer containing the inode is * flushed to disk. It is responsible for removing the inode item * from the AIL if it has not been re-logged, and unlocking the inode's * flush lock. */ /*ARGSUSED*/ void xfs_iflush_done( xfs_buf_t *bp, xfs_inode_log_item_t *iip) { xfs_inode_t *ip; SPLDECL(s); ip = iip->ili_inode; /* * We only want to pull the item from the AIL if it is * actually there and its location in the log has not * changed since we started the flush. Thus, we only bother * if the ili_logged flag is set and the inode's lsn has not * changed. First we check the lsn outside * the lock since it's cheaper, and then we recheck while * holding the lock before removing the inode from the AIL. */ if (iip->ili_logged && (iip->ili_item.li_lsn == iip->ili_flush_lsn)) { AIL_LOCK(ip->i_mount, s); if (iip->ili_item.li_lsn == iip->ili_flush_lsn) { /* * xfs_trans_delete_ail() drops the AIL lock. */ xfs_trans_delete_ail(ip->i_mount, (xfs_log_item_t*)iip, s); } else { AIL_UNLOCK(ip->i_mount, s); } } iip->ili_logged = 0; /* * Clear the ili_last_fields bits now that we know that the * data corresponding to them is safely on disk. */ iip->ili_last_fields = 0; /* * Release the inode's flush lock since we're done with it. */ xfs_ifunlock(ip); return; } /* * This is the inode flushing abort routine. It is called * from xfs_iflush when the filesystem is shutting down to clean * up the inode state. * It is responsible for removing the inode item * from the AIL if it has not been re-logged, and unlocking the inode's * flush lock. */ void xfs_iflush_abort( xfs_inode_t *ip) { xfs_inode_log_item_t *iip; xfs_mount_t *mp; SPLDECL(s); iip = ip->i_itemp; mp = ip->i_mount; if (iip) { if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { AIL_LOCK(mp, s); if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { /* * xfs_trans_delete_ail() drops the AIL lock. */ xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip, s); } else AIL_UNLOCK(mp, s); } iip->ili_logged = 0; /* * Clear the ili_last_fields bits now that we know that the * data corresponding to them is safely on disk. */ iip->ili_last_fields = 0; /* * Clear the inode logging fields so no more flushes are * attempted. */ iip->ili_format.ilf_fields = 0; } /* * Release the inode's flush lock since we're done with it. */ xfs_ifunlock(ip); } void xfs_istale_done( xfs_buf_t *bp, xfs_inode_log_item_t *iip) { xfs_iflush_abort(iip->ili_inode); }