Current Path : /usr/src/sys/gnu/fs/xfs/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/gnu/fs/xfs/xfs_trans_buf.c |
/* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir.h" #include "xfs_dir2.h" #include "xfs_dmapi.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dir_sf.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_buf_item.h" #include "xfs_trans_priv.h" #include "xfs_error.h" #include "xfs_rw.h" STATIC xfs_buf_t *xfs_trans_buf_item_match(xfs_trans_t *, xfs_buftarg_t *, xfs_daddr_t, int); STATIC xfs_buf_t *xfs_trans_buf_item_match_all(xfs_trans_t *, xfs_buftarg_t *, xfs_daddr_t, int); /* * Get and lock the buffer for the caller if it is not already * locked within the given transaction. If it is already locked * within the transaction, just increment its lock recursion count * and return a pointer to it. * * Use the fast path function xfs_trans_buf_item_match() or the buffer * cache routine incore_match() to find the buffer * if it is already owned by this transaction. * * If we don't already own the buffer, use get_buf() to get it. * If it doesn't yet have an associated xfs_buf_log_item structure, * then allocate one and add the item to this transaction. * * If the transaction pointer is NULL, make this just a normal * get_buf() call. */ xfs_buf_t * xfs_trans_get_buf(xfs_trans_t *tp, xfs_buftarg_t *target_dev, xfs_daddr_t blkno, int len, uint flags) { xfs_buf_t *bp; xfs_buf_log_item_t *bip; if (flags == 0) flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; /* * Default to a normal get_buf() call if the tp is NULL. */ if (tp == NULL) { bp = xfs_buf_get_flags(target_dev, blkno, len, flags | BUF_BUSY); return(bp); } /* * If we find the buffer in the cache with this transaction * pointer in its b_fsprivate2 field, then we know we already * have it locked. In this case we just increment the lock * recursion count and return the buffer to the caller. */ if (tp->t_items.lic_next == NULL) { bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len); } else { bp = xfs_trans_buf_item_match_all(tp, target_dev, blkno, len); } if (bp != NULL) { ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { xfs_buftrace("TRANS GET RECUR SHUT", bp); XFS_BUF_SUPER_STALE(bp); } /* * If the buffer is stale then it was binval'ed * since last read. This doesn't matter since the * caller isn't allowed to use the data anyway. */ else if (XFS_BUF_ISSTALE(bp)) { xfs_buftrace("TRANS GET RECUR STALE", bp); ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); } ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); ASSERT(bip != NULL); ASSERT(atomic_read(&bip->bli_refcount) > 0); bip->bli_recur++; xfs_buftrace("TRANS GET RECUR", bp); xfs_buf_item_trace("GET RECUR", bip); return (bp); } /* * We always specify the BUF_BUSY flag within a transaction so * that get_buf does not try to push out a delayed write buffer * which might cause another transaction to take place (if the * buffer was delayed alloc). Such recursive transactions can * easily deadlock with our current transaction as well as cause * us to run out of stack space. */ bp = xfs_buf_get_flags(target_dev, blkno, len, flags | BUF_BUSY); if (bp == NULL) { return NULL; } ASSERT(!XFS_BUF_GETERROR(bp)); /* * The xfs_buf_log_item pointer is stored in b_fsprivate. If * it doesn't have one yet, then allocate one and initialize it. * The checks to see if one is there are in xfs_buf_item_init(). */ xfs_buf_item_init(bp, tp->t_mountp); /* * Set the recursion count for the buffer within this transaction * to 0. */ bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); bip->bli_recur = 0; /* * Take a reference for this transaction on the buf item. */ atomic_inc(&bip->bli_refcount); /* * Get a log_item_desc to point at the new item. */ (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); /* * Initialize b_fsprivate2 so we can find it with incore_match() * above. */ XFS_BUF_SET_FSPRIVATE2(bp, tp); xfs_buftrace("TRANS GET", bp); xfs_buf_item_trace("GET", bip); return (bp); } /* * Get and lock the superblock buffer of this file system for the * given transaction. * * We don't need to use incore_match() here, because the superblock * buffer is a private buffer which we keep a pointer to in the * mount structure. */ xfs_buf_t * xfs_trans_getsb(xfs_trans_t *tp, struct xfs_mount *mp, int flags) { xfs_buf_t *bp; xfs_buf_log_item_t *bip; /* * Default to just trying to lock the superblock buffer * if tp is NULL. */ if (tp == NULL) { return (xfs_getsb(mp, flags)); } /* * If the superblock buffer already has this transaction * pointer in its b_fsprivate2 field, then we know we already * have it locked. In this case we just increment the lock * recursion count and return the buffer to the caller. */ bp = mp->m_sb_bp; if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) { bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); ASSERT(bip != NULL); ASSERT(atomic_read(&bip->bli_refcount) > 0); bip->bli_recur++; xfs_buf_item_trace("GETSB RECUR", bip); return (bp); } bp = xfs_getsb(mp, flags); if (bp == NULL) { return NULL; } /* * The xfs_buf_log_item pointer is stored in b_fsprivate. If * it doesn't have one yet, then allocate one and initialize it. * The checks to see if one is there are in xfs_buf_item_init(). */ xfs_buf_item_init(bp, mp); /* * Set the recursion count for the buffer within this transaction * to 0. */ bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); bip->bli_recur = 0; /* * Take a reference for this transaction on the buf item. */ atomic_inc(&bip->bli_refcount); /* * Get a log_item_desc to point at the new item. */ (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); /* * Initialize b_fsprivate2 so we can find it with incore_match() * above. */ XFS_BUF_SET_FSPRIVATE2(bp, tp); xfs_buf_item_trace("GETSB", bip); return (bp); } #ifdef DEBUG xfs_buftarg_t *xfs_error_target; int xfs_do_error; int xfs_req_num; int xfs_error_mod = 33; #endif /* * Get and lock the buffer for the caller if it is not already * locked within the given transaction. If it has not yet been * read in, read it from disk. If it is already locked * within the transaction and already read in, just increment its * lock recursion count and return a pointer to it. * * Use the fast path function xfs_trans_buf_item_match() or the buffer * cache routine incore_match() to find the buffer * if it is already owned by this transaction. * * If we don't already own the buffer, use read_buf() to get it. * If it doesn't yet have an associated xfs_buf_log_item structure, * then allocate one and add the item to this transaction. * * If the transaction pointer is NULL, make this just a normal * read_buf() call. */ int xfs_trans_read_buf( xfs_mount_t *mp, xfs_trans_t *tp, xfs_buftarg_t *target, xfs_daddr_t blkno, int len, uint flags, xfs_buf_t **bpp) { xfs_buf_t *bp; xfs_buf_log_item_t *bip; int error; if (flags == 0) flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; /* * Default to a normal get_buf() call if the tp is NULL. */ if (tp == NULL) { bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); if (!bp) return XFS_ERROR(ENOMEM); if ((bp != NULL) && (XFS_BUF_GETERROR(bp) != 0)) { xfs_ioerror_alert("xfs_trans_read_buf", mp, bp, blkno); error = XFS_BUF_GETERROR(bp); xfs_buf_relse(bp); return error; } #ifdef DEBUG if (xfs_do_error && (bp != NULL)) { if (xfs_error_target == target) { if (((xfs_req_num++) % xfs_error_mod) == 0) { xfs_buf_relse(bp); printk("Returning error!\n"); return XFS_ERROR(EIO); } } } #endif if (XFS_FORCED_SHUTDOWN(mp)) goto shutdown_abort; *bpp = bp; return 0; } /* * If we find the buffer in the cache with this transaction * pointer in its b_fsprivate2 field, then we know we already * have it locked. If it is already read in we just increment * the lock recursion count and return the buffer to the caller. * If the buffer is not yet read in, then we read it in, increment * the lock recursion count, and return it to the caller. */ if (tp->t_items.lic_next == NULL) { bp = xfs_trans_buf_item_match(tp, target, blkno, len); } else { bp = xfs_trans_buf_item_match_all(tp, target, blkno, len); } if (bp != NULL) { ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); ASSERT((XFS_BUF_ISERROR(bp)) == 0); if (!(XFS_BUF_ISDONE(bp))) { xfs_buftrace("READ_BUF_INCORE !DONE", bp); ASSERT(!XFS_BUF_ISASYNC(bp)); XFS_BUF_READ(bp); xfsbdstrat(tp->t_mountp, bp); xfs_iowait(bp); if (XFS_BUF_GETERROR(bp) != 0) { xfs_ioerror_alert("xfs_trans_read_buf", mp, bp, blkno); error = XFS_BUF_GETERROR(bp); xfs_buf_relse(bp); /* * We can gracefully recover from most * read errors. Ones we can't are those * that happen after the transaction's * already dirty. */ if (tp->t_flags & XFS_TRANS_DIRTY) xfs_force_shutdown(tp->t_mountp, XFS_METADATA_IO_ERROR); return error; } } /* * We never locked this buf ourselves, so we shouldn't * brelse it either. Just get out. */ if (XFS_FORCED_SHUTDOWN(mp)) { xfs_buftrace("READ_BUF_INCORE XFSSHUTDN", bp); *bpp = NULL; return XFS_ERROR(EIO); } bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); bip->bli_recur++; ASSERT(atomic_read(&bip->bli_refcount) > 0); xfs_buf_item_trace("READ RECUR", bip); *bpp = bp; return 0; } /* * We always specify the BUF_BUSY flag within a transaction so * that get_buf does not try to push out a delayed write buffer * which might cause another transaction to take place (if the * buffer was delayed alloc). Such recursive transactions can * easily deadlock with our current transaction as well as cause * us to run out of stack space. */ bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); if (bp == NULL) { *bpp = NULL; return 0; } if (XFS_BUF_GETERROR(bp) != 0) { XFS_BUF_SUPER_STALE(bp); xfs_buftrace("READ ERROR", bp); error = XFS_BUF_GETERROR(bp); xfs_ioerror_alert("xfs_trans_read_buf", mp, bp, blkno); if (tp->t_flags & XFS_TRANS_DIRTY) xfs_force_shutdown(tp->t_mountp, XFS_METADATA_IO_ERROR); xfs_buf_relse(bp); return error; } #ifdef DEBUG if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { if (xfs_error_target == target) { if (((xfs_req_num++) % xfs_error_mod) == 0) { xfs_force_shutdown(tp->t_mountp, XFS_METADATA_IO_ERROR); xfs_buf_relse(bp); printk("Returning error in trans!\n"); return XFS_ERROR(EIO); } } } #endif if (XFS_FORCED_SHUTDOWN(mp)) goto shutdown_abort; /* * The xfs_buf_log_item pointer is stored in b_fsprivate. If * it doesn't have one yet, then allocate one and initialize it. * The checks to see if one is there are in xfs_buf_item_init(). */ xfs_buf_item_init(bp, tp->t_mountp); /* * Set the recursion count for the buffer within this transaction * to 0. */ bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); bip->bli_recur = 0; /* * Take a reference for this transaction on the buf item. */ atomic_inc(&bip->bli_refcount); /* * Get a log_item_desc to point at the new item. */ (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); /* * Initialize b_fsprivate2 so we can find it with incore_match() * above. */ XFS_BUF_SET_FSPRIVATE2(bp, tp); xfs_buftrace("TRANS READ", bp); xfs_buf_item_trace("READ", bip); *bpp = bp; return 0; shutdown_abort: /* * the theory here is that buffer is good but we're * bailing out because the filesystem is being forcibly * shut down. So we should leave the b_flags alone since * the buffer's not staled and just get out. */ #if defined(DEBUG) if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp)) cmn_err(CE_NOTE, "about to pop assert, bp == 0x%p", bp); #endif ASSERT((XFS_BUF_BFLAGS(bp) & (XFS_B_STALE|XFS_B_DELWRI)) != (XFS_B_STALE|XFS_B_DELWRI)); xfs_buftrace("READ_BUF XFSSHUTDN", bp); xfs_buf_relse(bp); *bpp = NULL; return XFS_ERROR(EIO); } /* * Release the buffer bp which was previously acquired with one of the * xfs_trans_... buffer allocation routines if the buffer has not * been modified within this transaction. If the buffer is modified * within this transaction, do decrement the recursion count but do * not release the buffer even if the count goes to 0. If the buffer is not * modified within the transaction, decrement the recursion count and * release the buffer if the recursion count goes to 0. * * If the buffer is to be released and it was not modified before * this transaction began, then free the buf_log_item associated with it. * * If the transaction pointer is NULL, make this just a normal * brelse() call. */ void xfs_trans_brelse(xfs_trans_t *tp, xfs_buf_t *bp) { xfs_buf_log_item_t *bip; xfs_log_item_t *lip; xfs_log_item_desc_t *lidp; /* * Default to a normal brelse() call if the tp is NULL. */ if (tp == NULL) { ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); /* * If there's a buf log item attached to the buffer, * then let the AIL know that the buffer is being * unlocked. */ if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); if (lip->li_type == XFS_LI_BUF) { bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*); xfs_trans_unlocked_item( bip->bli_item.li_mountp, lip); } } xfs_buf_relse(bp); return; } ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); ASSERT(bip->bli_item.li_type == XFS_LI_BUF); ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); ASSERT(atomic_read(&bip->bli_refcount) > 0); /* * Find the item descriptor pointing to this buffer's * log item. It must be there. */ lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); ASSERT(lidp != NULL); /* * If the release is just for a recursive lock, * then decrement the count and return. */ if (bip->bli_recur > 0) { bip->bli_recur--; xfs_buf_item_trace("RELSE RECUR", bip); return; } /* * If the buffer is dirty within this transaction, we can't * release it until we commit. */ if (lidp->lid_flags & XFS_LID_DIRTY) { xfs_buf_item_trace("RELSE DIRTY", bip); return; } /* * If the buffer has been invalidated, then we can't release * it until the transaction commits to disk unless it is re-dirtied * as part of this transaction. This prevents us from pulling * the item from the AIL before we should. */ if (bip->bli_flags & XFS_BLI_STALE) { xfs_buf_item_trace("RELSE STALE", bip); return; } ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); xfs_buf_item_trace("RELSE", bip); /* * Free up the log item descriptor tracking the released item. */ xfs_trans_free_item(tp, lidp); /* * Clear the hold flag in the buf log item if it is set. * We wouldn't want the next user of the buffer to * get confused. */ if (bip->bli_flags & XFS_BLI_HOLD) { bip->bli_flags &= ~XFS_BLI_HOLD; } /* * Drop our reference to the buf log item. */ atomic_dec(&bip->bli_refcount); /* * If the buf item is not tracking data in the log, then * we must free it before releasing the buffer back to the * free pool. Before releasing the buffer to the free pool, * clear the transaction pointer in b_fsprivate2 to dissolve * its relation to this transaction. */ if (!xfs_buf_item_dirty(bip)) { /*** ASSERT(bp->b_pincount == 0); ***/ ASSERT(atomic_read(&bip->bli_refcount) == 0); ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); xfs_buf_item_relse(bp); bip = NULL; } XFS_BUF_SET_FSPRIVATE2(bp, NULL); /* * If we've still got a buf log item on the buffer, then * tell the AIL that the buffer is being unlocked. */ if (bip != NULL) { xfs_trans_unlocked_item(bip->bli_item.li_mountp, (xfs_log_item_t*)bip); } xfs_buf_relse(bp); return; } /* * Add the locked buffer to the transaction. * The buffer must be locked, and it cannot be associated with any * transaction. * * If the buffer does not yet have a buf log item associated with it, * then allocate one for it. Then add the buf item to the transaction. */ void xfs_trans_bjoin(xfs_trans_t *tp, xfs_buf_t *bp) { xfs_buf_log_item_t *bip; ASSERT(XFS_BUF_ISBUSY(bp)); ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); /* * The xfs_buf_log_item pointer is stored in b_fsprivate. If * it doesn't have one yet, then allocate one and initialize it. * The checks to see if one is there are in xfs_buf_item_init(). */ xfs_buf_item_init(bp, tp->t_mountp); bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); /* * Take a reference for this transaction on the buf item. */ atomic_inc(&bip->bli_refcount); /* * Get a log_item_desc to point at the new item. */ (void) xfs_trans_add_item(tp, (xfs_log_item_t *)bip); /* * Initialize b_fsprivate2 so we can find it with incore_match() * in xfs_trans_get_buf() and friends above. */ XFS_BUF_SET_FSPRIVATE2(bp, tp); xfs_buf_item_trace("BJOIN", bip); } /* * Mark the buffer as not needing to be unlocked when the buf item's * IOP_UNLOCK() routine is called. The buffer must already be locked * and associated with the given transaction. */ /* ARGSUSED */ void xfs_trans_bhold(xfs_trans_t *tp, xfs_buf_t *bp) { xfs_buf_log_item_t *bip; ASSERT(XFS_BUF_ISBUSY(bp)); ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); ASSERT(atomic_read(&bip->bli_refcount) > 0); bip->bli_flags |= XFS_BLI_HOLD; xfs_buf_item_trace("BHOLD", bip); } /* * Cancel the previous buffer hold request made on this buffer * for this transaction. */ void xfs_trans_bhold_release(xfs_trans_t *tp, xfs_buf_t *bp) { xfs_buf_log_item_t *bip; ASSERT(XFS_BUF_ISBUSY(bp)); ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); ASSERT(atomic_read(&bip->bli_refcount) > 0); ASSERT(bip->bli_flags & XFS_BLI_HOLD); bip->bli_flags &= ~XFS_BLI_HOLD; xfs_buf_item_trace("BHOLD RELEASE", bip); } /* * This is called to mark bytes first through last inclusive of the given * buffer as needing to be logged when the transaction is committed. * The buffer must already be associated with the given transaction. * * First and last are numbers relative to the beginning of this buffer, * so the first byte in the buffer is numbered 0 regardless of the * value of b_blkno. */ void xfs_trans_log_buf(xfs_trans_t *tp, xfs_buf_t *bp, uint first, uint last) { xfs_buf_log_item_t *bip; xfs_log_item_desc_t *lidp; ASSERT(XFS_BUF_ISBUSY(bp)); ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp))); ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) || (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks)); /* * Mark the buffer as needing to be written out eventually, * and set its iodone function to remove the buffer's buf log * item from the AIL and free it when the buffer is flushed * to disk. See xfs_buf_attach_iodone() for more details * on li_cb and xfs_buf_iodone_callbacks(). * If we end up aborting this transaction, we trap this buffer * inside the b_bdstrat callback so that this won't get written to * disk. */ XFS_BUF_DELAYWRITE(bp); XFS_BUF_DONE(bp); bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); ASSERT(atomic_read(&bip->bli_refcount) > 0); XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks); bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))xfs_buf_iodone; /* * If we invalidated the buffer within this transaction, then * cancel the invalidation now that we're dirtying the buffer * again. There are no races with the code in xfs_buf_item_unpin(), * because we have a reference to the buffer this entire time. */ if (bip->bli_flags & XFS_BLI_STALE) { xfs_buf_item_trace("BLOG UNSTALE", bip); bip->bli_flags &= ~XFS_BLI_STALE; ASSERT(XFS_BUF_ISSTALE(bp)); XFS_BUF_UNSTALE(bp); bip->bli_format.blf_flags &= ~XFS_BLI_CANCEL; } lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); ASSERT(lidp != NULL); tp->t_flags |= XFS_TRANS_DIRTY; lidp->lid_flags |= XFS_LID_DIRTY; lidp->lid_flags &= ~XFS_LID_BUF_STALE; bip->bli_flags |= XFS_BLI_LOGGED; xfs_buf_item_log(bip, first, last); xfs_buf_item_trace("BLOG", bip); } /* * This called to invalidate a buffer that is being used within * a transaction. Typically this is because the blocks in the * buffer are being freed, so we need to prevent it from being * written out when we're done. Allowing it to be written again * might overwrite data in the free blocks if they are reallocated * to a file. * * We prevent the buffer from being written out by clearing the * B_DELWRI flag. We can't always * get rid of the buf log item at this point, though, because * the buffer may still be pinned by another transaction. If that * is the case, then we'll wait until the buffer is committed to * disk for the last time (we can tell by the ref count) and * free it in xfs_buf_item_unpin(). Until it is cleaned up we * will keep the buffer locked so that the buffer and buf log item * are not reused. */ void xfs_trans_binval( xfs_trans_t *tp, xfs_buf_t *bp) { xfs_log_item_desc_t *lidp; xfs_buf_log_item_t *bip; ASSERT(XFS_BUF_ISBUSY(bp)); ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); ASSERT(lidp != NULL); ASSERT(atomic_read(&bip->bli_refcount) > 0); if (bip->bli_flags & XFS_BLI_STALE) { /* * If the buffer is already invalidated, then * just return. */ ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); ASSERT(XFS_BUF_ISSTALE(bp)); ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_INODE_BUF)); ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); ASSERT(lidp->lid_flags & XFS_LID_DIRTY); ASSERT(tp->t_flags & XFS_TRANS_DIRTY); xfs_buftrace("XFS_BINVAL RECUR", bp); xfs_buf_item_trace("BINVAL RECUR", bip); return; } /* * Clear the dirty bit in the buffer and set the STALE flag * in the buf log item. The STALE flag will be used in * xfs_buf_item_unpin() to determine if it should clean up * when the last reference to the buf item is given up. * We set the XFS_BLI_CANCEL flag in the buf log format structure * and log the buf item. This will be used at recovery time * to determine that copies of the buffer in the log before * this should not be replayed. * We mark the item descriptor and the transaction dirty so * that we'll hold the buffer until after the commit. * * Since we're invalidating the buffer, we also clear the state * about which parts of the buffer have been logged. We also * clear the flag indicating that this is an inode buffer since * the data in the buffer will no longer be valid. * * We set the stale bit in the buffer as well since we're getting * rid of it. */ XFS_BUF_UNDELAYWRITE(bp); XFS_BUF_STALE(bp); bip->bli_flags |= XFS_BLI_STALE; bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_DIRTY); bip->bli_format.blf_flags &= ~XFS_BLI_INODE_BUF; bip->bli_format.blf_flags |= XFS_BLI_CANCEL; memset((char *)(bip->bli_format.blf_data_map), 0, (bip->bli_format.blf_map_size * sizeof(uint))); lidp->lid_flags |= XFS_LID_DIRTY|XFS_LID_BUF_STALE; tp->t_flags |= XFS_TRANS_DIRTY; xfs_buftrace("XFS_BINVAL", bp); xfs_buf_item_trace("BINVAL", bip); } /* * This call is used to indicate that the buffer contains on-disk * inodes which must be handled specially during recovery. They * require special handling because only the di_next_unlinked from * the inodes in the buffer should be recovered. The rest of the * data in the buffer is logged via the inodes themselves. * * All we do is set the XFS_BLI_INODE_BUF flag in the buffer's log * format structure so that we'll know what to do at recovery time. */ /* ARGSUSED */ void xfs_trans_inode_buf( xfs_trans_t *tp, xfs_buf_t *bp) { xfs_buf_log_item_t *bip; ASSERT(XFS_BUF_ISBUSY(bp)); ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); ASSERT(atomic_read(&bip->bli_refcount) > 0); bip->bli_format.blf_flags |= XFS_BLI_INODE_BUF; } /* * This call is used to indicate that the buffer is going to * be staled and was an inode buffer. This means it gets * special processing during unpin - where any inodes * associated with the buffer should be removed from ail. * There is also special processing during recovery, * any replay of the inodes in the buffer needs to be * prevented as the buffer may have been reused. */ void xfs_trans_stale_inode_buf( xfs_trans_t *tp, xfs_buf_t *bp) { xfs_buf_log_item_t *bip; ASSERT(XFS_BUF_ISBUSY(bp)); ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); ASSERT(atomic_read(&bip->bli_refcount) > 0); bip->bli_flags |= XFS_BLI_STALE_INODE; bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_buf_iodone; } /* * Mark the buffer as being one which contains newly allocated * inodes. We need to make sure that even if this buffer is * relogged as an 'inode buf' we still recover all of the inode * images in the face of a crash. This works in coordination with * xfs_buf_item_committed() to ensure that the buffer remains in the * AIL at its original location even after it has been relogged. */ /* ARGSUSED */ void xfs_trans_inode_alloc_buf( xfs_trans_t *tp, xfs_buf_t *bp) { xfs_buf_log_item_t *bip; ASSERT(XFS_BUF_ISBUSY(bp)); ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); ASSERT(atomic_read(&bip->bli_refcount) > 0); bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; } /* * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of * dquots. However, unlike in inode buffer recovery, dquot buffers get * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). * The only thing that makes dquot buffers different from regular * buffers is that we must not replay dquot bufs when recovering * if a _corresponding_ quotaoff has happened. We also have to distinguish * between usr dquot bufs and grp dquot bufs, because usr and grp quotas * can be turned off independently. */ /* ARGSUSED */ void xfs_trans_dquot_buf( xfs_trans_t *tp, xfs_buf_t *bp, uint type) { xfs_buf_log_item_t *bip; ASSERT(XFS_BUF_ISBUSY(bp)); ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); ASSERT(type == XFS_BLI_UDQUOT_BUF || type == XFS_BLI_PDQUOT_BUF || type == XFS_BLI_GDQUOT_BUF); bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); ASSERT(atomic_read(&bip->bli_refcount) > 0); bip->bli_format.blf_flags |= type; } /* * Check to see if a buffer matching the given parameters is already * a part of the given transaction. Only check the first, embedded * chunk, since we don't want to spend all day scanning large transactions. */ STATIC xfs_buf_t * xfs_trans_buf_item_match( xfs_trans_t *tp, xfs_buftarg_t *target, xfs_daddr_t blkno, int len) { xfs_log_item_chunk_t *licp; xfs_log_item_desc_t *lidp; xfs_buf_log_item_t *blip; xfs_buf_t *bp; int i; bp = NULL; len = BBTOB(len); licp = &tp->t_items; if (!XFS_LIC_ARE_ALL_FREE(licp)) { for (i = 0; i < licp->lic_unused; i++) { /* * Skip unoccupied slots. */ if (XFS_LIC_ISFREE(licp, i)) { continue; } lidp = XFS_LIC_SLOT(licp, i); blip = (xfs_buf_log_item_t *)lidp->lid_item; if (blip->bli_item.li_type != XFS_LI_BUF) { continue; } bp = blip->bli_buf; if ((XFS_BUF_TARGET(bp) == target) && (XFS_BUF_ADDR(bp) == blkno) && (XFS_BUF_COUNT(bp) == len)) { /* * We found it. Break out and * return the pointer to the buffer. */ break; } else { bp = NULL; } } } return bp; } /* * Check to see if a buffer matching the given parameters is already * a part of the given transaction. Check all the chunks, we * want to be thorough. */ STATIC xfs_buf_t * xfs_trans_buf_item_match_all( xfs_trans_t *tp, xfs_buftarg_t *target, xfs_daddr_t blkno, int len) { xfs_log_item_chunk_t *licp; xfs_log_item_desc_t *lidp; xfs_buf_log_item_t *blip; xfs_buf_t *bp; int i; bp = NULL; len = BBTOB(len); for (licp = &tp->t_items; licp != NULL; licp = licp->lic_next) { if (XFS_LIC_ARE_ALL_FREE(licp)) { ASSERT(licp == &tp->t_items); ASSERT(licp->lic_next == NULL); return NULL; } for (i = 0; i < licp->lic_unused; i++) { /* * Skip unoccupied slots. */ if (XFS_LIC_ISFREE(licp, i)) { continue; } lidp = XFS_LIC_SLOT(licp, i); blip = (xfs_buf_log_item_t *)lidp->lid_item; if (blip->bli_item.li_type != XFS_LI_BUF) { continue; } bp = blip->bli_buf; if ((XFS_BUF_TARGET(bp) == target) && (XFS_BUF_ADDR(bp) == blkno) && (XFS_BUF_COUNT(bp) == len)) { /* * We found it. Break out and * return the pointer to the buffer. */ return bp; } } } return NULL; }