Current Path : /usr/src/sys/kgssapi/krb5/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/kgssapi/krb5/kcrypto_aes.c |
/*- * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ * Authors: Doug Rabson <dfr@rabson.org> * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kgssapi/krb5/kcrypto_aes.c 184588 2008-11-03 10:38:00Z dfr $"); #include <sys/param.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/kobj.h> #include <sys/mbuf.h> #include <opencrypto/cryptodev.h> #include <kgssapi/gssapi.h> #include <kgssapi/gssapi_impl.h> #include "kcrypto.h" struct aes_state { struct mtx as_lock; uint64_t as_session; }; static void aes_init(struct krb5_key_state *ks) { struct aes_state *as; as = malloc(sizeof(struct aes_state), M_GSSAPI, M_WAITOK|M_ZERO); mtx_init(&as->as_lock, "gss aes lock", NULL, MTX_DEF); ks->ks_priv = as; } static void aes_destroy(struct krb5_key_state *ks) { struct aes_state *as = ks->ks_priv; if (as->as_session) crypto_freesession(as->as_session); mtx_destroy(&as->as_lock); free(ks->ks_priv, M_GSSAPI); } static void aes_set_key(struct krb5_key_state *ks, const void *in) { void *kp = ks->ks_key; struct aes_state *as = ks->ks_priv; struct cryptoini cri[2]; if (kp != in) bcopy(in, kp, ks->ks_class->ec_keylen); if (as->as_session) crypto_freesession(as->as_session); bzero(cri, sizeof(cri)); /* * We only want the first 96 bits of the HMAC. */ cri[0].cri_alg = CRYPTO_SHA1_HMAC; cri[0].cri_klen = ks->ks_class->ec_keybits; cri[0].cri_mlen = 12; cri[0].cri_key = ks->ks_key; cri[0].cri_next = &cri[1]; cri[1].cri_alg = CRYPTO_AES_CBC; cri[1].cri_klen = ks->ks_class->ec_keybits; cri[1].cri_mlen = 0; cri[1].cri_key = ks->ks_key; cri[1].cri_next = NULL; crypto_newsession(&as->as_session, cri, CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE); } static void aes_random_to_key(struct krb5_key_state *ks, const void *in) { aes_set_key(ks, in); } static int aes_crypto_cb(struct cryptop *crp) { int error; struct aes_state *as = (struct aes_state *) crp->crp_opaque; if (CRYPTO_SESID2CAPS(as->as_session) & CRYPTOCAP_F_SYNC) return (0); error = crp->crp_etype; if (error == EAGAIN) error = crypto_dispatch(crp); mtx_lock(&as->as_lock); if (error || (crp->crp_flags & CRYPTO_F_DONE)) wakeup(crp); mtx_unlock(&as->as_lock); return (0); } static void aes_encrypt_1(const struct krb5_key_state *ks, int buftype, void *buf, size_t skip, size_t len, void *ivec, int encdec) { struct aes_state *as = ks->ks_priv; struct cryptop *crp; struct cryptodesc *crd; int error; crp = crypto_getreq(1); crd = crp->crp_desc; crd->crd_skip = skip; crd->crd_len = len; crd->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT | encdec; if (ivec) { bcopy(ivec, crd->crd_iv, 16); } else { bzero(crd->crd_iv, 16); } crd->crd_next = NULL; crd->crd_alg = CRYPTO_AES_CBC; crp->crp_sid = as->as_session; crp->crp_flags = buftype | CRYPTO_F_CBIFSYNC; crp->crp_buf = buf; crp->crp_opaque = (void *) as; crp->crp_callback = aes_crypto_cb; error = crypto_dispatch(crp); if ((CRYPTO_SESID2CAPS(as->as_session) & CRYPTOCAP_F_SYNC) == 0) { mtx_lock(&as->as_lock); if (!error && !(crp->crp_flags & CRYPTO_F_DONE)) error = msleep(crp, &as->as_lock, 0, "gssaes", 0); mtx_unlock(&as->as_lock); } crypto_freereq(crp); } static void aes_encrypt(const struct krb5_key_state *ks, struct mbuf *inout, size_t skip, size_t len, void *ivec, size_t ivlen) { size_t blocklen = 16, plen; struct { uint8_t cn_1[16], cn[16]; } last2; int i, off; /* * AES encryption with cyphertext stealing: * * CTSencrypt(P[0], ..., P[n], IV, K): * len = length(P[n]) * (C[0], ..., C[n-2], E[n-1]) = * CBCencrypt(P[0], ..., P[n-1], IV, K) * P = pad(P[n], 0, blocksize) * E[n] = CBCencrypt(P, E[n-1], K); * C[n-1] = E[n] * C[n] = E[n-1]{0..len-1} */ plen = len % blocklen; if (len == blocklen) { /* * Note: caller will ensure len >= blocklen. */ aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec, CRD_F_ENCRYPT); } else if (plen == 0) { /* * This is equivalent to CBC mode followed by swapping * the last two blocks. We assume that neither of the * last two blocks cross iov boundaries. */ aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec, CRD_F_ENCRYPT); off = skip + len - 2 * blocklen; m_copydata(inout, off, 2 * blocklen, (void*) &last2); m_copyback(inout, off, blocklen, last2.cn); m_copyback(inout, off + blocklen, blocklen, last2.cn_1); } else { /* * This is the difficult case. We encrypt all but the * last partial block first. We then create a padded * copy of the last block and encrypt that using the * second to last encrypted block as IV. Once we have * the encrypted versions of the last two blocks, we * reshuffle to create the final result. */ aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len - plen, ivec, CRD_F_ENCRYPT); /* * Copy out the last two blocks, pad the last block * and encrypt it. Rearrange to get the final * result. The cyphertext for cn_1 is in cn. The * cyphertext for cn is the first plen bytes of what * is in cn_1 now. */ off = skip + len - blocklen - plen; m_copydata(inout, off, blocklen + plen, (void*) &last2); for (i = plen; i < blocklen; i++) last2.cn[i] = 0; aes_encrypt_1(ks, 0, last2.cn, 0, blocklen, last2.cn_1, CRD_F_ENCRYPT); m_copyback(inout, off, blocklen, last2.cn); m_copyback(inout, off + blocklen, plen, last2.cn_1); } } static void aes_decrypt(const struct krb5_key_state *ks, struct mbuf *inout, size_t skip, size_t len, void *ivec, size_t ivlen) { size_t blocklen = 16, plen; struct { uint8_t cn_1[16], cn[16]; } last2; int i, off, t; /* * AES decryption with cyphertext stealing: * * CTSencrypt(C[0], ..., C[n], IV, K): * len = length(C[n]) * E[n] = C[n-1] * X = decrypt(E[n], K) * P[n] = (X ^ C[n]){0..len-1} * E[n-1] = {C[n,0],...,C[n,len-1],X[len],...,X[blocksize-1]} * (P[0],...,P[n-1]) = CBCdecrypt(C[0],...,C[n-2],E[n-1], IV, K) */ plen = len % blocklen; if (len == blocklen) { /* * Note: caller will ensure len >= blocklen. */ aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec, 0); } else if (plen == 0) { /* * This is equivalent to CBC mode followed by swapping * the last two blocks. */ off = skip + len - 2 * blocklen; m_copydata(inout, off, 2 * blocklen, (void*) &last2); m_copyback(inout, off, blocklen, last2.cn); m_copyback(inout, off + blocklen, blocklen, last2.cn_1); aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec, 0); } else { /* * This is the difficult case. We first decrypt the * second to last block with a zero IV to make X. The * plaintext for the last block is the XOR of X and * the last cyphertext block. * * We derive a new cypher text for the second to last * block by mixing the unused bytes of X with the last * cyphertext block. The result of that can be * decrypted with the rest in CBC mode. */ off = skip + len - plen - blocklen; aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, off, blocklen, NULL, 0); m_copydata(inout, off, blocklen + plen, (void*) &last2); for (i = 0; i < plen; i++) { t = last2.cn[i]; last2.cn[i] ^= last2.cn_1[i]; last2.cn_1[i] = t; } m_copyback(inout, off, blocklen + plen, (void*) &last2); aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len - plen, ivec, 0); } } static void aes_checksum(const struct krb5_key_state *ks, int usage, struct mbuf *inout, size_t skip, size_t inlen, size_t outlen) { struct aes_state *as = ks->ks_priv; struct cryptop *crp; struct cryptodesc *crd; int error; crp = crypto_getreq(1); crd = crp->crp_desc; crd->crd_skip = skip; crd->crd_len = inlen; crd->crd_inject = skip + inlen; crd->crd_flags = 0; crd->crd_next = NULL; crd->crd_alg = CRYPTO_SHA1_HMAC; crp->crp_sid = as->as_session; crp->crp_ilen = inlen; crp->crp_olen = 12; crp->crp_etype = 0; crp->crp_flags = CRYPTO_F_IMBUF | CRYPTO_F_CBIFSYNC; crp->crp_buf = (void *) inout; crp->crp_opaque = (void *) as; crp->crp_callback = aes_crypto_cb; error = crypto_dispatch(crp); if ((CRYPTO_SESID2CAPS(as->as_session) & CRYPTOCAP_F_SYNC) == 0) { mtx_lock(&as->as_lock); if (!error && !(crp->crp_flags & CRYPTO_F_DONE)) error = msleep(crp, &as->as_lock, 0, "gssaes", 0); mtx_unlock(&as->as_lock); } crypto_freereq(crp); } struct krb5_encryption_class krb5_aes128_encryption_class = { "aes128-cts-hmac-sha1-96", /* name */ ETYPE_AES128_CTS_HMAC_SHA1_96, /* etype */ EC_DERIVED_KEYS, /* flags */ 16, /* blocklen */ 1, /* msgblocklen */ 12, /* checksumlen */ 128, /* keybits */ 16, /* keylen */ aes_init, aes_destroy, aes_set_key, aes_random_to_key, aes_encrypt, aes_decrypt, aes_checksum }; struct krb5_encryption_class krb5_aes256_encryption_class = { "aes256-cts-hmac-sha1-96", /* name */ ETYPE_AES256_CTS_HMAC_SHA1_96, /* etype */ EC_DERIVED_KEYS, /* flags */ 16, /* blocklen */ 1, /* msgblocklen */ 12, /* checksumlen */ 256, /* keybits */ 32, /* keylen */ aes_init, aes_destroy, aes_set_key, aes_random_to_key, aes_encrypt, aes_decrypt, aes_checksum };