Current Path : /usr/src/sys/opencrypto/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/opencrypto/xform.c |
/* $OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $ */ /*- * The authors of this code are John Ioannidis (ji@tla.org), * Angelos D. Keromytis (kermit@csd.uch.gr) and * Niels Provos (provos@physnet.uni-hamburg.de). * * This code was written by John Ioannidis for BSD/OS in Athens, Greece, * in November 1995. * * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996, * by Angelos D. Keromytis. * * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis * and Niels Provos. * * Additional features in 1999 by Angelos D. Keromytis. * * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis, * Angelos D. Keromytis and Niels Provos. * * Copyright (C) 2001, Angelos D. Keromytis. * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all copies of any software which is or includes a copy or * modification of this software. * You may use this code under the GNU public license if you so wish. Please * contribute changes back to the authors under this freer than GPL license * so that we may further the use of strong encryption without limitations to * all. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/opencrypto/xform.c 213068 2010-09-23 11:52:32Z pjd $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/sysctl.h> #include <sys/errno.h> #include <sys/time.h> #include <sys/kernel.h> #include <machine/cpu.h> #include <crypto/blowfish/blowfish.h> #include <crypto/des/des.h> #include <crypto/rijndael/rijndael.h> #include <crypto/camellia/camellia.h> #include <crypto/sha1.h> #include <opencrypto/cast.h> #include <opencrypto/deflate.h> #include <opencrypto/rmd160.h> #include <opencrypto/skipjack.h> #include <sys/md5.h> #include <opencrypto/cryptodev.h> #include <opencrypto/xform.h> static int null_setkey(u_int8_t **, u_int8_t *, int); static int des1_setkey(u_int8_t **, u_int8_t *, int); static int des3_setkey(u_int8_t **, u_int8_t *, int); static int blf_setkey(u_int8_t **, u_int8_t *, int); static int cast5_setkey(u_int8_t **, u_int8_t *, int); static int skipjack_setkey(u_int8_t **, u_int8_t *, int); static int rijndael128_setkey(u_int8_t **, u_int8_t *, int); static int aes_xts_setkey(u_int8_t **, u_int8_t *, int); static int cml_setkey(u_int8_t **, u_int8_t *, int); static void null_encrypt(caddr_t, u_int8_t *); static void des1_encrypt(caddr_t, u_int8_t *); static void des3_encrypt(caddr_t, u_int8_t *); static void blf_encrypt(caddr_t, u_int8_t *); static void cast5_encrypt(caddr_t, u_int8_t *); static void skipjack_encrypt(caddr_t, u_int8_t *); static void rijndael128_encrypt(caddr_t, u_int8_t *); static void aes_xts_encrypt(caddr_t, u_int8_t *); static void cml_encrypt(caddr_t, u_int8_t *); static void null_decrypt(caddr_t, u_int8_t *); static void des1_decrypt(caddr_t, u_int8_t *); static void des3_decrypt(caddr_t, u_int8_t *); static void blf_decrypt(caddr_t, u_int8_t *); static void cast5_decrypt(caddr_t, u_int8_t *); static void skipjack_decrypt(caddr_t, u_int8_t *); static void rijndael128_decrypt(caddr_t, u_int8_t *); static void aes_xts_decrypt(caddr_t, u_int8_t *); static void cml_decrypt(caddr_t, u_int8_t *); static void null_zerokey(u_int8_t **); static void des1_zerokey(u_int8_t **); static void des3_zerokey(u_int8_t **); static void blf_zerokey(u_int8_t **); static void cast5_zerokey(u_int8_t **); static void skipjack_zerokey(u_int8_t **); static void rijndael128_zerokey(u_int8_t **); static void aes_xts_zerokey(u_int8_t **); static void cml_zerokey(u_int8_t **); static void aes_xts_reinit(caddr_t, u_int8_t *); static void null_init(void *); static int null_update(void *, u_int8_t *, u_int16_t); static void null_final(u_int8_t *, void *); static int MD5Update_int(void *, u_int8_t *, u_int16_t); static void SHA1Init_int(void *); static int SHA1Update_int(void *, u_int8_t *, u_int16_t); static void SHA1Final_int(u_int8_t *, void *); static int RMD160Update_int(void *, u_int8_t *, u_int16_t); static int SHA256Update_int(void *, u_int8_t *, u_int16_t); static int SHA384Update_int(void *, u_int8_t *, u_int16_t); static int SHA512Update_int(void *, u_int8_t *, u_int16_t); static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **); static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **); MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers"); /* Encryption instances */ struct enc_xform enc_xform_null = { CRYPTO_NULL_CBC, "NULL", /* NB: blocksize of 4 is to generate a properly aligned ESP header */ NULL_BLOCK_LEN, 0, 256, /* 2048 bits, max key */ null_encrypt, null_decrypt, null_setkey, null_zerokey, NULL }; struct enc_xform enc_xform_des = { CRYPTO_DES_CBC, "DES", DES_BLOCK_LEN, 8, 8, des1_encrypt, des1_decrypt, des1_setkey, des1_zerokey, NULL }; struct enc_xform enc_xform_3des = { CRYPTO_3DES_CBC, "3DES", DES3_BLOCK_LEN, 24, 24, des3_encrypt, des3_decrypt, des3_setkey, des3_zerokey, NULL }; struct enc_xform enc_xform_blf = { CRYPTO_BLF_CBC, "Blowfish", BLOWFISH_BLOCK_LEN, 5, 56 /* 448 bits, max key */, blf_encrypt, blf_decrypt, blf_setkey, blf_zerokey, NULL }; struct enc_xform enc_xform_cast5 = { CRYPTO_CAST_CBC, "CAST-128", CAST128_BLOCK_LEN, 5, 16, cast5_encrypt, cast5_decrypt, cast5_setkey, cast5_zerokey, NULL }; struct enc_xform enc_xform_skipjack = { CRYPTO_SKIPJACK_CBC, "Skipjack", SKIPJACK_BLOCK_LEN, 10, 10, skipjack_encrypt, skipjack_decrypt, skipjack_setkey, skipjack_zerokey, NULL }; struct enc_xform enc_xform_rijndael128 = { CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES", RIJNDAEL128_BLOCK_LEN, 8, 32, rijndael128_encrypt, rijndael128_decrypt, rijndael128_setkey, rijndael128_zerokey, NULL }; struct enc_xform enc_xform_aes_xts = { CRYPTO_AES_XTS, "AES-XTS", RIJNDAEL128_BLOCK_LEN, 32, 64, aes_xts_encrypt, aes_xts_decrypt, aes_xts_setkey, aes_xts_zerokey, aes_xts_reinit }; struct enc_xform enc_xform_arc4 = { CRYPTO_ARC4, "ARC4", 1, 1, 32, NULL, NULL, NULL, NULL, NULL }; struct enc_xform enc_xform_camellia = { CRYPTO_CAMELLIA_CBC, "Camellia", CAMELLIA_BLOCK_LEN, 8, 32, cml_encrypt, cml_decrypt, cml_setkey, cml_zerokey, NULL }; /* Authentication instances */ struct auth_hash auth_hash_null = { CRYPTO_NULL_HMAC, "NULL-HMAC", 0, NULL_HASH_LEN, NULL_HMAC_BLOCK_LEN, sizeof(int), /* NB: context isn't used */ null_init, null_update, null_final }; struct auth_hash auth_hash_hmac_md5 = { CRYPTO_MD5_HMAC, "HMAC-MD5", 16, MD5_HASH_LEN, MD5_HMAC_BLOCK_LEN, sizeof(MD5_CTX), (void (*) (void *)) MD5Init, MD5Update_int, (void (*) (u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_hmac_sha1 = { CRYPTO_SHA1_HMAC, "HMAC-SHA1", 20, SHA1_HASH_LEN, SHA1_HMAC_BLOCK_LEN, sizeof(SHA1_CTX), SHA1Init_int, SHA1Update_int, SHA1Final_int }; struct auth_hash auth_hash_hmac_ripemd_160 = { CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160", 20, RIPEMD160_HASH_LEN, RIPEMD160_HMAC_BLOCK_LEN, sizeof(RMD160_CTX), (void (*)(void *)) RMD160Init, RMD160Update_int, (void (*)(u_int8_t *, void *)) RMD160Final }; struct auth_hash auth_hash_key_md5 = { CRYPTO_MD5_KPDK, "Keyed MD5", 0, MD5_KPDK_HASH_LEN, 0, sizeof(MD5_CTX), (void (*)(void *)) MD5Init, MD5Update_int, (void (*)(u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_key_sha1 = { CRYPTO_SHA1_KPDK, "Keyed SHA1", 0, SHA1_KPDK_HASH_LEN, 0, sizeof(SHA1_CTX), SHA1Init_int, SHA1Update_int, SHA1Final_int }; struct auth_hash auth_hash_hmac_sha2_256 = { CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256", 32, SHA2_256_HASH_LEN, SHA2_256_HMAC_BLOCK_LEN, sizeof(SHA256_CTX), (void (*)(void *)) SHA256_Init, SHA256Update_int, (void (*)(u_int8_t *, void *)) SHA256_Final }; struct auth_hash auth_hash_hmac_sha2_384 = { CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384", 48, SHA2_384_HASH_LEN, SHA2_384_HMAC_BLOCK_LEN, sizeof(SHA384_CTX), (void (*)(void *)) SHA384_Init, SHA384Update_int, (void (*)(u_int8_t *, void *)) SHA384_Final }; struct auth_hash auth_hash_hmac_sha2_512 = { CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512", 64, SHA2_512_HASH_LEN, SHA2_512_HMAC_BLOCK_LEN, sizeof(SHA512_CTX), (void (*)(void *)) SHA512_Init, SHA512Update_int, (void (*)(u_int8_t *, void *)) SHA512_Final }; /* Compression instance */ struct comp_algo comp_algo_deflate = { CRYPTO_DEFLATE_COMP, "Deflate", 90, deflate_compress, deflate_decompress }; /* * Encryption wrapper routines. */ static void null_encrypt(caddr_t key, u_int8_t *blk) { } static void null_decrypt(caddr_t key, u_int8_t *blk) { } static int null_setkey(u_int8_t **sched, u_int8_t *key, int len) { *sched = NULL; return 0; } static void null_zerokey(u_int8_t **sched) { *sched = NULL; } static void des1_encrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT); } static void des1_decrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT); } static int des1_setkey(u_int8_t **sched, u_int8_t *key, int len) { des_key_schedule *p; int err; p = malloc(sizeof (des_key_schedule), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (p != NULL) { des_set_key((des_cblock *) key, p[0]); err = 0; } else err = ENOMEM; *sched = (u_int8_t *) p; return err; } static void des1_zerokey(u_int8_t **sched) { bzero(*sched, sizeof (des_key_schedule)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void des3_encrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT); } static void des3_decrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT); } static int des3_setkey(u_int8_t **sched, u_int8_t *key, int len) { des_key_schedule *p; int err; p = malloc(3*sizeof (des_key_schedule), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (p != NULL) { des_set_key((des_cblock *)(key + 0), p[0]); des_set_key((des_cblock *)(key + 8), p[1]); des_set_key((des_cblock *)(key + 16), p[2]); err = 0; } else err = ENOMEM; *sched = (u_int8_t *) p; return err; } static void des3_zerokey(u_int8_t **sched) { bzero(*sched, 3*sizeof (des_key_schedule)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void blf_encrypt(caddr_t key, u_int8_t *blk) { BF_LONG t[2]; memcpy(t, blk, sizeof (t)); t[0] = ntohl(t[0]); t[1] = ntohl(t[1]); /* NB: BF_encrypt expects the block in host order! */ BF_encrypt(t, (BF_KEY *) key); t[0] = htonl(t[0]); t[1] = htonl(t[1]); memcpy(blk, t, sizeof (t)); } static void blf_decrypt(caddr_t key, u_int8_t *blk) { BF_LONG t[2]; memcpy(t, blk, sizeof (t)); t[0] = ntohl(t[0]); t[1] = ntohl(t[1]); /* NB: BF_decrypt expects the block in host order! */ BF_decrypt(t, (BF_KEY *) key); t[0] = htonl(t[0]); t[1] = htonl(t[1]); memcpy(blk, t, sizeof (t)); } static int blf_setkey(u_int8_t **sched, u_int8_t *key, int len) { int err; *sched = malloc(sizeof(BF_KEY), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (*sched != NULL) { BF_set_key((BF_KEY *) *sched, len, key); err = 0; } else err = ENOMEM; return err; } static void blf_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(BF_KEY)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void cast5_encrypt(caddr_t key, u_int8_t *blk) { cast_encrypt((cast_key *) key, blk, blk); } static void cast5_decrypt(caddr_t key, u_int8_t *blk) { cast_decrypt((cast_key *) key, blk, blk); } static int cast5_setkey(u_int8_t **sched, u_int8_t *key, int len) { int err; *sched = malloc(sizeof(cast_key), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (*sched != NULL) { cast_setkey((cast_key *)*sched, key, len); err = 0; } else err = ENOMEM; return err; } static void cast5_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(cast_key)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void skipjack_encrypt(caddr_t key, u_int8_t *blk) { skipjack_forwards(blk, blk, (u_int8_t **) key); } static void skipjack_decrypt(caddr_t key, u_int8_t *blk) { skipjack_backwards(blk, blk, (u_int8_t **) key); } static int skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len) { int err; /* NB: allocate all the memory that's needed at once */ *sched = malloc(10 * (sizeof(u_int8_t *) + 0x100), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (*sched != NULL) { u_int8_t** key_tables = (u_int8_t**) *sched; u_int8_t* table = (u_int8_t*) &key_tables[10]; int k; for (k = 0; k < 10; k++) { key_tables[k] = table; table += 0x100; } subkey_table_gen(key, (u_int8_t **) *sched); err = 0; } else err = ENOMEM; return err; } static void skipjack_zerokey(u_int8_t **sched) { bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void rijndael128_encrypt(caddr_t key, u_int8_t *blk) { rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk); } static void rijndael128_decrypt(caddr_t key, u_int8_t *blk) { rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk, (u_char *) blk); } static int rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len) { int err; if (len != 16 && len != 24 && len != 32) return (EINVAL); *sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (*sched != NULL) { rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key, len * 8); err = 0; } else err = ENOMEM; return err; } static void rijndael128_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(rijndael_ctx)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } #define AES_XTS_BLOCKSIZE 16 #define AES_XTS_IVSIZE 8 #define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */ struct aes_xts_ctx { rijndael_ctx key1; rijndael_ctx key2; u_int8_t tweak[AES_XTS_BLOCKSIZE]; }; void aes_xts_reinit(caddr_t key, u_int8_t *iv) { struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key; u_int64_t blocknum; u_int i; /* * Prepare tweak as E_k2(IV). IV is specified as LE representation * of a 64-bit block number which we allow to be passed in directly. */ bcopy(iv, &blocknum, AES_XTS_IVSIZE); for (i = 0; i < AES_XTS_IVSIZE; i++) { ctx->tweak[i] = blocknum & 0xff; blocknum >>= 8; } /* Last 64 bits of IV are always zero */ bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE); rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak); } static void aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt) { u_int8_t block[AES_XTS_BLOCKSIZE]; u_int i, carry_in, carry_out; for (i = 0; i < AES_XTS_BLOCKSIZE; i++) block[i] = data[i] ^ ctx->tweak[i]; if (do_encrypt) rijndael_encrypt(&ctx->key1, block, data); else rijndael_decrypt(&ctx->key1, block, data); for (i = 0; i < AES_XTS_BLOCKSIZE; i++) data[i] ^= ctx->tweak[i]; /* Exponentiate tweak */ carry_in = 0; for (i = 0; i < AES_XTS_BLOCKSIZE; i++) { carry_out = ctx->tweak[i] & 0x80; ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0); carry_in = carry_out; } if (carry_in) ctx->tweak[0] ^= AES_XTS_ALPHA; bzero(block, sizeof(block)); } void aes_xts_encrypt(caddr_t key, u_int8_t *data) { aes_xts_crypt((struct aes_xts_ctx *)key, data, 1); } void aes_xts_decrypt(caddr_t key, u_int8_t *data) { aes_xts_crypt((struct aes_xts_ctx *)key, data, 0); } int aes_xts_setkey(u_int8_t **sched, u_int8_t *key, int len) { struct aes_xts_ctx *ctx; if (len != 32 && len != 64) return EINVAL; *sched = malloc(sizeof(struct aes_xts_ctx), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); if (*sched == NULL) return ENOMEM; ctx = (struct aes_xts_ctx *)*sched; rijndael_set_key(&ctx->key1, key, len * 4); rijndael_set_key(&ctx->key2, key + (len / 2), len * 4); return 0; } void aes_xts_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(struct aes_xts_ctx)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void cml_encrypt(caddr_t key, u_int8_t *blk) { camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk); } static void cml_decrypt(caddr_t key, u_int8_t *blk) { camellia_decrypt(((camellia_ctx *) key), (u_char *) blk, (u_char *) blk); } static int cml_setkey(u_int8_t **sched, u_int8_t *key, int len) { int err; if (len != 16 && len != 24 && len != 32) return (EINVAL); *sched = malloc(sizeof(camellia_ctx), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (*sched != NULL) { camellia_set_key((camellia_ctx *) *sched, (u_char *) key, len * 8); err = 0; } else err = ENOMEM; return err; } static void cml_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(camellia_ctx)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } /* * And now for auth. */ static void null_init(void *ctx) { } static int null_update(void *ctx, u_int8_t *buf, u_int16_t len) { return 0; } static void null_final(u_int8_t *buf, void *ctx) { if (buf != (u_int8_t *) 0) bzero(buf, 12); } static int RMD160Update_int(void *ctx, u_int8_t *buf, u_int16_t len) { RMD160Update(ctx, buf, len); return 0; } static int MD5Update_int(void *ctx, u_int8_t *buf, u_int16_t len) { MD5Update(ctx, buf, len); return 0; } static void SHA1Init_int(void *ctx) { SHA1Init(ctx); } static int SHA1Update_int(void *ctx, u_int8_t *buf, u_int16_t len) { SHA1Update(ctx, buf, len); return 0; } static void SHA1Final_int(u_int8_t *blk, void *ctx) { SHA1Final(blk, ctx); } static int SHA256Update_int(void *ctx, u_int8_t *buf, u_int16_t len) { SHA256_Update(ctx, buf, len); return 0; } static int SHA384Update_int(void *ctx, u_int8_t *buf, u_int16_t len) { SHA384_Update(ctx, buf, len); return 0; } static int SHA512Update_int(void *ctx, u_int8_t *buf, u_int16_t len) { SHA512_Update(ctx, buf, len); return 0; } /* * And compression */ static u_int32_t deflate_compress(data, size, out) u_int8_t *data; u_int32_t size; u_int8_t **out; { return deflate_global(data, size, 0, out); } static u_int32_t deflate_decompress(data, size, out) u_int8_t *data; u_int32_t size; u_int8_t **out; { return deflate_global(data, size, 1, out); }