Current Path : /usr/src/sys/pci/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/pci/if_rl.c |
/*- * Copyright (c) 1997, 1998 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/pci/if_rl.c 233489 2012-03-26 03:54:19Z yongari $"); /* * RealTek 8129/8139 PCI NIC driver * * Supports several extremely cheap PCI 10/100 adapters based on * the RealTek chipset. Datasheets can be obtained from * www.realtek.com.tw. * * Written by Bill Paul <wpaul@ctr.columbia.edu> * Electrical Engineering Department * Columbia University, New York City */ /* * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is * probably the worst PCI ethernet controller ever made, with the possible * exception of the FEAST chip made by SMC. The 8139 supports bus-master * DMA, but it has a terrible interface that nullifies any performance * gains that bus-master DMA usually offers. * * For transmission, the chip offers a series of four TX descriptor * registers. Each transmit frame must be in a contiguous buffer, aligned * on a longword (32-bit) boundary. This means we almost always have to * do mbuf copies in order to transmit a frame, except in the unlikely * case where a) the packet fits into a single mbuf, and b) the packet * is 32-bit aligned within the mbuf's data area. The presence of only * four descriptor registers means that we can never have more than four * packets queued for transmission at any one time. * * Reception is not much better. The driver has to allocate a single large * buffer area (up to 64K in size) into which the chip will DMA received * frames. Because we don't know where within this region received packets * will begin or end, we have no choice but to copy data from the buffer * area into mbufs in order to pass the packets up to the higher protocol * levels. * * It's impossible given this rotten design to really achieve decent * performance at 100Mbps, unless you happen to have a 400Mhz PII or * some equally overmuscled CPU to drive it. * * On the bright side, the 8139 does have a built-in PHY, although * rather than using an MDIO serial interface like most other NICs, the * PHY registers are directly accessible through the 8139's register * space. The 8139 supports autonegotiation, as well as a 64-bit multicast * filter. * * The 8129 chip is an older version of the 8139 that uses an external PHY * chip. The 8129 has a serial MDIO interface for accessing the MII where * the 8139 lets you directly access the on-board PHY registers. We need * to select which interface to use depending on the chip type. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include <sys/param.h> #include <sys/endian.h> #include <sys/systm.h> #include <sys/sockio.h> #include <sys/mbuf.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/socket.h> #include <sys/sysctl.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/bpf.h> #include <machine/bus.h> #include <machine/resource.h> #include <sys/bus.h> #include <sys/rman.h> #include <dev/mii/mii.h> #include <dev/mii/mii_bitbang.h> #include <dev/mii/miivar.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> MODULE_DEPEND(rl, pci, 1, 1, 1); MODULE_DEPEND(rl, ether, 1, 1, 1); MODULE_DEPEND(rl, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #include <pci/if_rlreg.h> /* * Various supported device vendors/types and their names. */ static const struct rl_type const rl_devs[] = { { RT_VENDORID, RT_DEVICEID_8129, RL_8129, "RealTek 8129 10/100BaseTX" }, { RT_VENDORID, RT_DEVICEID_8139, RL_8139, "RealTek 8139 10/100BaseTX" }, { RT_VENDORID, RT_DEVICEID_8139D, RL_8139, "RealTek 8139 10/100BaseTX" }, { RT_VENDORID, RT_DEVICEID_8138, RL_8139, "RealTek 8139 10/100BaseTX CardBus" }, { RT_VENDORID, RT_DEVICEID_8100, RL_8139, "RealTek 8100 10/100BaseTX" }, { ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139, "Accton MPX 5030/5038 10/100BaseTX" }, { DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139, "Delta Electronics 8139 10/100BaseTX" }, { ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139, "Addtron Technology 8139 10/100BaseTX" }, { DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139, "D-Link DFE-530TX+ 10/100BaseTX" }, { DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139, "D-Link DFE-690TXD 10/100BaseTX" }, { NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139, "Nortel Networks 10/100BaseTX" }, { COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139, "Corega FEther CB-TXD" }, { COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139, "Corega FEtherII CB-TXD" }, { PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139, "Peppercon AG ROL-F" }, { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139, "Planex FNW-3603-TX" }, { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139, "Planex FNW-3800-TX" }, { CP_VENDORID, RT_DEVICEID_8139, RL_8139, "Compaq HNE-300" }, { LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139, "LevelOne FPC-0106TX" }, { EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139, "Edimax EP-4103DL CardBus" } }; static int rl_attach(device_t); static int rl_detach(device_t); static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int rl_dma_alloc(struct rl_softc *); static void rl_dma_free(struct rl_softc *); static void rl_eeprom_putbyte(struct rl_softc *, int); static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *); static int rl_encap(struct rl_softc *, struct mbuf **); static int rl_list_tx_init(struct rl_softc *); static int rl_list_rx_init(struct rl_softc *); static int rl_ifmedia_upd(struct ifnet *); static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int rl_ioctl(struct ifnet *, u_long, caddr_t); static void rl_intr(void *); static void rl_init(void *); static void rl_init_locked(struct rl_softc *sc); static int rl_miibus_readreg(device_t, int, int); static void rl_miibus_statchg(device_t); static int rl_miibus_writereg(device_t, int, int, int); #ifdef DEVICE_POLLING static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count); static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count); #endif static int rl_probe(device_t); static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int); static void rl_reset(struct rl_softc *); static int rl_resume(device_t); static int rl_rxeof(struct rl_softc *); static void rl_rxfilter(struct rl_softc *); static int rl_shutdown(device_t); static void rl_start(struct ifnet *); static void rl_start_locked(struct ifnet *); static void rl_stop(struct rl_softc *); static int rl_suspend(device_t); static void rl_tick(void *); static void rl_txeof(struct rl_softc *); static void rl_watchdog(struct rl_softc *); static void rl_setwol(struct rl_softc *); static void rl_clrwol(struct rl_softc *); /* * MII bit-bang glue */ static uint32_t rl_mii_bitbang_read(device_t); static void rl_mii_bitbang_write(device_t, uint32_t); static const struct mii_bitbang_ops rl_mii_bitbang_ops = { rl_mii_bitbang_read, rl_mii_bitbang_write, { RL_MII_DATAOUT, /* MII_BIT_MDO */ RL_MII_DATAIN, /* MII_BIT_MDI */ RL_MII_CLK, /* MII_BIT_MDC */ RL_MII_DIR, /* MII_BIT_DIR_HOST_PHY */ 0, /* MII_BIT_DIR_PHY_HOST */ } }; static device_method_t rl_methods[] = { /* Device interface */ DEVMETHOD(device_probe, rl_probe), DEVMETHOD(device_attach, rl_attach), DEVMETHOD(device_detach, rl_detach), DEVMETHOD(device_suspend, rl_suspend), DEVMETHOD(device_resume, rl_resume), DEVMETHOD(device_shutdown, rl_shutdown), /* MII interface */ DEVMETHOD(miibus_readreg, rl_miibus_readreg), DEVMETHOD(miibus_writereg, rl_miibus_writereg), DEVMETHOD(miibus_statchg, rl_miibus_statchg), DEVMETHOD_END }; static driver_t rl_driver = { "rl", rl_methods, sizeof(struct rl_softc) }; static devclass_t rl_devclass; DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0); DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0); DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0); #define EE_SET(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) | x) #define EE_CLR(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) & ~x) /* * Send a read command and address to the EEPROM, check for ACK. */ static void rl_eeprom_putbyte(struct rl_softc *sc, int addr) { register int d, i; d = addr | sc->rl_eecmd_read; /* * Feed in each bit and strobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) { EE_SET(RL_EE_DATAIN); } else { EE_CLR(RL_EE_DATAIN); } DELAY(100); EE_SET(RL_EE_CLK); DELAY(150); EE_CLR(RL_EE_CLK); DELAY(100); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest) { register int i; uint16_t word = 0; /* Enter EEPROM access mode. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); /* * Send address of word we want to read. */ rl_eeprom_putbyte(sc, addr); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { EE_SET(RL_EE_CLK); DELAY(100); if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) word |= i; EE_CLR(RL_EE_CLK); DELAY(100); } /* Turn off EEPROM access mode. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); *dest = word; } /* * Read a sequence of words from the EEPROM. */ static void rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap) { int i; uint16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { rl_eeprom_getword(sc, off + i, &word); ptr = (uint16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } } /* * Read the MII serial port for the MII bit-bang module. */ static uint32_t rl_mii_bitbang_read(device_t dev) { struct rl_softc *sc; uint32_t val; sc = device_get_softc(dev); val = CSR_READ_1(sc, RL_MII); CSR_BARRIER(sc, RL_MII, 1, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); return (val); } /* * Write the MII serial port for the MII bit-bang module. */ static void rl_mii_bitbang_write(device_t dev, uint32_t val) { struct rl_softc *sc; sc = device_get_softc(dev); CSR_WRITE_1(sc, RL_MII, val); CSR_BARRIER(sc, RL_MII, 1, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); } static int rl_miibus_readreg(device_t dev, int phy, int reg) { struct rl_softc *sc; uint16_t rl8139_reg; sc = device_get_softc(dev); if (sc->rl_type == RL_8139) { switch (reg) { case MII_BMCR: rl8139_reg = RL_BMCR; break; case MII_BMSR: rl8139_reg = RL_BMSR; break; case MII_ANAR: rl8139_reg = RL_ANAR; break; case MII_ANER: rl8139_reg = RL_ANER; break; case MII_ANLPAR: rl8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: return (0); /* * Allow the rlphy driver to read the media status * register. If we have a link partner which does not * support NWAY, this is the register which will tell * us the results of parallel detection. */ case RL_MEDIASTAT: return (CSR_READ_1(sc, RL_MEDIASTAT)); default: device_printf(sc->rl_dev, "bad phy register\n"); return (0); } return (CSR_READ_2(sc, rl8139_reg)); } return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg)); } static int rl_miibus_writereg(device_t dev, int phy, int reg, int data) { struct rl_softc *sc; uint16_t rl8139_reg; sc = device_get_softc(dev); if (sc->rl_type == RL_8139) { switch (reg) { case MII_BMCR: rl8139_reg = RL_BMCR; break; case MII_BMSR: rl8139_reg = RL_BMSR; break; case MII_ANAR: rl8139_reg = RL_ANAR; break; case MII_ANER: rl8139_reg = RL_ANER; break; case MII_ANLPAR: rl8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: return (0); break; default: device_printf(sc->rl_dev, "bad phy register\n"); return (0); } CSR_WRITE_2(sc, rl8139_reg, data); return (0); } mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data); return (0); } static void rl_miibus_statchg(device_t dev) { struct rl_softc *sc; struct ifnet *ifp; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->rl_miibus); ifp = sc->rl_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; sc->rl_flags &= ~RL_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->rl_flags |= RL_FLAG_LINK; break; default: break; } } /* * RealTek controllers do not provide any interface to * Tx/Rx MACs for resolved speed, duplex and flow-control * parameters. */ } /* * Program the 64-bit multicast hash filter. */ static void rl_rxfilter(struct rl_softc *sc) { struct ifnet *ifp = sc->rl_ifp; int h = 0; uint32_t hashes[2] = { 0, 0 }; struct ifmultiaddr *ifma; uint32_t rxfilt; RL_LOCK_ASSERT(sc); rxfilt = CSR_READ_4(sc, RL_RXCFG); rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD | RL_RXCFG_RX_MULTI); /* Always accept frames destined for this host. */ rxfilt |= RL_RXCFG_RX_INDIV; /* Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) rxfilt |= RL_RXCFG_RX_BROAD; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { rxfilt |= RL_RXCFG_RX_MULTI; if (ifp->if_flags & IFF_PROMISC) rxfilt |= RL_RXCFG_RX_ALLPHYS; hashes[0] = 0xFFFFFFFF; hashes[1] = 0xFFFFFFFF; } else { /* Now program new ones. */ if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } if_maddr_runlock(ifp); if (hashes[0] != 0 || hashes[1] != 0) rxfilt |= RL_RXCFG_RX_MULTI; } CSR_WRITE_4(sc, RL_MAR0, hashes[0]); CSR_WRITE_4(sc, RL_MAR4, hashes[1]); CSR_WRITE_4(sc, RL_RXCFG, rxfilt); } static void rl_reset(struct rl_softc *sc) { register int i; RL_LOCK_ASSERT(sc); CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); for (i = 0; i < RL_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) break; } if (i == RL_TIMEOUT) device_printf(sc->rl_dev, "reset never completed!\n"); } /* * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int rl_probe(device_t dev) { const struct rl_type *t; uint16_t devid, revid, vendor; int i; vendor = pci_get_vendor(dev); devid = pci_get_device(dev); revid = pci_get_revid(dev); if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) { if (revid == 0x20) { /* 8139C+, let re(4) take care of this device. */ return (ENXIO); } } t = rl_devs; for (i = 0; i < sizeof(rl_devs) / sizeof(rl_devs[0]); i++, t++) { if (vendor == t->rl_vid && devid == t->rl_did) { device_set_desc(dev, t->rl_name); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } struct rl_dmamap_arg { bus_addr_t rl_busaddr; }; static void rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct rl_dmamap_arg *ctx; if (error != 0) return; KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); ctx = (struct rl_dmamap_arg *)arg; ctx->rl_busaddr = segs[0].ds_addr; } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int rl_attach(device_t dev) { uint8_t eaddr[ETHER_ADDR_LEN]; uint16_t as[3]; struct ifnet *ifp; struct rl_softc *sc; const struct rl_type *t; struct sysctl_ctx_list *ctx; struct sysctl_oid_list *children; int error = 0, hwrev, i, phy, pmc, rid; int prefer_iomap, unit; uint16_t rl_did = 0; char tn[32]; sc = device_get_softc(dev); unit = device_get_unit(dev); sc->rl_dev = dev; sc->rl_twister_enable = 0; snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit); TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable); ctx = device_get_sysctl_ctx(sc->rl_dev); children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev)); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD, &sc->rl_twister_enable, 0, ""); mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0); pci_enable_busmaster(dev); /* * Map control/status registers. * Default to using PIO access for this driver. On SMP systems, * there appear to be problems with memory mapped mode: it looks * like doing too many memory mapped access back to back in rapid * succession can hang the bus. I'm inclined to blame this on * crummy design/construction on the part of RealTek. Memory * mapped mode does appear to work on uniprocessor systems though. */ prefer_iomap = 1; snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit); TUNABLE_INT_FETCH(tn, &prefer_iomap); if (prefer_iomap) { sc->rl_res_id = PCIR_BAR(0); sc->rl_res_type = SYS_RES_IOPORT; sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, &sc->rl_res_id, RF_ACTIVE); } if (prefer_iomap == 0 || sc->rl_res == NULL) { sc->rl_res_id = PCIR_BAR(1); sc->rl_res_type = SYS_RES_MEMORY; sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, &sc->rl_res_id, RF_ACTIVE); } if (sc->rl_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); error = ENXIO; goto fail; } #ifdef notdef /* * Detect the Realtek 8139B. For some reason, this chip is very * unstable when left to autoselect the media * The best workaround is to set the device to the required * media type or to set it to the 10 Meg speed. */ if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF) device_printf(dev, "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n"); #endif sc->rl_btag = rman_get_bustag(sc->rl_res); sc->rl_bhandle = rman_get_bushandle(sc->rl_res); /* Allocate interrupt */ rid = 0; sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->rl_irq[0] == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } sc->rl_cfg0 = RL_8139_CFG0; sc->rl_cfg1 = RL_8139_CFG1; sc->rl_cfg2 = 0; sc->rl_cfg3 = RL_8139_CFG3; sc->rl_cfg4 = RL_8139_CFG4; sc->rl_cfg5 = RL_8139_CFG5; /* * Reset the adapter. Only take the lock here as it's needed in * order to call rl_reset(). */ RL_LOCK(sc); rl_reset(sc); RL_UNLOCK(sc); sc->rl_eecmd_read = RL_EECMD_READ_6BIT; rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0); if (rl_did != 0x8129) sc->rl_eecmd_read = RL_EECMD_READ_8BIT; /* * Get station address from the EEPROM. */ rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0); for (i = 0; i < 3; i++) { eaddr[(i * 2) + 0] = as[i] & 0xff; eaddr[(i * 2) + 1] = as[i] >> 8; } /* * Now read the exact device type from the EEPROM to find * out if it's an 8129 or 8139. */ rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0); t = rl_devs; sc->rl_type = 0; while(t->rl_name != NULL) { if (rl_did == t->rl_did) { sc->rl_type = t->rl_basetype; break; } t++; } if (sc->rl_type == 0) { device_printf(dev, "unknown device ID: %x assuming 8139\n", rl_did); sc->rl_type = RL_8139; /* * Read RL_IDR register to get ethernet address as accessing * EEPROM may not extract correct address. */ for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i); } if ((error = rl_dma_alloc(sc)) != 0) goto fail; ifp = sc->rl_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } #define RL_PHYAD_INTERNAL 0 /* Do MII setup */ phy = MII_PHY_ANY; if (sc->rl_type == RL_8139) phy = RL_PHYAD_INTERNAL; error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd, rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = rl_ioctl; ifp->if_start = rl_start; ifp->if_init = rl_init; ifp->if_capabilities = IFCAP_VLAN_MTU; /* Check WOL for RTL8139B or newer controllers. */ if (sc->rl_type == RL_8139 && pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) { hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV; switch (hwrev) { case RL_HWREV_8139B: case RL_HWREV_8130: case RL_HWREV_8139C: case RL_HWREV_8139D: case RL_HWREV_8101: case RL_HWREV_8100: ifp->if_capabilities |= IFCAP_WOL; /* Disable WOL. */ rl_clrwol(sc); break; default: break; } } ifp->if_capenable = ifp->if_capabilities; ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST); #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; IFQ_SET_READY(&ifp->if_snd); /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE, NULL, rl_intr, sc, &sc->rl_intrhand[0]); if (error) { device_printf(sc->rl_dev, "couldn't set up irq\n"); ether_ifdetach(ifp); } fail: if (error) rl_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int rl_detach(device_t dev) { struct rl_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->rl_ifp; KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized")); #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { RL_LOCK(sc); rl_stop(sc); RL_UNLOCK(sc); callout_drain(&sc->rl_stat_callout); ether_ifdetach(ifp); } #if 0 sc->suspended = 1; #endif if (sc->rl_miibus) device_delete_child(dev, sc->rl_miibus); bus_generic_detach(dev); if (sc->rl_intrhand[0]) bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]); if (sc->rl_irq[0]) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]); if (sc->rl_res) bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id, sc->rl_res); if (ifp) if_free(ifp); rl_dma_free(sc); mtx_destroy(&sc->rl_mtx); return (0); } static int rl_dma_alloc(struct rl_softc *sc) { struct rl_dmamap_arg ctx; int error, i; /* * Allocate the parent bus DMA tag appropriate for PCI. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rl_parent_tag); if (error) { device_printf(sc->rl_dev, "failed to create parent DMA tag.\n"); goto fail; } /* Create DMA tag for Rx memory block. */ error = bus_dma_tag_create(sc->rl_parent_tag, /* parent */ RL_RX_8139_BUF_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1, /* maxsize,nsegments */ RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rl_cdata.rl_rx_tag); if (error) { device_printf(sc->rl_dev, "failed to create Rx memory block DMA tag.\n"); goto fail; } /* Create DMA tag for Tx buffer. */ error = bus_dma_tag_create(sc->rl_parent_tag, /* parent */ RL_TX_8139_BUF_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, 1, /* maxsize, nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rl_cdata.rl_tx_tag); if (error) { device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n"); goto fail; } /* * Allocate DMA'able memory and load DMA map for Rx memory block. */ error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag, (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap); if (error != 0) { device_printf(sc->rl_dev, "failed to allocate Rx DMA memory block.\n"); goto fail; } ctx.rl_busaddr = 0; error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx, BUS_DMA_NOWAIT); if (error != 0 || ctx.rl_busaddr == 0) { device_printf(sc->rl_dev, "could not load Rx DMA memory block.\n"); goto fail; } sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr; /* Create DMA maps for Tx buffers. */ for (i = 0; i < RL_TX_LIST_CNT; i++) { sc->rl_cdata.rl_tx_chain[i] = NULL; sc->rl_cdata.rl_tx_dmamap[i] = NULL; error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0, &sc->rl_cdata.rl_tx_dmamap[i]); if (error != 0) { device_printf(sc->rl_dev, "could not create Tx dmamap.\n"); goto fail; } } /* Leave a few bytes before the start of the RX ring buffer. */ sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf; sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE; fail: return (error); } static void rl_dma_free(struct rl_softc *sc) { int i; /* Rx memory block. */ if (sc->rl_cdata.rl_rx_tag != NULL) { if (sc->rl_cdata.rl_rx_dmamap != NULL) bus_dmamap_unload(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap); if (sc->rl_cdata.rl_rx_dmamap != NULL && sc->rl_cdata.rl_rx_buf_ptr != NULL) bus_dmamem_free(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_buf_ptr, sc->rl_cdata.rl_rx_dmamap); sc->rl_cdata.rl_rx_buf_ptr = NULL; sc->rl_cdata.rl_rx_buf = NULL; sc->rl_cdata.rl_rx_dmamap = NULL; bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag); sc->rl_cdata.rl_tx_tag = NULL; } /* Tx buffers. */ if (sc->rl_cdata.rl_tx_tag != NULL) { for (i = 0; i < RL_TX_LIST_CNT; i++) { if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) { bus_dmamap_destroy( sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_tx_dmamap[i]); sc->rl_cdata.rl_tx_dmamap[i] = NULL; } } bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag); sc->rl_cdata.rl_tx_tag = NULL; } if (sc->rl_parent_tag != NULL) { bus_dma_tag_destroy(sc->rl_parent_tag); sc->rl_parent_tag = NULL; } } /* * Initialize the transmit descriptors. */ static int rl_list_tx_init(struct rl_softc *sc) { struct rl_chain_data *cd; int i; RL_LOCK_ASSERT(sc); cd = &sc->rl_cdata; for (i = 0; i < RL_TX_LIST_CNT; i++) { cd->rl_tx_chain[i] = NULL; CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000); } sc->rl_cdata.cur_tx = 0; sc->rl_cdata.last_tx = 0; return (0); } static int rl_list_rx_init(struct rl_softc *sc) { RL_LOCK_ASSERT(sc); bzero(sc->rl_cdata.rl_rx_buf_ptr, RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ); bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. * * You know there's something wrong with a PCI bus-master chip design * when you have to use m_devget(). * * The receive operation is badly documented in the datasheet, so I'll * attempt to document it here. The driver provides a buffer area and * places its base address in the RX buffer start address register. * The chip then begins copying frames into the RX buffer. Each frame * is preceded by a 32-bit RX status word which specifies the length * of the frame and certain other status bits. Each frame (starting with * the status word) is also 32-bit aligned. The frame length is in the * first 16 bits of the status word; the lower 15 bits correspond with * the 'rx status register' mentioned in the datasheet. * * Note: to make the Alpha happy, the frame payload needs to be aligned * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes) * as the offset argument to m_devget(). */ static int rl_rxeof(struct rl_softc *sc) { struct mbuf *m; struct ifnet *ifp = sc->rl_ifp; uint8_t *rxbufpos; int total_len = 0; int wrap = 0; int rx_npkts = 0; uint32_t rxstat; uint16_t cur_rx; uint16_t limit; uint16_t max_bytes, rx_bytes = 0; RL_LOCK_ASSERT(sc); bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN; /* Do not try to read past this point. */ limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN; if (limit < cur_rx) max_bytes = (RL_RXBUFLEN - cur_rx) + limit; else max_bytes = limit - cur_rx; while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) { #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { if (sc->rxcycles <= 0) break; sc->rxcycles--; } #endif rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx; rxstat = le32toh(*(uint32_t *)rxbufpos); /* * Here's a totally undocumented fact for you. When the * RealTek chip is in the process of copying a packet into * RAM for you, the length will be 0xfff0. If you spot a * packet header with this value, you need to stop. The * datasheet makes absolutely no mention of this and * RealTek should be shot for this. */ total_len = rxstat >> 16; if (total_len == RL_RXSTAT_UNFINISHED) break; if (!(rxstat & RL_RXSTAT_RXOK) || total_len < ETHER_MIN_LEN || total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) { ifp->if_ierrors++; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; rl_init_locked(sc); return (rx_npkts); } /* No errors; receive the packet. */ rx_bytes += total_len + 4; /* * XXX The RealTek chip includes the CRC with every * received frame, and there's no way to turn this * behavior off (at least, I can't find anything in * the manual that explains how to do it) so we have * to trim off the CRC manually. */ total_len -= ETHER_CRC_LEN; /* * Avoid trying to read more bytes than we know * the chip has prepared for us. */ if (rx_bytes > max_bytes) break; rxbufpos = sc->rl_cdata.rl_rx_buf + ((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN); if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN)) rxbufpos = sc->rl_cdata.rl_rx_buf; wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos; if (total_len > wrap) { m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp, NULL); if (m != NULL) m_copyback(m, wrap, total_len - wrap, sc->rl_cdata.rl_rx_buf); cur_rx = (total_len - wrap + ETHER_CRC_LEN); } else { m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp, NULL); cur_rx += total_len + 4 + ETHER_CRC_LEN; } /* Round up to 32-bit boundary. */ cur_rx = (cur_rx + 3) & ~3; CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16); if (m == NULL) { ifp->if_iqdrops++; continue; } ifp->if_ipackets++; RL_UNLOCK(sc); (*ifp->if_input)(ifp, m); RL_LOCK(sc); rx_npkts++; } /* No need to sync Rx memory block as we didn't modify it. */ return (rx_npkts); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void rl_txeof(struct rl_softc *sc) { struct ifnet *ifp = sc->rl_ifp; uint32_t txstat; RL_LOCK_ASSERT(sc); /* * Go through our tx list and free mbufs for those * frames that have been uploaded. */ do { if (RL_LAST_TXMBUF(sc) == NULL) break; txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc)); if (!(txstat & (RL_TXSTAT_TX_OK| RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT))) break; ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24; bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc), BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc)); m_freem(RL_LAST_TXMBUF(sc)); RL_LAST_TXMBUF(sc) = NULL; /* * If there was a transmit underrun, bump the TX threshold. * Make sure not to overflow the 63 * 32byte we can address * with the 6 available bit. */ if ((txstat & RL_TXSTAT_TX_UNDERRUN) && (sc->rl_txthresh < 2016)) sc->rl_txthresh += 32; if (txstat & RL_TXSTAT_TX_OK) ifp->if_opackets++; else { int oldthresh; ifp->if_oerrors++; if ((txstat & RL_TXSTAT_TXABRT) || (txstat & RL_TXSTAT_OUTOFWIN)) CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); oldthresh = sc->rl_txthresh; /* error recovery */ ifp->if_drv_flags &= ~IFF_DRV_RUNNING; rl_init_locked(sc); /* restore original threshold */ sc->rl_txthresh = oldthresh; return; } RL_INC(sc->rl_cdata.last_tx); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx); if (RL_LAST_TXMBUF(sc) == NULL) sc->rl_watchdog_timer = 0; } static void rl_twister_update(struct rl_softc *sc) { uint16_t linktest; /* * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for * Linux driver. Values undocumented otherwise. */ static const uint32_t param[4][4] = { {0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43}, {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83}, {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83}, {0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83} }; /* * Tune the so-called twister registers of the RTL8139. These * are used to compensate for impedance mismatches. The * method for tuning these registers is undocumented and the * following procedure is collected from public sources. */ switch (sc->rl_twister) { case CHK_LINK: /* * If we have a sufficient link, then we can proceed in * the state machine to the next stage. If not, then * disable further tuning after writing sane defaults. */ if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) { CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD); sc->rl_twister = FIND_ROW; } else { CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD); CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST); CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF); CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF); sc->rl_twister = DONE; } break; case FIND_ROW: /* * Read how long it took to see the echo to find the tuning * row to use. */ linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS; if (linktest == RL_CSCFG_ROW3) sc->rl_twist_row = 3; else if (linktest == RL_CSCFG_ROW2) sc->rl_twist_row = 2; else if (linktest == RL_CSCFG_ROW1) sc->rl_twist_row = 1; else sc->rl_twist_row = 0; sc->rl_twist_col = 0; sc->rl_twister = SET_PARAM; break; case SET_PARAM: if (sc->rl_twist_col == 0) CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET); CSR_WRITE_4(sc, RL_PARA7C, param[sc->rl_twist_row][sc->rl_twist_col]); if (++sc->rl_twist_col == 4) { if (sc->rl_twist_row == 3) sc->rl_twister = RECHK_LONG; else sc->rl_twister = DONE; } break; case RECHK_LONG: /* * For long cables, we have to double check to make sure we * don't mistune. */ linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS; if (linktest == RL_CSCFG_ROW3) sc->rl_twister = DONE; else { CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE); sc->rl_twister = RETUNE; } break; case RETUNE: /* Retune for a shorter cable (try column 2) */ CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST); CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF); CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF); CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET); sc->rl_twist_row--; sc->rl_twist_col = 0; sc->rl_twister = SET_PARAM; break; case DONE: break; } } static void rl_tick(void *xsc) { struct rl_softc *sc = xsc; struct mii_data *mii; int ticks; RL_LOCK_ASSERT(sc); /* * If we're doing the twister cable calibration, then we need to defer * watchdog timeouts. This is a no-op in normal operations, but * can falsely trigger when the cable calibration takes a while and * there was traffic ready to go when rl was started. * * We don't defer mii_tick since that updates the mii status, which * helps the twister process, at least according to similar patches * for the Linux driver I found online while doing the fixes. Worst * case is a few extra mii reads during calibration. */ mii = device_get_softc(sc->rl_miibus); mii_tick(mii); if ((sc->rl_flags & RL_FLAG_LINK) == 0) rl_miibus_statchg(sc->rl_dev); if (sc->rl_twister_enable) { if (sc->rl_twister == DONE) rl_watchdog(sc); else rl_twister_update(sc); if (sc->rl_twister == DONE) ticks = hz; else ticks = hz / 10; } else { rl_watchdog(sc); ticks = hz; } callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc); } #ifdef DEVICE_POLLING static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct rl_softc *sc = ifp->if_softc; int rx_npkts = 0; RL_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) rx_npkts = rl_poll_locked(ifp, cmd, count); RL_UNLOCK(sc); return (rx_npkts); } static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct rl_softc *sc = ifp->if_softc; int rx_npkts; RL_LOCK_ASSERT(sc); sc->rxcycles = count; rx_npkts = rl_rxeof(sc); rl_txeof(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) rl_start_locked(ifp); if (cmd == POLL_AND_CHECK_STATUS) { uint16_t status; /* We should also check the status register. */ status = CSR_READ_2(sc, RL_ISR); if (status == 0xffff) return (rx_npkts); if (status != 0) CSR_WRITE_2(sc, RL_ISR, status); /* XXX We should check behaviour on receiver stalls. */ if (status & RL_ISR_SYSTEM_ERR) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; rl_init_locked(sc); } } return (rx_npkts); } #endif /* DEVICE_POLLING */ static void rl_intr(void *arg) { struct rl_softc *sc = arg; struct ifnet *ifp = sc->rl_ifp; uint16_t status; int count; RL_LOCK(sc); if (sc->suspended) goto done_locked; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) goto done_locked; #endif if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) goto done_locked2; status = CSR_READ_2(sc, RL_ISR); if (status == 0xffff || (status & RL_INTRS) == 0) goto done_locked; /* * Ours, disable further interrupts. */ CSR_WRITE_2(sc, RL_IMR, 0); for (count = 16; count > 0; count--) { CSR_WRITE_2(sc, RL_ISR, status); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR)) rl_rxeof(sc); if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR)) rl_txeof(sc); if (status & RL_ISR_SYSTEM_ERR) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; rl_init_locked(sc); RL_UNLOCK(sc); return; } } status = CSR_READ_2(sc, RL_ISR); /* If the card has gone away, the read returns 0xffff. */ if (status == 0xffff || (status & RL_INTRS) == 0) break; } if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) rl_start_locked(ifp); done_locked2: if (ifp->if_drv_flags & IFF_DRV_RUNNING) CSR_WRITE_2(sc, RL_IMR, RL_INTRS); done_locked: RL_UNLOCK(sc); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int rl_encap(struct rl_softc *sc, struct mbuf **m_head) { struct mbuf *m; bus_dma_segment_t txsegs[1]; int error, nsegs, padlen; RL_LOCK_ASSERT(sc); m = *m_head; padlen = 0; /* * Hardware doesn't auto-pad, so we have to make sure * pad short frames out to the minimum frame length. */ if (m->m_pkthdr.len < RL_MIN_FRAMELEN) padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len; /* * The RealTek is brain damaged and wants longword-aligned * TX buffers, plus we can only have one fragment buffer * per packet. We have to copy pretty much all the time. */ if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 || (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) { m = m_defrag(*m_head, M_DONTWAIT); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOMEM); } } *m_head = m; if (padlen > 0) { /* * Make security-conscious people happy: zero out the * bytes in the pad area, since we don't know what * this mbuf cluster buffer's previous user might * have left in it. */ bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); m->m_pkthdr.len += padlen; m->m_len = m->m_pkthdr.len; } error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0); if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } RL_CUR_TXMBUF(sc) = m; bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc), BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr)); return (0); } /* * Main transmit routine. */ static void rl_start(struct ifnet *ifp) { struct rl_softc *sc = ifp->if_softc; RL_LOCK(sc); rl_start_locked(ifp); RL_UNLOCK(sc); } static void rl_start_locked(struct ifnet *ifp) { struct rl_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; RL_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) return; while (RL_CUR_TXMBUF(sc) == NULL) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (rl_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } /* Pass a copy of this mbuf chain to the bpf subsystem. */ BPF_MTAP(ifp, RL_CUR_TXMBUF(sc)); /* Transmit the frame. */ CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc), RL_TXTHRESH(sc->rl_txthresh) | RL_CUR_TXMBUF(sc)->m_pkthdr.len); RL_INC(sc->rl_cdata.cur_tx); /* Set a timeout in case the chip goes out to lunch. */ sc->rl_watchdog_timer = 5; } /* * We broke out of the loop because all our TX slots are * full. Mark the NIC as busy until it drains some of the * packets from the queue. */ if (RL_CUR_TXMBUF(sc) != NULL) ifp->if_drv_flags |= IFF_DRV_OACTIVE; } static void rl_init(void *xsc) { struct rl_softc *sc = xsc; RL_LOCK(sc); rl_init_locked(sc); RL_UNLOCK(sc); } static void rl_init_locked(struct rl_softc *sc) { struct ifnet *ifp = sc->rl_ifp; struct mii_data *mii; uint32_t eaddr[2]; RL_LOCK_ASSERT(sc); mii = device_get_softc(sc->rl_miibus); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* * Cancel pending I/O and free all RX/TX buffers. */ rl_stop(sc); rl_reset(sc); if (sc->rl_twister_enable) { /* * Reset twister register tuning state. The twister * registers and their tuning are undocumented, but * are necessary to cope with bad links. rl_twister = * DONE here will disable this entirely. */ sc->rl_twister = CHK_LINK; } /* * Init our MAC address. Even though the chipset * documentation doesn't mention it, we need to enter "Config * register write enable" mode to modify the ID registers. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); bzero(eaddr, sizeof(eaddr)); bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN); CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]); CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); /* Init the RX memory block pointer register. */ CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr + RL_RX_8139_BUF_RESERVE); /* Init TX descriptors. */ rl_list_tx_init(sc); /* Init Rx memory block. */ rl_list_rx_init(sc); /* * Enable transmit and receive. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); /* * Set the initial TX and RX configuration. */ CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG); /* Set RX filter. */ rl_rxfilter(sc); #ifdef DEVICE_POLLING /* Disable interrupts if we are polling. */ if (ifp->if_capenable & IFCAP_POLLING) CSR_WRITE_2(sc, RL_IMR, 0); else #endif /* Enable interrupts. */ CSR_WRITE_2(sc, RL_IMR, RL_INTRS); /* Set initial TX threshold */ sc->rl_txthresh = RL_TX_THRESH_INIT; /* Start RX/TX process. */ CSR_WRITE_4(sc, RL_MISSEDPKT, 0); /* Enable receiver and transmitter. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); sc->rl_flags &= ~RL_FLAG_LINK; mii_mediachg(mii); CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc); } /* * Set media options. */ static int rl_ifmedia_upd(struct ifnet *ifp) { struct rl_softc *sc = ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc->rl_miibus); RL_LOCK(sc); mii_mediachg(mii); RL_UNLOCK(sc); return (0); } /* * Report current media status. */ static void rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct rl_softc *sc = ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc->rl_miibus); RL_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; RL_UNLOCK(sc); } static int rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; struct rl_softc *sc = ifp->if_softc; int error = 0, mask; switch (command) { case SIOCSIFFLAGS: RL_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING && ((ifp->if_flags ^ sc->rl_if_flags) & (IFF_PROMISC | IFF_ALLMULTI))) rl_rxfilter(sc); else rl_init_locked(sc); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) rl_stop(sc); sc->rl_if_flags = ifp->if_flags; RL_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: RL_LOCK(sc); rl_rxfilter(sc); RL_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->rl_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ ifp->if_capenable; #ifdef DEVICE_POLLING if (ifr->ifr_reqcap & IFCAP_POLLING && !(ifp->if_capenable & IFCAP_POLLING)) { error = ether_poll_register(rl_poll, ifp); if (error) return(error); RL_LOCK(sc); /* Disable interrupts */ CSR_WRITE_2(sc, RL_IMR, 0x0000); ifp->if_capenable |= IFCAP_POLLING; RL_UNLOCK(sc); return (error); } if (!(ifr->ifr_reqcap & IFCAP_POLLING) && ifp->if_capenable & IFCAP_POLLING) { error = ether_poll_deregister(ifp); /* Enable interrupts. */ RL_LOCK(sc); CSR_WRITE_2(sc, RL_IMR, RL_INTRS); ifp->if_capenable &= ~IFCAP_POLLING; RL_UNLOCK(sc); return (error); } #endif /* DEVICE_POLLING */ if ((mask & IFCAP_WOL) != 0 && (ifp->if_capabilities & IFCAP_WOL) != 0) { if ((mask & IFCAP_WOL_UCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_UCAST; if ((mask & IFCAP_WOL_MCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_MCAST; if ((mask & IFCAP_WOL_MAGIC) != 0) ifp->if_capenable ^= IFCAP_WOL_MAGIC; } break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void rl_watchdog(struct rl_softc *sc) { RL_LOCK_ASSERT(sc); if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0) return; device_printf(sc->rl_dev, "watchdog timeout\n"); sc->rl_ifp->if_oerrors++; rl_txeof(sc); rl_rxeof(sc); sc->rl_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; rl_init_locked(sc); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void rl_stop(struct rl_softc *sc) { register int i; struct ifnet *ifp = sc->rl_ifp; RL_LOCK_ASSERT(sc); sc->rl_watchdog_timer = 0; callout_stop(&sc->rl_stat_callout); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->rl_flags &= ~RL_FLAG_LINK; CSR_WRITE_1(sc, RL_COMMAND, 0x00); CSR_WRITE_2(sc, RL_IMR, 0x0000); for (i = 0; i < RL_TIMEOUT; i++) { DELAY(10); if ((CSR_READ_1(sc, RL_COMMAND) & (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0) break; } if (i == RL_TIMEOUT) device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n"); /* * Free the TX list buffers. */ for (i = 0; i < RL_TX_LIST_CNT; i++) { if (sc->rl_cdata.rl_tx_chain[i] != NULL) { if (sc->rl_cdata.rl_tx_chain[i] != NULL) { bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_tx_dmamap[i], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_tx_dmamap[i]); m_freem(sc->rl_cdata.rl_tx_chain[i]); sc->rl_cdata.rl_tx_chain[i] = NULL; } CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000); } } } /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int rl_suspend(device_t dev) { struct rl_softc *sc; sc = device_get_softc(dev); RL_LOCK(sc); rl_stop(sc); rl_setwol(sc); sc->suspended = 1; RL_UNLOCK(sc); return (0); } /* * Device resume routine. Restore some PCI settings in case the BIOS * doesn't, re-enable busmastering, and restart the interface if * appropriate. */ static int rl_resume(device_t dev) { struct rl_softc *sc; struct ifnet *ifp; int pmc; uint16_t pmstat; sc = device_get_softc(dev); ifp = sc->rl_ifp; RL_LOCK(sc); if ((ifp->if_capabilities & IFCAP_WOL) != 0 && pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) { /* Disable PME and clear PME status. */ pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2); if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { pmstat &= ~PCIM_PSTAT_PMEENABLE; pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); } /* * Clear WOL matching such that normal Rx filtering * wouldn't interfere with WOL patterns. */ rl_clrwol(sc); } /* reinitialize interface if necessary */ if (ifp->if_flags & IFF_UP) rl_init_locked(sc); sc->suspended = 0; RL_UNLOCK(sc); return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int rl_shutdown(device_t dev) { struct rl_softc *sc; sc = device_get_softc(dev); RL_LOCK(sc); rl_stop(sc); /* * Mark interface as down since otherwise we will panic if * interrupt comes in later on, which can happen in some * cases. */ sc->rl_ifp->if_flags &= ~IFF_UP; rl_setwol(sc); RL_UNLOCK(sc); return (0); } static void rl_setwol(struct rl_softc *sc) { struct ifnet *ifp; int pmc; uint16_t pmstat; uint8_t v; RL_LOCK_ASSERT(sc); ifp = sc->rl_ifp; if ((ifp->if_capabilities & IFCAP_WOL) == 0) return; if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0) return; /* Enable config register write. */ CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); /* Enable PME. */ v = CSR_READ_1(sc, sc->rl_cfg1); v &= ~RL_CFG1_PME; if ((ifp->if_capenable & IFCAP_WOL) != 0) v |= RL_CFG1_PME; CSR_WRITE_1(sc, sc->rl_cfg1, v); v = CSR_READ_1(sc, sc->rl_cfg3); v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) v |= RL_CFG3_WOL_MAGIC; CSR_WRITE_1(sc, sc->rl_cfg3, v); v = CSR_READ_1(sc, sc->rl_cfg5); v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); v &= ~RL_CFG5_WOL_LANWAKE; if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) v |= RL_CFG5_WOL_UCAST; if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST; if ((ifp->if_capenable & IFCAP_WOL) != 0) v |= RL_CFG5_WOL_LANWAKE; CSR_WRITE_1(sc, sc->rl_cfg5, v); /* Config register write done. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); /* Request PME if WOL is requested. */ pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2); pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if ((ifp->if_capenable & IFCAP_WOL) != 0) pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); } static void rl_clrwol(struct rl_softc *sc) { struct ifnet *ifp; uint8_t v; ifp = sc->rl_ifp; if ((ifp->if_capabilities & IFCAP_WOL) == 0) return; /* Enable config register write. */ CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); v = CSR_READ_1(sc, sc->rl_cfg3); v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); CSR_WRITE_1(sc, sc->rl_cfg3, v); /* Config register write done. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); v = CSR_READ_1(sc, sc->rl_cfg5); v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); v &= ~RL_CFG5_WOL_LANWAKE; CSR_WRITE_1(sc, sc->rl_cfg5, v); }