Current Path : /usr/src/sys/ufs/ffs/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/sys/ufs/ffs/ffs_vfsops.c |
/*- * Copyright (c) 1989, 1991, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/ufs/ffs/ffs_vfsops.c 237490 2012-06-23 18:26:23Z trasz $"); #include "opt_quota.h" #include "opt_ufs.h" #include "opt_ffs.h" #include "opt_ddb.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/namei.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/kernel.h> #include <sys/vnode.h> #include <sys/mount.h> #include <sys/bio.h> #include <sys/buf.h> #include <sys/conf.h> #include <sys/fcntl.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <security/mac/mac_framework.h> #include <ufs/ufs/extattr.h> #include <ufs/ufs/gjournal.h> #include <ufs/ufs/quota.h> #include <ufs/ufs/ufsmount.h> #include <ufs/ufs/inode.h> #include <ufs/ufs/ufs_extern.h> #include <ufs/ffs/fs.h> #include <ufs/ffs/ffs_extern.h> #include <vm/vm.h> #include <vm/uma.h> #include <vm/vm_page.h> #include <geom/geom.h> #include <geom/geom_vfs.h> #include <ddb/ddb.h> static uma_zone_t uma_inode, uma_ufs1, uma_ufs2; static int ffs_reload(struct mount *, struct thread *); static int ffs_mountfs(struct vnode *, struct mount *, struct thread *); static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, ufs2_daddr_t); static void ffs_ifree(struct ufsmount *ump, struct inode *ip); static int ffs_sync_lazy(struct mount *mp); static vfs_init_t ffs_init; static vfs_uninit_t ffs_uninit; static vfs_extattrctl_t ffs_extattrctl; static vfs_cmount_t ffs_cmount; static vfs_unmount_t ffs_unmount; static vfs_mount_t ffs_mount; static vfs_statfs_t ffs_statfs; static vfs_fhtovp_t ffs_fhtovp; static vfs_sync_t ffs_sync; static struct vfsops ufs_vfsops = { .vfs_extattrctl = ffs_extattrctl, .vfs_fhtovp = ffs_fhtovp, .vfs_init = ffs_init, .vfs_mount = ffs_mount, .vfs_cmount = ffs_cmount, .vfs_quotactl = ufs_quotactl, .vfs_root = ufs_root, .vfs_statfs = ffs_statfs, .vfs_sync = ffs_sync, .vfs_uninit = ffs_uninit, .vfs_unmount = ffs_unmount, .vfs_vget = ffs_vget, .vfs_susp_clean = process_deferred_inactive, }; VFS_SET(ufs_vfsops, ufs, 0); MODULE_VERSION(ufs, 1); static b_strategy_t ffs_geom_strategy; static b_write_t ffs_bufwrite; static struct buf_ops ffs_ops = { .bop_name = "FFS", .bop_write = ffs_bufwrite, .bop_strategy = ffs_geom_strategy, .bop_sync = bufsync, #ifdef NO_FFS_SNAPSHOT .bop_bdflush = bufbdflush, #else .bop_bdflush = ffs_bdflush, #endif }; /* * Note that userquota and groupquota options are not currently used * by UFS/FFS code and generally mount(8) does not pass those options * from userland, but they can be passed by loader(8) via * vfs.root.mountfrom.options. */ static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr", "noclusterw", "noexec", "export", "force", "from", "groupquota", "multilabel", "nfsv4acls", "fsckpid", "snapshot", "nosuid", "suiddir", "nosymfollow", "sync", "union", "userquota", NULL }; static int ffs_mount(struct mount *mp) { struct vnode *devvp; struct thread *td; struct ufsmount *ump = 0; struct fs *fs; pid_t fsckpid = 0; int error, flags; uint64_t mntorflags; accmode_t accmode; struct nameidata ndp; char *fspec; td = curthread; if (vfs_filteropt(mp->mnt_optnew, ffs_opts)) return (EINVAL); if (uma_inode == NULL) { uma_inode = uma_zcreate("FFS inode", sizeof(struct inode), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_ufs1 = uma_zcreate("FFS1 dinode", sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_ufs2 = uma_zcreate("FFS2 dinode", sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); } vfs_deleteopt(mp->mnt_optnew, "groupquota"); vfs_deleteopt(mp->mnt_optnew, "userquota"); fspec = vfs_getopts(mp->mnt_optnew, "from", &error); if (error) return (error); mntorflags = 0; if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0) mntorflags |= MNT_ACLS; if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) { mntorflags |= MNT_SNAPSHOT; /* * Once we have set the MNT_SNAPSHOT flag, do not * persist "snapshot" in the options list. */ vfs_deleteopt(mp->mnt_optnew, "snapshot"); vfs_deleteopt(mp->mnt_opt, "snapshot"); } if (vfs_getopt(mp->mnt_optnew, "fsckpid", NULL, NULL) == 0 && vfs_scanopt(mp->mnt_optnew, "fsckpid", "%d", &fsckpid) == 1) { /* * Once we have set the restricted PID, do not * persist "fsckpid" in the options list. */ vfs_deleteopt(mp->mnt_optnew, "fsckpid"); vfs_deleteopt(mp->mnt_opt, "fsckpid"); if (mp->mnt_flag & MNT_UPDATE) { if (VFSTOUFS(mp)->um_fs->fs_ronly == 0 && vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0) == 0) { vfs_mount_error(mp, "Checker enable: Must be read-only"); return (EINVAL); } } else if (vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0) == 0) { vfs_mount_error(mp, "Checker enable: Must be read-only"); return (EINVAL); } /* Set to -1 if we are done */ if (fsckpid == 0) fsckpid = -1; } if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) { if (mntorflags & MNT_ACLS) { vfs_mount_error(mp, "\"acls\" and \"nfsv4acls\" options " "are mutually exclusive"); return (EINVAL); } mntorflags |= MNT_NFS4ACLS; } MNT_ILOCK(mp); mp->mnt_flag |= mntorflags; MNT_IUNLOCK(mp); /* * If updating, check whether changing from read-only to * read/write; if there is no device name, that's all we do. */ if (mp->mnt_flag & MNT_UPDATE) { ump = VFSTOUFS(mp); fs = ump->um_fs; devvp = ump->um_devvp; if (fsckpid == -1 && ump->um_fsckpid > 0) { if ((error = ffs_flushfiles(mp, WRITECLOSE, td)) != 0 || (error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) return (error); DROP_GIANT(); g_topology_lock(); /* * Return to normal read-only mode. */ error = g_access(ump->um_cp, 0, -1, 0); g_topology_unlock(); PICKUP_GIANT(); ump->um_fsckpid = 0; } if (fs->fs_ronly == 0 && vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { /* * Flush any dirty data and suspend filesystem. */ if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) return (error); for (;;) { vn_finished_write(mp); if ((error = vfs_write_suspend(mp)) != 0) return (error); MNT_ILOCK(mp); if (mp->mnt_kern_flag & MNTK_SUSPENDED) { /* * Allow the secondary writes * to proceed. */ mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); wakeup(&mp->mnt_flag); MNT_IUNLOCK(mp); /* * Allow the curthread to * ignore the suspension to * synchronize on-disk state. */ td->td_pflags |= TDP_IGNSUSP; break; } MNT_IUNLOCK(mp); vn_start_write(NULL, &mp, V_WAIT); } /* * Check for and optionally get rid of files open * for writing. */ flags = WRITECLOSE; if (mp->mnt_flag & MNT_FORCE) flags |= FORCECLOSE; if (MOUNTEDSOFTDEP(mp)) { error = softdep_flushfiles(mp, flags, td); } else { error = ffs_flushfiles(mp, flags, td); } if (error) { vfs_write_resume(mp); return (error); } if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { printf("WARNING: %s Update error: blocks %jd " "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0) fs->fs_clean = 1; if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { fs->fs_ronly = 0; fs->fs_clean = 0; vfs_write_resume(mp); return (error); } if (MOUNTEDSOFTDEP(mp)) softdep_unmount(mp); DROP_GIANT(); g_topology_lock(); /* * Drop our write and exclusive access. */ g_access(ump->um_cp, 0, -1, -1); g_topology_unlock(); PICKUP_GIANT(); fs->fs_ronly = 1; MNT_ILOCK(mp); mp->mnt_flag |= MNT_RDONLY; MNT_IUNLOCK(mp); /* * Allow the writers to note that filesystem * is ro now. */ vfs_write_resume(mp); } if ((mp->mnt_flag & MNT_RELOAD) && (error = ffs_reload(mp, td)) != 0) return (error); if (fs->fs_ronly && !vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { /* * If we are running a checker, do not allow upgrade. */ if (ump->um_fsckpid > 0) { vfs_mount_error(mp, "Active checker, cannot upgrade to write"); return (EINVAL); } /* * If upgrade to read-write by non-root, then verify * that user has necessary permissions on the device. */ vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_ACCESS(devvp, VREAD | VWRITE, td->td_ucred, td); if (error) error = priv_check(td, PRIV_VFS_MOUNT_PERM); if (error) { VOP_UNLOCK(devvp, 0); return (error); } VOP_UNLOCK(devvp, 0); fs->fs_flags &= ~FS_UNCLEAN; if (fs->fs_clean == 0) { fs->fs_flags |= FS_UNCLEAN; if ((mp->mnt_flag & MNT_FORCE) || ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 && (fs->fs_flags & FS_DOSOFTDEP))) { printf("WARNING: %s was not properly " "dismounted\n", fs->fs_fsmnt); } else { vfs_mount_error(mp, "R/W mount of %s denied. %s.%s", fs->fs_fsmnt, "Filesystem is not clean - run fsck", (fs->fs_flags & FS_SUJ) == 0 ? "" : " Forced mount will invalidate" " journal contents"); return (EPERM); } } DROP_GIANT(); g_topology_lock(); /* * Request exclusive write access. */ error = g_access(ump->um_cp, 0, 1, 1); g_topology_unlock(); PICKUP_GIANT(); if (error) return (error); if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) return (error); fs->fs_ronly = 0; MNT_ILOCK(mp); mp->mnt_flag &= ~MNT_RDONLY; MNT_IUNLOCK(mp); fs->fs_mtime = time_second; /* check to see if we need to start softdep */ if ((fs->fs_flags & FS_DOSOFTDEP) && (error = softdep_mount(devvp, mp, fs, td->td_ucred))){ vn_finished_write(mp); return (error); } fs->fs_clean = 0; if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { vn_finished_write(mp); return (error); } if (fs->fs_snapinum[0] != 0) ffs_snapshot_mount(mp); vn_finished_write(mp); } /* * Soft updates is incompatible with "async", * so if we are doing softupdates stop the user * from setting the async flag in an update. * Softdep_mount() clears it in an initial mount * or ro->rw remount. */ if (MOUNTEDSOFTDEP(mp)) { /* XXX: Reset too late ? */ MNT_ILOCK(mp); mp->mnt_flag &= ~MNT_ASYNC; MNT_IUNLOCK(mp); } /* * Keep MNT_ACLS flag if it is stored in superblock. */ if ((fs->fs_flags & FS_ACLS) != 0) { /* XXX: Set too late ? */ MNT_ILOCK(mp); mp->mnt_flag |= MNT_ACLS; MNT_IUNLOCK(mp); } if ((fs->fs_flags & FS_NFS4ACLS) != 0) { /* XXX: Set too late ? */ MNT_ILOCK(mp); mp->mnt_flag |= MNT_NFS4ACLS; MNT_IUNLOCK(mp); } /* * If this is a request from fsck to clean up the filesystem, * then allow the specified pid to proceed. */ if (fsckpid > 0) { if (ump->um_fsckpid != 0) { vfs_mount_error(mp, "Active checker already running on %s", fs->fs_fsmnt); return (EINVAL); } KASSERT(MOUNTEDSOFTDEP(mp) == 0, ("soft updates enabled on read-only file system")); DROP_GIANT(); g_topology_lock(); /* * Request write access. */ error = g_access(ump->um_cp, 0, 1, 0); g_topology_unlock(); PICKUP_GIANT(); if (error) { vfs_mount_error(mp, "Checker activation failed on %s", fs->fs_fsmnt); return (error); } ump->um_fsckpid = fsckpid; if (fs->fs_snapinum[0] != 0) ffs_snapshot_mount(mp); fs->fs_mtime = time_second; fs->fs_fmod = 1; fs->fs_clean = 0; (void) ffs_sbupdate(ump, MNT_WAIT, 0); } /* * If this is a snapshot request, take the snapshot. */ if (mp->mnt_flag & MNT_SNAPSHOT) return (ffs_snapshot(mp, fspec)); } /* * Not an update, or updating the name: look up the name * and verify that it refers to a sensible disk device. */ NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td); if ((error = namei(&ndp)) != 0) return (error); NDFREE(&ndp, NDF_ONLY_PNBUF); devvp = ndp.ni_vp; if (!vn_isdisk(devvp, &error)) { vput(devvp); return (error); } /* * If mount by non-root, then verify that user has necessary * permissions on the device. */ accmode = VREAD; if ((mp->mnt_flag & MNT_RDONLY) == 0) accmode |= VWRITE; error = VOP_ACCESS(devvp, accmode, td->td_ucred, td); if (error) error = priv_check(td, PRIV_VFS_MOUNT_PERM); if (error) { vput(devvp); return (error); } if (mp->mnt_flag & MNT_UPDATE) { /* * Update only * * If it's not the same vnode, or at least the same device * then it's not correct. */ if (devvp->v_rdev != ump->um_devvp->v_rdev) error = EINVAL; /* needs translation */ vput(devvp); if (error) return (error); } else { /* * New mount * * We need the name for the mount point (also used for * "last mounted on") copied in. If an error occurs, * the mount point is discarded by the upper level code. * Note that vfs_mount() populates f_mntonname for us. */ if ((error = ffs_mountfs(devvp, mp, td)) != 0) { vrele(devvp); return (error); } if (fsckpid > 0) { KASSERT(MOUNTEDSOFTDEP(mp) == 0, ("soft updates enabled on read-only file system")); ump = VFSTOUFS(mp); fs = ump->um_fs; DROP_GIANT(); g_topology_lock(); /* * Request write access. */ error = g_access(ump->um_cp, 0, 1, 0); g_topology_unlock(); PICKUP_GIANT(); if (error) { printf("WARNING: %s: Checker activation " "failed\n", fs->fs_fsmnt); } else { ump->um_fsckpid = fsckpid; if (fs->fs_snapinum[0] != 0) ffs_snapshot_mount(mp); fs->fs_mtime = time_second; fs->fs_clean = 0; (void) ffs_sbupdate(ump, MNT_WAIT, 0); } } } vfs_mountedfrom(mp, fspec); return (0); } /* * Compatibility with old mount system call. */ static int ffs_cmount(struct mntarg *ma, void *data, uint64_t flags) { struct ufs_args args; struct export_args exp; int error; if (data == NULL) return (EINVAL); error = copyin(data, &args, sizeof args); if (error) return (error); vfs_oexport_conv(&args.export, &exp); ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN); ma = mount_arg(ma, "export", &exp, sizeof(exp)); error = kernel_mount(ma, flags); return (error); } /* * Reload all incore data for a filesystem (used after running fsck on * the root filesystem and finding things to fix). The filesystem must * be mounted read-only. * * Things to do to update the mount: * 1) invalidate all cached meta-data. * 2) re-read superblock from disk. * 3) re-read summary information from disk. * 4) invalidate all inactive vnodes. * 5) invalidate all cached file data. * 6) re-read inode data for all active vnodes. */ static int ffs_reload(struct mount *mp, struct thread *td) { struct vnode *vp, *mvp, *devvp; struct inode *ip; void *space; struct buf *bp; struct fs *fs, *newfs; struct ufsmount *ump; ufs2_daddr_t sblockloc; int i, blks, size, error; int32_t *lp; if ((mp->mnt_flag & MNT_RDONLY) == 0) return (EINVAL); ump = VFSTOUFS(mp); /* * Step 1: invalidate all cached meta-data. */ devvp = VFSTOUFS(mp)->um_devvp; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); if (vinvalbuf(devvp, 0, 0, 0) != 0) panic("ffs_reload: dirty1"); VOP_UNLOCK(devvp, 0); /* * Step 2: re-read superblock from disk. */ fs = VFSTOUFS(mp)->um_fs; if ((error = bread(devvp, btodb(fs->fs_sblockloc), fs->fs_sbsize, NOCRED, &bp)) != 0) return (error); newfs = (struct fs *)bp->b_data; if ((newfs->fs_magic != FS_UFS1_MAGIC && newfs->fs_magic != FS_UFS2_MAGIC) || newfs->fs_bsize > MAXBSIZE || newfs->fs_bsize < sizeof(struct fs)) { brelse(bp); return (EIO); /* XXX needs translation */ } /* * Copy pointer fields back into superblock before copying in XXX * new superblock. These should really be in the ufsmount. XXX * Note that important parameters (eg fs_ncg) are unchanged. */ newfs->fs_csp = fs->fs_csp; newfs->fs_maxcluster = fs->fs_maxcluster; newfs->fs_contigdirs = fs->fs_contigdirs; newfs->fs_active = fs->fs_active; /* The file system is still read-only. */ newfs->fs_ronly = 1; sblockloc = fs->fs_sblockloc; bcopy(newfs, fs, (u_int)fs->fs_sbsize); brelse(bp); mp->mnt_maxsymlinklen = fs->fs_maxsymlinklen; ffs_oldfscompat_read(fs, VFSTOUFS(mp), sblockloc); UFS_LOCK(ump); if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { printf("WARNING: %s: reload pending error: blocks %jd " "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } UFS_UNLOCK(ump); /* * Step 3: re-read summary information from disk. */ size = fs->fs_cssize; blks = howmany(size, fs->fs_fsize); if (fs->fs_contigsumsize > 0) size += fs->fs_ncg * sizeof(int32_t); size += fs->fs_ncg * sizeof(u_int8_t); free(fs->fs_csp, M_UFSMNT); space = malloc((u_long)size, M_UFSMNT, M_WAITOK); fs->fs_csp = space; for (i = 0; i < blks; i += fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size, NOCRED, &bp); if (error) return (error); bcopy(bp->b_data, space, (u_int)size); space = (char *)space + size; brelse(bp); } /* * We no longer know anything about clusters per cylinder group. */ if (fs->fs_contigsumsize > 0) { fs->fs_maxcluster = lp = space; for (i = 0; i < fs->fs_ncg; i++) *lp++ = fs->fs_contigsumsize; space = lp; } size = fs->fs_ncg * sizeof(u_int8_t); fs->fs_contigdirs = (u_int8_t *)space; bzero(fs->fs_contigdirs, size); loop: MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { /* * Step 4: invalidate all cached file data. */ if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK, td)) { MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); goto loop; } if (vinvalbuf(vp, 0, 0, 0)) panic("ffs_reload: dirty2"); /* * Step 5: re-read inode data for all active vnodes. */ ip = VTOI(vp); error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { VOP_UNLOCK(vp, 0); vrele(vp); MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); return (error); } ffs_load_inode(bp, ip, fs, ip->i_number); ip->i_effnlink = ip->i_nlink; brelse(bp); VOP_UNLOCK(vp, 0); vrele(vp); } return (0); } /* * Possible superblock locations ordered from most to least likely. */ static int sblock_try[] = SBLOCKSEARCH; /* * Common code for mount and mountroot */ static int ffs_mountfs(devvp, mp, td) struct vnode *devvp; struct mount *mp; struct thread *td; { struct ufsmount *ump; struct buf *bp; struct fs *fs; struct cdev *dev; void *space; ufs2_daddr_t sblockloc; int error, i, blks, size, ronly; int32_t *lp; struct ucred *cred; struct g_consumer *cp; struct mount *nmp; bp = NULL; ump = NULL; cred = td ? td->td_ucred : NOCRED; ronly = (mp->mnt_flag & MNT_RDONLY) != 0; dev = devvp->v_rdev; dev_ref(dev); DROP_GIANT(); g_topology_lock(); error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1); g_topology_unlock(); PICKUP_GIANT(); VOP_UNLOCK(devvp, 0); if (error) goto out; if (devvp->v_rdev->si_iosize_max != 0) mp->mnt_iosize_max = devvp->v_rdev->si_iosize_max; if (mp->mnt_iosize_max > MAXPHYS) mp->mnt_iosize_max = MAXPHYS; devvp->v_bufobj.bo_ops = &ffs_ops; fs = NULL; sblockloc = 0; /* * Try reading the superblock in each of its possible locations. */ for (i = 0; sblock_try[i] != -1; i++) { if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) { error = EINVAL; vfs_mount_error(mp, "Invalid sectorsize %d for superblock size %d", cp->provider->sectorsize, SBLOCKSIZE); goto out; } if ((error = bread(devvp, btodb(sblock_try[i]), SBLOCKSIZE, cred, &bp)) != 0) goto out; fs = (struct fs *)bp->b_data; sblockloc = sblock_try[i]; if ((fs->fs_magic == FS_UFS1_MAGIC || (fs->fs_magic == FS_UFS2_MAGIC && (fs->fs_sblockloc == sblockloc || (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0))) && fs->fs_bsize <= MAXBSIZE && fs->fs_bsize >= sizeof(struct fs)) break; brelse(bp); bp = NULL; } if (sblock_try[i] == -1) { error = EINVAL; /* XXX needs translation */ goto out; } fs->fs_fmod = 0; fs->fs_flags &= ~FS_INDEXDIRS; /* no support for directory indicies */ fs->fs_flags &= ~FS_UNCLEAN; if (fs->fs_clean == 0) { fs->fs_flags |= FS_UNCLEAN; if (ronly || (mp->mnt_flag & MNT_FORCE) || ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 && (fs->fs_flags & FS_DOSOFTDEP))) { printf("WARNING: %s was not properly dismounted\n", fs->fs_fsmnt); } else { vfs_mount_error(mp, "R/W mount of %s denied. %s%s", fs->fs_fsmnt, "Filesystem is not clean - run fsck.", (fs->fs_flags & FS_SUJ) == 0 ? "" : " Forced mount will invalidate journal contents"); error = EPERM; goto out; } if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) && (mp->mnt_flag & MNT_FORCE)) { printf("WARNING: %s: lost blocks %jd files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } } if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { printf("WARNING: %s: mount pending error: blocks %jd " "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } if ((fs->fs_flags & FS_GJOURNAL) != 0) { #ifdef UFS_GJOURNAL /* * Get journal provider name. */ size = 1024; mp->mnt_gjprovider = malloc(size, M_UFSMNT, M_WAITOK); if (g_io_getattr("GJOURNAL::provider", cp, &size, mp->mnt_gjprovider) == 0) { mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, size, M_UFSMNT, M_WAITOK); MNT_ILOCK(mp); mp->mnt_flag |= MNT_GJOURNAL; MNT_IUNLOCK(mp); } else { printf("WARNING: %s: GJOURNAL flag on fs " "but no gjournal provider below\n", mp->mnt_stat.f_mntonname); free(mp->mnt_gjprovider, M_UFSMNT); mp->mnt_gjprovider = NULL; } #else printf("WARNING: %s: GJOURNAL flag on fs but no " "UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname); #endif } else { mp->mnt_gjprovider = NULL; } ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); ump->um_cp = cp; ump->um_bo = &devvp->v_bufobj; ump->um_fs = malloc((u_long)fs->fs_sbsize, M_UFSMNT, M_WAITOK); if (fs->fs_magic == FS_UFS1_MAGIC) { ump->um_fstype = UFS1; ump->um_balloc = ffs_balloc_ufs1; } else { ump->um_fstype = UFS2; ump->um_balloc = ffs_balloc_ufs2; } ump->um_blkatoff = ffs_blkatoff; ump->um_truncate = ffs_truncate; ump->um_update = ffs_update; ump->um_valloc = ffs_valloc; ump->um_vfree = ffs_vfree; ump->um_ifree = ffs_ifree; ump->um_rdonly = ffs_rdonly; ump->um_snapgone = ffs_snapgone; mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF); bcopy(bp->b_data, ump->um_fs, (u_int)fs->fs_sbsize); if (fs->fs_sbsize < SBLOCKSIZE) bp->b_flags |= B_INVAL | B_NOCACHE; brelse(bp); bp = NULL; fs = ump->um_fs; ffs_oldfscompat_read(fs, ump, sblockloc); fs->fs_ronly = ronly; size = fs->fs_cssize; blks = howmany(size, fs->fs_fsize); if (fs->fs_contigsumsize > 0) size += fs->fs_ncg * sizeof(int32_t); size += fs->fs_ncg * sizeof(u_int8_t); space = malloc((u_long)size, M_UFSMNT, M_WAITOK); fs->fs_csp = space; for (i = 0; i < blks; i += fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; if ((error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size, cred, &bp)) != 0) { free(fs->fs_csp, M_UFSMNT); goto out; } bcopy(bp->b_data, space, (u_int)size); space = (char *)space + size; brelse(bp); bp = NULL; } if (fs->fs_contigsumsize > 0) { fs->fs_maxcluster = lp = space; for (i = 0; i < fs->fs_ncg; i++) *lp++ = fs->fs_contigsumsize; space = lp; } size = fs->fs_ncg * sizeof(u_int8_t); fs->fs_contigdirs = (u_int8_t *)space; bzero(fs->fs_contigdirs, size); fs->fs_active = NULL; mp->mnt_data = ump; mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0]; mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1]; nmp = NULL; if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 || (nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) { if (nmp) vfs_rel(nmp); vfs_getnewfsid(mp); } mp->mnt_maxsymlinklen = fs->fs_maxsymlinklen; MNT_ILOCK(mp); mp->mnt_flag |= MNT_LOCAL; MNT_IUNLOCK(mp); if ((fs->fs_flags & FS_MULTILABEL) != 0) { #ifdef MAC MNT_ILOCK(mp); mp->mnt_flag |= MNT_MULTILABEL; MNT_IUNLOCK(mp); #else printf("WARNING: %s: multilabel flag on fs but " "no MAC support\n", mp->mnt_stat.f_mntonname); #endif } if ((fs->fs_flags & FS_ACLS) != 0) { #ifdef UFS_ACL MNT_ILOCK(mp); if (mp->mnt_flag & MNT_NFS4ACLS) printf("WARNING: %s: ACLs flag on fs conflicts with " "\"nfsv4acls\" mount option; option ignored\n", mp->mnt_stat.f_mntonname); mp->mnt_flag &= ~MNT_NFS4ACLS; mp->mnt_flag |= MNT_ACLS; MNT_IUNLOCK(mp); #else printf("WARNING: %s: ACLs flag on fs but no ACLs support\n", mp->mnt_stat.f_mntonname); #endif } if ((fs->fs_flags & FS_NFS4ACLS) != 0) { #ifdef UFS_ACL MNT_ILOCK(mp); if (mp->mnt_flag & MNT_ACLS) printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts " "with \"acls\" mount option; option ignored\n", mp->mnt_stat.f_mntonname); mp->mnt_flag &= ~MNT_ACLS; mp->mnt_flag |= MNT_NFS4ACLS; MNT_IUNLOCK(mp); #else printf("WARNING: %s: NFSv4 ACLs flag on fs but no " "ACLs support\n", mp->mnt_stat.f_mntonname); #endif } if ((fs->fs_flags & FS_TRIM) != 0) { size = sizeof(int); if (g_io_getattr("GEOM::candelete", cp, &size, &ump->um_candelete) == 0) { if (!ump->um_candelete) printf("WARNING: %s: TRIM flag on fs but disk " "does not support TRIM\n", mp->mnt_stat.f_mntonname); } else { printf("WARNING: %s: TRIM flag on fs but disk does " "not confirm that it supports TRIM\n", mp->mnt_stat.f_mntonname); ump->um_candelete = 0; } } ump->um_mountp = mp; ump->um_dev = dev; ump->um_devvp = devvp; ump->um_nindir = fs->fs_nindir; ump->um_bptrtodb = fs->fs_fsbtodb; ump->um_seqinc = fs->fs_frag; for (i = 0; i < MAXQUOTAS; i++) ump->um_quotas[i] = NULLVP; #ifdef UFS_EXTATTR ufs_extattr_uepm_init(&ump->um_extattr); #endif /* * Set FS local "last mounted on" information (NULL pad) */ bzero(fs->fs_fsmnt, MAXMNTLEN); strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN); mp->mnt_stat.f_iosize = fs->fs_bsize; if (mp->mnt_flag & MNT_ROOTFS) { /* * Root mount; update timestamp in mount structure. * this will be used by the common root mount code * to update the system clock. */ mp->mnt_time = fs->fs_time; } if (ronly == 0) { fs->fs_mtime = time_second; if ((fs->fs_flags & FS_DOSOFTDEP) && (error = softdep_mount(devvp, mp, fs, cred)) != 0) { free(fs->fs_csp, M_UFSMNT); ffs_flushfiles(mp, FORCECLOSE, td); goto out; } if (devvp->v_type == VCHR && devvp->v_rdev != NULL) devvp->v_rdev->si_mountpt = mp; if (fs->fs_snapinum[0] != 0) ffs_snapshot_mount(mp); fs->fs_fmod = 1; fs->fs_clean = 0; (void) ffs_sbupdate(ump, MNT_WAIT, 0); } /* * Initialize filesystem stat information in mount struct. */ MNT_ILOCK(mp); mp->mnt_kern_flag |= MNTK_MPSAFE | MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED; MNT_IUNLOCK(mp); #ifdef UFS_EXTATTR #ifdef UFS_EXTATTR_AUTOSTART /* * * Auto-starting does the following: * - check for /.attribute in the fs, and extattr_start if so * - for each file in .attribute, enable that file with * an attribute of the same name. * Not clear how to report errors -- probably eat them. * This would all happen while the filesystem was busy/not * available, so would effectively be "atomic". */ (void) ufs_extattr_autostart(mp, td); #endif /* !UFS_EXTATTR_AUTOSTART */ #endif /* !UFS_EXTATTR */ return (0); out: if (bp) brelse(bp); if (cp != NULL) { DROP_GIANT(); g_topology_lock(); g_vfs_close(cp); g_topology_unlock(); PICKUP_GIANT(); } if (ump) { mtx_destroy(UFS_MTX(ump)); if (mp->mnt_gjprovider != NULL) { free(mp->mnt_gjprovider, M_UFSMNT); mp->mnt_gjprovider = NULL; } free(ump->um_fs, M_UFSMNT); free(ump, M_UFSMNT); mp->mnt_data = NULL; } dev_rel(dev); return (error); } #include <sys/sysctl.h> static int bigcgs = 0; SYSCTL_INT(_debug, OID_AUTO, bigcgs, CTLFLAG_RW, &bigcgs, 0, ""); /* * Sanity checks for loading old filesystem superblocks. * See ffs_oldfscompat_write below for unwound actions. * * XXX - Parts get retired eventually. * Unfortunately new bits get added. */ static void ffs_oldfscompat_read(fs, ump, sblockloc) struct fs *fs; struct ufsmount *ump; ufs2_daddr_t sblockloc; { off_t maxfilesize; /* * If not yet done, update fs_flags location and value of fs_sblockloc. */ if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { fs->fs_flags = fs->fs_old_flags; fs->fs_old_flags |= FS_FLAGS_UPDATED; fs->fs_sblockloc = sblockloc; } /* * If not yet done, update UFS1 superblock with new wider fields. */ if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) { fs->fs_maxbsize = fs->fs_bsize; fs->fs_time = fs->fs_old_time; fs->fs_size = fs->fs_old_size; fs->fs_dsize = fs->fs_old_dsize; fs->fs_csaddr = fs->fs_old_csaddr; fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir; fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree; fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree; fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree; } if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_old_inodefmt < FS_44INODEFMT) { fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1; fs->fs_qbmask = ~fs->fs_bmask; fs->fs_qfmask = ~fs->fs_fmask; } if (fs->fs_magic == FS_UFS1_MAGIC) { ump->um_savedmaxfilesize = fs->fs_maxfilesize; maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1; if (fs->fs_maxfilesize > maxfilesize) fs->fs_maxfilesize = maxfilesize; } /* Compatibility for old filesystems */ if (fs->fs_avgfilesize <= 0) fs->fs_avgfilesize = AVFILESIZ; if (fs->fs_avgfpdir <= 0) fs->fs_avgfpdir = AFPDIR; if (bigcgs) { fs->fs_save_cgsize = fs->fs_cgsize; fs->fs_cgsize = fs->fs_bsize; } } /* * Unwinding superblock updates for old filesystems. * See ffs_oldfscompat_read above for details. * * XXX - Parts get retired eventually. * Unfortunately new bits get added. */ void ffs_oldfscompat_write(fs, ump) struct fs *fs; struct ufsmount *ump; { /* * Copy back UFS2 updated fields that UFS1 inspects. */ if (fs->fs_magic == FS_UFS1_MAGIC) { fs->fs_old_time = fs->fs_time; fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir; fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree; fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree; fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree; fs->fs_maxfilesize = ump->um_savedmaxfilesize; } if (bigcgs) { fs->fs_cgsize = fs->fs_save_cgsize; fs->fs_save_cgsize = 0; } } /* * unmount system call */ static int ffs_unmount(mp, mntflags) struct mount *mp; int mntflags; { struct thread *td; struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs; int error, flags, susp; #ifdef UFS_EXTATTR int e_restart; #endif flags = 0; td = curthread; fs = ump->um_fs; susp = 0; if (mntflags & MNT_FORCE) { flags |= FORCECLOSE; susp = fs->fs_ronly != 0; } #ifdef UFS_EXTATTR if ((error = ufs_extattr_stop(mp, td))) { if (error != EOPNOTSUPP) printf("WARNING: unmount %s: ufs_extattr_stop " "returned errno %d\n", mp->mnt_stat.f_mntonname, error); e_restart = 0; } else { ufs_extattr_uepm_destroy(&ump->um_extattr); e_restart = 1; } #endif if (susp) { /* * dounmount already called vn_start_write(). */ for (;;) { vn_finished_write(mp); if ((error = vfs_write_suspend(mp)) != 0) return (error); MNT_ILOCK(mp); if (mp->mnt_kern_flag & MNTK_SUSPENDED) { mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); wakeup(&mp->mnt_flag); MNT_IUNLOCK(mp); td->td_pflags |= TDP_IGNSUSP; break; } MNT_IUNLOCK(mp); vn_start_write(NULL, &mp, V_WAIT); } } if (MOUNTEDSOFTDEP(mp)) error = softdep_flushfiles(mp, flags, td); else error = ffs_flushfiles(mp, flags, td); if (error != 0 && error != ENXIO) goto fail; UFS_LOCK(ump); if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { printf("WARNING: unmount %s: pending error: blocks %jd " "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } UFS_UNLOCK(ump); softdep_unmount(mp); if (fs->fs_ronly == 0 || ump->um_fsckpid > 0) { fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1; error = ffs_sbupdate(ump, MNT_WAIT, 0); if (error && error != ENXIO) { fs->fs_clean = 0; goto fail; } } if (susp) { vfs_write_resume(mp); vn_start_write(NULL, &mp, V_WAIT); } DROP_GIANT(); g_topology_lock(); if (ump->um_fsckpid > 0) { /* * Return to normal read-only mode. */ error = g_access(ump->um_cp, 0, -1, 0); ump->um_fsckpid = 0; } g_vfs_close(ump->um_cp); g_topology_unlock(); PICKUP_GIANT(); if (ump->um_devvp->v_type == VCHR && ump->um_devvp->v_rdev != NULL) ump->um_devvp->v_rdev->si_mountpt = NULL; vrele(ump->um_devvp); dev_rel(ump->um_dev); mtx_destroy(UFS_MTX(ump)); if (mp->mnt_gjprovider != NULL) { free(mp->mnt_gjprovider, M_UFSMNT); mp->mnt_gjprovider = NULL; } free(fs->fs_csp, M_UFSMNT); free(fs, M_UFSMNT); free(ump, M_UFSMNT); mp->mnt_data = NULL; MNT_ILOCK(mp); mp->mnt_flag &= ~MNT_LOCAL; MNT_IUNLOCK(mp); return (error); fail: if (susp) { vfs_write_resume(mp); vn_start_write(NULL, &mp, V_WAIT); } #ifdef UFS_EXTATTR if (e_restart) { ufs_extattr_uepm_init(&ump->um_extattr); #ifdef UFS_EXTATTR_AUTOSTART (void) ufs_extattr_autostart(mp, td); #endif } #endif return (error); } /* * Flush out all the files in a filesystem. */ int ffs_flushfiles(mp, flags, td) struct mount *mp; int flags; struct thread *td; { struct ufsmount *ump; int error; ump = VFSTOUFS(mp); #ifdef QUOTA if (mp->mnt_flag & MNT_QUOTA) { int i; error = vflush(mp, 0, SKIPSYSTEM|flags, td); if (error) return (error); for (i = 0; i < MAXQUOTAS; i++) { quotaoff(td, mp, i); } /* * Here we fall through to vflush again to ensure * that we have gotten rid of all the system vnodes. */ } #endif ASSERT_VOP_LOCKED(ump->um_devvp, "ffs_flushfiles"); if (ump->um_devvp->v_vflag & VV_COPYONWRITE) { if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0) return (error); ffs_snapshot_unmount(mp); flags |= FORCECLOSE; /* * Here we fall through to vflush again to ensure * that we have gotten rid of all the system vnodes. */ } /* * Flush all the files. */ if ((error = vflush(mp, 0, flags, td)) != 0) return (error); /* * Flush filesystem metadata. */ vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td); VOP_UNLOCK(ump->um_devvp, 0); return (error); } /* * Get filesystem statistics. */ static int ffs_statfs(mp, sbp) struct mount *mp; struct statfs *sbp; { struct ufsmount *ump; struct fs *fs; ump = VFSTOUFS(mp); fs = ump->um_fs; if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC) panic("ffs_statfs"); sbp->f_version = STATFS_VERSION; sbp->f_bsize = fs->fs_fsize; sbp->f_iosize = fs->fs_bsize; sbp->f_blocks = fs->fs_dsize; UFS_LOCK(ump); sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag + fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks); sbp->f_bavail = freespace(fs, fs->fs_minfree) + dbtofsb(fs, fs->fs_pendingblocks); sbp->f_files = fs->fs_ncg * fs->fs_ipg - ROOTINO; sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes; UFS_UNLOCK(ump); sbp->f_namemax = NAME_MAX; return (0); } /* * For a lazy sync, we only care about access times, quotas and the * superblock. Other filesystem changes are already converted to * cylinder group blocks or inode blocks updates and are written to * disk by syncer. */ static int ffs_sync_lazy(mp) struct mount *mp; { struct vnode *mvp, *vp; struct inode *ip; struct thread *td; int allerror, error; allerror = 0; td = curthread; if ((mp->mnt_flag & MNT_NOATIME) != 0) goto qupdate; MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) { if (vp->v_type == VNON) { VI_UNLOCK(vp); continue; } ip = VTOI(vp); /* * The IN_ACCESS flag is converted to IN_MODIFIED by * ufs_close() and ufs_getattr() by the calls to * ufs_itimes_locked(), without subsequent UFS_UPDATE(). * Test also all the other timestamp flags too, to pick up * any other cases that could be missed. */ if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0) { VI_UNLOCK(vp); continue; } if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, td)) != 0) continue; error = ffs_update(vp, 0); if (error != 0) allerror = error; vput(vp); } qupdate: #ifdef QUOTA qsync(mp); #endif if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 && (error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0) allerror = error; return (allerror); } /* * Go through the disk queues to initiate sandbagged IO; * go through the inodes to write those that have been modified; * initiate the writing of the super block if it has been modified. * * Note: we are always called with the filesystem marked busy using * vfs_busy(). */ static int ffs_sync(mp, waitfor) struct mount *mp; int waitfor; { struct vnode *mvp, *vp, *devvp; struct thread *td; struct inode *ip; struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs; int error, count, wait, lockreq, allerror = 0; int suspend; int suspended; int secondary_writes; int secondary_accwrites; int softdep_deps; int softdep_accdeps; struct bufobj *bo; wait = 0; suspend = 0; suspended = 0; td = curthread; fs = ump->um_fs; if (fs->fs_fmod != 0 && fs->fs_ronly != 0 && ump->um_fsckpid == 0) panic("%s: ffs_sync: modification on read-only filesystem", fs->fs_fsmnt); if (waitfor == MNT_LAZY) return (ffs_sync_lazy(mp)); /* * Write back each (modified) inode. */ lockreq = LK_EXCLUSIVE | LK_NOWAIT; if (waitfor == MNT_SUSPEND) { suspend = 1; waitfor = MNT_WAIT; } if (waitfor == MNT_WAIT) { wait = 1; lockreq = LK_EXCLUSIVE; } lockreq |= LK_INTERLOCK | LK_SLEEPFAIL; loop: /* Grab snapshot of secondary write counts */ MNT_ILOCK(mp); secondary_writes = mp->mnt_secondary_writes; secondary_accwrites = mp->mnt_secondary_accwrites; MNT_IUNLOCK(mp); /* Grab snapshot of softdep dependency counts */ softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps); MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { /* * Depend on the vnode interlock to keep things stable enough * for a quick test. Since there might be hundreds of * thousands of vnodes, we cannot afford even a subroutine * call unless there's a good chance that we have work to do. */ if (vp->v_type == VNON) { VI_UNLOCK(vp); continue; } ip = VTOI(vp); if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 && vp->v_bufobj.bo_dirty.bv_cnt == 0) { VI_UNLOCK(vp); continue; } if ((error = vget(vp, lockreq, td)) != 0) { if (error == ENOENT || error == ENOLCK) { MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); goto loop; } continue; } if ((error = ffs_syncvnode(vp, waitfor, 0)) != 0) allerror = error; vput(vp); } /* * Force stale filesystem control information to be flushed. */ if (waitfor == MNT_WAIT) { if ((error = softdep_flushworklist(ump->um_mountp, &count, td))) allerror = error; /* Flushed work items may create new vnodes to clean */ if (allerror == 0 && count) goto loop; } #ifdef QUOTA qsync(mp); #endif devvp = ump->um_devvp; bo = &devvp->v_bufobj; BO_LOCK(bo); if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { BO_UNLOCK(bo); vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); if ((error = VOP_FSYNC(devvp, waitfor, td)) != 0) allerror = error; VOP_UNLOCK(devvp, 0); if (allerror == 0 && waitfor == MNT_WAIT) goto loop; } else if (suspend != 0) { if (softdep_check_suspend(mp, devvp, softdep_deps, softdep_accdeps, secondary_writes, secondary_accwrites) != 0) { MNT_IUNLOCK(mp); goto loop; /* More work needed */ } mtx_assert(MNT_MTX(mp), MA_OWNED); mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED; MNT_IUNLOCK(mp); suspended = 1; } else BO_UNLOCK(bo); /* * Write back modified superblock. */ if (fs->fs_fmod != 0 && (error = ffs_sbupdate(ump, waitfor, suspended)) != 0) allerror = error; return (allerror); } int ffs_vget(mp, ino, flags, vpp) struct mount *mp; ino_t ino; int flags; struct vnode **vpp; { return (ffs_vgetf(mp, ino, flags, vpp, 0)); } int ffs_vgetf(mp, ino, flags, vpp, ffs_flags) struct mount *mp; ino_t ino; int flags; struct vnode **vpp; int ffs_flags; { struct fs *fs; struct inode *ip; struct ufsmount *ump; struct buf *bp; struct vnode *vp; struct cdev *dev; int error; error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL); if (error || *vpp != NULL) return (error); /* * We must promote to an exclusive lock for vnode creation. This * can happen if lookup is passed LOCKSHARED. */ if ((flags & LK_TYPE_MASK) == LK_SHARED) { flags &= ~LK_TYPE_MASK; flags |= LK_EXCLUSIVE; } /* * We do not lock vnode creation as it is believed to be too * expensive for such rare case as simultaneous creation of vnode * for same ino by different processes. We just allow them to race * and check later to decide who wins. Let the race begin! */ ump = VFSTOUFS(mp); dev = ump->um_dev; fs = ump->um_fs; /* * If this malloc() is performed after the getnewvnode() * it might block, leaving a vnode with a NULL v_data to be * found by ffs_sync() if a sync happens to fire right then, * which will cause a panic because ffs_sync() blindly * dereferences vp->v_data (as well it should). */ ip = uma_zalloc(uma_inode, M_WAITOK | M_ZERO); /* Allocate a new vnode/inode. */ if (fs->fs_magic == FS_UFS1_MAGIC) error = getnewvnode("ufs", mp, &ffs_vnodeops1, &vp); else error = getnewvnode("ufs", mp, &ffs_vnodeops2, &vp); if (error) { *vpp = NULL; uma_zfree(uma_inode, ip); return (error); } /* * FFS supports recursive locking. */ lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL); VN_LOCK_AREC(vp); vp->v_data = ip; vp->v_bufobj.bo_bsize = fs->fs_bsize; ip->i_vnode = vp; ip->i_ump = ump; ip->i_fs = fs; ip->i_dev = dev; ip->i_number = ino; ip->i_ea_refs = 0; #ifdef QUOTA { int i; for (i = 0; i < MAXQUOTAS; i++) ip->i_dquot[i] = NODQUOT; } #endif if (ffs_flags & FFSV_FORCEINSMQ) vp->v_vflag |= VV_FORCEINSMQ; error = insmntque(vp, mp); if (error != 0) { uma_zfree(uma_inode, ip); *vpp = NULL; return (error); } vp->v_vflag &= ~VV_FORCEINSMQ; error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL); if (error || *vpp != NULL) return (error); /* Read in the disk contents for the inode, copy into the inode. */ error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { /* * The inode does not contain anything useful, so it would * be misleading to leave it on its hash chain. With mode * still zero, it will be unlinked and returned to the free * list by vput(). */ brelse(bp); vput(vp); *vpp = NULL; return (error); } if (ip->i_ump->um_fstype == UFS1) ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK); else ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK); ffs_load_inode(bp, ip, fs, ino); if (DOINGSOFTDEP(vp)) softdep_load_inodeblock(ip); else ip->i_effnlink = ip->i_nlink; bqrelse(bp); /* * Initialize the vnode from the inode, check for aliases. * Note that the underlying vnode may have changed. */ if (ip->i_ump->um_fstype == UFS1) error = ufs_vinit(mp, &ffs_fifoops1, &vp); else error = ufs_vinit(mp, &ffs_fifoops2, &vp); if (error) { vput(vp); *vpp = NULL; return (error); } /* * Finish inode initialization. */ if (vp->v_type != VFIFO) { /* FFS supports shared locking for all files except fifos. */ VN_LOCK_ASHARE(vp); } /* * Set up a generation number for this inode if it does not * already have one. This should only happen on old filesystems. */ if (ip->i_gen == 0) { ip->i_gen = arc4random() / 2 + 1; if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { ip->i_flag |= IN_MODIFIED; DIP_SET(ip, i_gen, ip->i_gen); } } #ifdef MAC if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) { /* * If this vnode is already allocated, and we're running * multi-label, attempt to perform a label association * from the extended attributes on the inode. */ error = mac_vnode_associate_extattr(mp, vp); if (error) { /* ufs_inactive will release ip->i_devvp ref. */ vput(vp); *vpp = NULL; return (error); } } #endif *vpp = vp; return (0); } /* * File handle to vnode * * Have to be really careful about stale file handles: * - check that the inode number is valid * - call ffs_vget() to get the locked inode * - check for an unallocated inode (i_mode == 0) * - check that the given client host has export rights and return * those rights via. exflagsp and credanonp */ static int ffs_fhtovp(mp, fhp, flags, vpp) struct mount *mp; struct fid *fhp; int flags; struct vnode **vpp; { struct ufid *ufhp; struct fs *fs; ufhp = (struct ufid *)fhp; fs = VFSTOUFS(mp)->um_fs; if (ufhp->ufid_ino < ROOTINO || ufhp->ufid_ino >= fs->fs_ncg * fs->fs_ipg) return (ESTALE); return (ufs_fhtovp(mp, ufhp, flags, vpp)); } /* * Initialize the filesystem. */ static int ffs_init(vfsp) struct vfsconf *vfsp; { softdep_initialize(); return (ufs_init(vfsp)); } /* * Undo the work of ffs_init(). */ static int ffs_uninit(vfsp) struct vfsconf *vfsp; { int ret; ret = ufs_uninit(vfsp); softdep_uninitialize(); return (ret); } /* * Write a superblock and associated information back to disk. */ int ffs_sbupdate(ump, waitfor, suspended) struct ufsmount *ump; int waitfor; int suspended; { struct fs *fs = ump->um_fs; struct buf *sbbp; struct buf *bp; int blks; void *space; int i, size, error, allerror = 0; if (fs->fs_ronly == 1 && (ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) != (MNT_RDONLY | MNT_UPDATE) && ump->um_fsckpid == 0) panic("ffs_sbupdate: write read-only filesystem"); /* * We use the superblock's buf to serialize calls to ffs_sbupdate(). */ sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), (int)fs->fs_sbsize, 0, 0, 0); /* * First write back the summary information. */ blks = howmany(fs->fs_cssize, fs->fs_fsize); space = fs->fs_csp; for (i = 0; i < blks; i += fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; bp = getblk(ump->um_devvp, fsbtodb(fs, fs->fs_csaddr + i), size, 0, 0, 0); bcopy(space, bp->b_data, (u_int)size); space = (char *)space + size; if (suspended) bp->b_flags |= B_VALIDSUSPWRT; if (waitfor != MNT_WAIT) bawrite(bp); else if ((error = bwrite(bp)) != 0) allerror = error; } /* * Now write back the superblock itself. If any errors occurred * up to this point, then fail so that the superblock avoids * being written out as clean. */ if (allerror) { brelse(sbbp); return (allerror); } bp = sbbp; if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 && (fs->fs_flags & FS_FLAGS_UPDATED) == 0) { printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1); fs->fs_sblockloc = SBLOCK_UFS1; } if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 && (fs->fs_flags & FS_FLAGS_UPDATED) == 0) { printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2); fs->fs_sblockloc = SBLOCK_UFS2; } fs->fs_fmod = 0; fs->fs_time = time_second; if (fs->fs_flags & FS_DOSOFTDEP) softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp); bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); ffs_oldfscompat_write((struct fs *)bp->b_data, ump); if (suspended) bp->b_flags |= B_VALIDSUSPWRT; if (waitfor != MNT_WAIT) bawrite(bp); else if ((error = bwrite(bp)) != 0) allerror = error; return (allerror); } static int ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp, int attrnamespace, const char *attrname) { #ifdef UFS_EXTATTR return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace, attrname)); #else return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, attrname)); #endif } static void ffs_ifree(struct ufsmount *ump, struct inode *ip) { if (ump->um_fstype == UFS1 && ip->i_din1 != NULL) uma_zfree(uma_ufs1, ip->i_din1); else if (ip->i_din2 != NULL) uma_zfree(uma_ufs2, ip->i_din2); uma_zfree(uma_inode, ip); } static int dobkgrdwrite = 1; SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, "Do background writes (honoring the BV_BKGRDWRITE flag)?"); /* * Complete a background write started from bwrite. */ static void ffs_backgroundwritedone(struct buf *bp) { struct bufobj *bufobj; struct buf *origbp; /* * Find the original buffer that we are writing. */ bufobj = bp->b_bufobj; BO_LOCK(bufobj); if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL) panic("backgroundwritedone: lost buffer"); /* Grab an extra reference to be dropped by the bufdone() below. */ bufobj_wrefl(bufobj); BO_UNLOCK(bufobj); /* * Process dependencies then return any unfinished ones. */ if (!LIST_EMPTY(&bp->b_dep)) buf_complete(bp); #ifdef SOFTUPDATES if (!LIST_EMPTY(&bp->b_dep)) softdep_move_dependencies(bp, origbp); #endif /* * This buffer is marked B_NOCACHE so when it is released * by biodone it will be tossed. */ bp->b_flags |= B_NOCACHE; bp->b_flags &= ~B_CACHE; bufdone(bp); BO_LOCK(bufobj); /* * Clear the BV_BKGRDINPROG flag in the original buffer * and awaken it if it is waiting for the write to complete. * If BV_BKGRDINPROG is not set in the original buffer it must * have been released and re-instantiated - which is not legal. */ KASSERT((origbp->b_vflags & BV_BKGRDINPROG), ("backgroundwritedone: lost buffer2")); origbp->b_vflags &= ~BV_BKGRDINPROG; if (origbp->b_vflags & BV_BKGRDWAIT) { origbp->b_vflags &= ~BV_BKGRDWAIT; wakeup(&origbp->b_xflags); } BO_UNLOCK(bufobj); } /* * Write, release buffer on completion. (Done by iodone * if async). Do not bother writing anything if the buffer * is invalid. * * Note that we set B_CACHE here, indicating that buffer is * fully valid and thus cacheable. This is true even of NFS * now so we set it generally. This could be set either here * or in biodone() since the I/O is synchronous. We put it * here. */ static int ffs_bufwrite(struct buf *bp) { int oldflags, s; struct buf *newbp; CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); if (bp->b_flags & B_INVAL) { brelse(bp); return (0); } oldflags = bp->b_flags; if (!BUF_ISLOCKED(bp)) panic("bufwrite: buffer is not busy???"); s = splbio(); /* * If a background write is already in progress, delay * writing this block if it is asynchronous. Otherwise * wait for the background write to complete. */ BO_LOCK(bp->b_bufobj); if (bp->b_vflags & BV_BKGRDINPROG) { if (bp->b_flags & B_ASYNC) { BO_UNLOCK(bp->b_bufobj); splx(s); bdwrite(bp); return (0); } bp->b_vflags |= BV_BKGRDWAIT; msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj), PRIBIO, "bwrbg", 0); if (bp->b_vflags & BV_BKGRDINPROG) panic("bufwrite: still writing"); } BO_UNLOCK(bp->b_bufobj); /* * If this buffer is marked for background writing and we * do not have to wait for it, make a copy and write the * copy so as to leave this buffer ready for further use. * * This optimization eats a lot of memory. If we have a page * or buffer shortfall we can't do it. */ if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && (bp->b_flags & B_ASYNC) && !vm_page_count_severe() && !buf_dirty_count_severe()) { KASSERT(bp->b_iodone == NULL, ("bufwrite: needs chained iodone (%p)", bp->b_iodone)); /* get a new block */ newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD); if (newbp == NULL) goto normal_write; /* * set it to be identical to the old block. We have to * set b_lblkno and BKGRDMARKER before calling bgetvp() * to avoid confusing the splay tree and gbincore(). */ memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); newbp->b_lblkno = bp->b_lblkno; newbp->b_xflags |= BX_BKGRDMARKER; BO_LOCK(bp->b_bufobj); bp->b_vflags |= BV_BKGRDINPROG; bgetvp(bp->b_vp, newbp); BO_UNLOCK(bp->b_bufobj); newbp->b_bufobj = &bp->b_vp->v_bufobj; newbp->b_blkno = bp->b_blkno; newbp->b_offset = bp->b_offset; newbp->b_iodone = ffs_backgroundwritedone; newbp->b_flags |= B_ASYNC; newbp->b_flags &= ~B_INVAL; #ifdef SOFTUPDATES /* * Move over the dependencies. If there are rollbacks, * leave the parent buffer dirtied as it will need to * be written again. */ if (LIST_EMPTY(&bp->b_dep) || softdep_move_dependencies(bp, newbp) == 0) bundirty(bp); #else bundirty(bp); #endif /* * Initiate write on the copy, release the original to * the B_LOCKED queue so that it cannot go away until * the background write completes. If not locked it could go * away and then be reconstituted while it was being written. * If the reconstituted buffer were written, we could end up * with two background copies being written at the same time. */ bqrelse(bp); bp = newbp; } else /* Mark the buffer clean */ bundirty(bp); /* Let the normal bufwrite do the rest for us */ normal_write: return (bufwrite(bp)); } static void ffs_geom_strategy(struct bufobj *bo, struct buf *bp) { struct vnode *vp; int error; struct buf *tbp; int nocopy; vp = bo->__bo_vnode; if (bp->b_iocmd == BIO_WRITE) { if ((bp->b_flags & B_VALIDSUSPWRT) == 0 && bp->b_vp != NULL && bp->b_vp->v_mount != NULL && (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0) panic("ffs_geom_strategy: bad I/O"); nocopy = bp->b_flags & B_NOCOPY; bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY); if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 && vp->v_rdev->si_snapdata != NULL) { if ((bp->b_flags & B_CLUSTER) != 0) { runningbufwakeup(bp); TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, b_cluster.cluster_entry) { error = ffs_copyonwrite(vp, tbp); if (error != 0 && error != EOPNOTSUPP) { bp->b_error = error; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return; } } bp->b_runningbufspace = bp->b_bufsize; atomic_add_long(&runningbufspace, bp->b_runningbufspace); } else { error = ffs_copyonwrite(vp, bp); if (error != 0 && error != EOPNOTSUPP) { bp->b_error = error; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return; } } } #ifdef SOFTUPDATES if ((bp->b_flags & B_CLUSTER) != 0) { TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, b_cluster.cluster_entry) { if (!LIST_EMPTY(&tbp->b_dep)) buf_start(tbp); } } else { if (!LIST_EMPTY(&bp->b_dep)) buf_start(bp); } #endif } g_vfs_strategy(bo, bp); } #ifdef DDB static void db_print_ffs(struct ufsmount *ump) { db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n", ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp, ump->um_fs, ump->softdep_on_worklist, ump->softdep_deps, ump->softdep_req); } DB_SHOW_COMMAND(ffs, db_show_ffs) { struct mount *mp; struct ufsmount *ump; if (have_addr) { ump = VFSTOUFS((struct mount *)addr); db_print_ffs(ump); return; } TAILQ_FOREACH(mp, &mountlist, mnt_list) { if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name)) db_print_ffs(VFSTOUFS(mp)); } } #endif /* DDB */