Current Path : /usr/src/tools/regression/lib/msun/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/tools/regression/lib/msun/test-csqrt.c |
/*- * Copyright (c) 2007 David Schultz <das@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Tests for csqrt{,f}() */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/tools/regression/lib/msun/test-csqrt.c 177763 2008-03-30 20:09:51Z das $"); #include <assert.h> #include <complex.h> #include <float.h> #include <math.h> #include <stdio.h> #define N(i) (sizeof(i) / sizeof((i)[0])) /* * This is a test hook that can point to csqrtl(), _csqrt(), or to _csqrtf(). * The latter two convert to float or double, respectively, and test csqrtf() * and csqrt() with the same arguments. */ long double complex (*t_csqrt)(long double complex); static long double complex _csqrtf(long double complex d) { return (csqrtf((float complex)d)); } static long double complex _csqrt(long double complex d) { return (csqrt((double complex)d)); } #pragma STDC CX_LIMITED_RANGE off /* * XXX gcc implements complex multiplication incorrectly. In * particular, it implements it as if the CX_LIMITED_RANGE pragma * were ON. Consequently, we need this function to form numbers * such as x + INFINITY * I, since gcc evalutes INFINITY * I as * NaN + INFINITY * I. */ static inline long double complex cpackl(long double x, long double y) { long double complex z; __real__ z = x; __imag__ z = y; return (z); } /* * Compare d1 and d2 using special rules: NaN == NaN and +0 != -0. * Fail an assertion if they differ. */ static void assert_equal(long double complex d1, long double complex d2) { if (isnan(creall(d1))) { assert(isnan(creall(d2))); } else { assert(creall(d1) == creall(d2)); assert(copysignl(1.0, creall(d1)) == copysignl(1.0, creall(d2))); } if (isnan(cimagl(d1))) { assert(isnan(cimagl(d2))); } else { assert(cimagl(d1) == cimagl(d2)); assert(copysignl(1.0, cimagl(d1)) == copysignl(1.0, cimagl(d2))); } } /* * Test csqrt for some finite arguments where the answer is exact. * (We do not test if it produces correctly rounded answers when the * result is inexact, nor do we check whether it throws spurious * exceptions.) */ static void test_finite() { static const double tests[] = { /* csqrt(a + bI) = x + yI */ /* a b x y */ 0, 8, 2, 2, 0, -8, 2, -2, 4, 0, 2, 0, -4, 0, 0, 2, 3, 4, 2, 1, 3, -4, 2, -1, -3, 4, 1, 2, -3, -4, 1, -2, 5, 12, 3, 2, 7, 24, 4, 3, 9, 40, 5, 4, 11, 60, 6, 5, 13, 84, 7, 6, 33, 56, 7, 4, 39, 80, 8, 5, 65, 72, 9, 4, 987, 9916, 74, 67, 5289, 6640, 83, 40, 460766389075.0, 16762287900.0, 678910, 12345 }; /* * We also test some multiples of the above arguments. This * array defines which multiples we use. Note that these have * to be small enough to not cause overflow for float precision * with all of the constants in the above table. */ static const double mults[] = { 1, 2, 3, 13, 16, 0x1.p30, 0x1.p-30, }; double a, b; double x, y; int i, j; for (i = 0; i < N(tests); i += 4) { for (j = 0; j < N(mults); j++) { a = tests[i] * mults[j] * mults[j]; b = tests[i + 1] * mults[j] * mults[j]; x = tests[i + 2] * mults[j]; y = tests[i + 3] * mults[j]; assert(t_csqrt(cpackl(a, b)) == cpackl(x, y)); } } } /* * Test the handling of +/- 0. */ static void test_zeros() { assert_equal(t_csqrt(cpackl(0.0, 0.0)), cpackl(0.0, 0.0)); assert_equal(t_csqrt(cpackl(-0.0, 0.0)), cpackl(0.0, 0.0)); assert_equal(t_csqrt(cpackl(0.0, -0.0)), cpackl(0.0, -0.0)); assert_equal(t_csqrt(cpackl(-0.0, -0.0)), cpackl(0.0, -0.0)); } /* * Test the handling of infinities when the other argument is not NaN. */ static void test_infinities() { static const double vals[] = { 0.0, -0.0, 42.0, -42.0, INFINITY, -INFINITY, }; int i; for (i = 0; i < N(vals); i++) { if (isfinite(vals[i])) { assert_equal(t_csqrt(cpackl(-INFINITY, vals[i])), cpackl(0.0, copysignl(INFINITY, vals[i]))); assert_equal(t_csqrt(cpackl(INFINITY, vals[i])), cpackl(INFINITY, copysignl(0.0, vals[i]))); } assert_equal(t_csqrt(cpackl(vals[i], INFINITY)), cpackl(INFINITY, INFINITY)); assert_equal(t_csqrt(cpackl(vals[i], -INFINITY)), cpackl(INFINITY, -INFINITY)); } } /* * Test the handling of NaNs. */ static void test_nans() { assert(creall(t_csqrt(cpackl(INFINITY, NAN))) == INFINITY); assert(isnan(cimagl(t_csqrt(cpackl(INFINITY, NAN))))); assert(isnan(creall(t_csqrt(cpackl(-INFINITY, NAN))))); assert(isinf(cimagl(t_csqrt(cpackl(-INFINITY, NAN))))); assert_equal(t_csqrt(cpackl(NAN, INFINITY)), cpackl(INFINITY, INFINITY)); assert_equal(t_csqrt(cpackl(NAN, -INFINITY)), cpackl(INFINITY, -INFINITY)); assert_equal(t_csqrt(cpackl(0.0, NAN)), cpackl(NAN, NAN)); assert_equal(t_csqrt(cpackl(-0.0, NAN)), cpackl(NAN, NAN)); assert_equal(t_csqrt(cpackl(42.0, NAN)), cpackl(NAN, NAN)); assert_equal(t_csqrt(cpackl(-42.0, NAN)), cpackl(NAN, NAN)); assert_equal(t_csqrt(cpackl(NAN, 0.0)), cpackl(NAN, NAN)); assert_equal(t_csqrt(cpackl(NAN, -0.0)), cpackl(NAN, NAN)); assert_equal(t_csqrt(cpackl(NAN, 42.0)), cpackl(NAN, NAN)); assert_equal(t_csqrt(cpackl(NAN, -42.0)), cpackl(NAN, NAN)); assert_equal(t_csqrt(cpackl(NAN, NAN)), cpackl(NAN, NAN)); } /* * Test whether csqrt(a + bi) works for inputs that are large enough to * cause overflow in hypot(a, b) + a. In this case we are using * csqrt(115 + 252*I) == 14 + 9*I * scaled up to near MAX_EXP. */ static void test_overflow(int maxexp) { long double a, b; long double complex result; a = ldexpl(115 * 0x1p-8, maxexp); b = ldexpl(252 * 0x1p-8, maxexp); result = t_csqrt(cpackl(a, b)); assert(creall(result) == ldexpl(14 * 0x1p-4, maxexp / 2)); assert(cimagl(result) == ldexpl(9 * 0x1p-4, maxexp / 2)); } int main(int argc, char *argv[]) { printf("1..15\n"); /* Test csqrt() */ t_csqrt = _csqrt; test_finite(); printf("ok 1 - csqrt\n"); test_zeros(); printf("ok 2 - csqrt\n"); test_infinities(); printf("ok 3 - csqrt\n"); test_nans(); printf("ok 4 - csqrt\n"); test_overflow(DBL_MAX_EXP); printf("ok 5 - csqrt\n"); /* Now test csqrtf() */ t_csqrt = _csqrtf; test_finite(); printf("ok 6 - csqrt\n"); test_zeros(); printf("ok 7 - csqrt\n"); test_infinities(); printf("ok 8 - csqrt\n"); test_nans(); printf("ok 9 - csqrt\n"); test_overflow(FLT_MAX_EXP); printf("ok 10 - csqrt\n"); /* Now test csqrtl() */ t_csqrt = csqrtl; test_finite(); printf("ok 11 - csqrt\n"); test_zeros(); printf("ok 12 - csqrt\n"); test_infinities(); printf("ok 13 - csqrt\n"); test_nans(); printf("ok 14 - csqrt\n"); test_overflow(LDBL_MAX_EXP); printf("ok 15 - csqrt\n"); return (0); }