Current Path : /usr/src/tools/regression/lib/msun/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/tools/regression/lib/msun/test-trig.c |
/*- * Copyright (c) 2008 David Schultz <das@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Tests for corner cases in trigonometric functions. Some accuracy tests * are included as well, but these are very basic sanity checks, not * intended to be comprehensive. * * The program for generating representable numbers near multiples of pi is * available at http://www.cs.berkeley.edu/~wkahan/testpi/ . */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/tools/regression/lib/msun/test-trig.c 216222 2010-12-06 00:02:49Z das $"); #include <assert.h> #include <fenv.h> #include <float.h> #include <math.h> #include <stdio.h> #define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \ FE_OVERFLOW | FE_UNDERFLOW) #define LEN(a) (sizeof(a) / sizeof((a)[0])) #pragma STDC FENV_ACCESS ON /* * Test that a function returns the correct value and sets the * exception flags correctly. The exceptmask specifies which * exceptions we should check. We need to be lenient for several * reasons, but mainly because on some architectures it's impossible * to raise FE_OVERFLOW without raising FE_INEXACT. * * These are macros instead of functions so that assert provides more * meaningful error messages. * * XXX The volatile here is to avoid gcc's bogus constant folding and work * around the lack of support for the FENV_ACCESS pragma. */ #define test(func, x, result, exceptmask, excepts) do { \ volatile long double _d = x; \ assert(feclearexcept(FE_ALL_EXCEPT) == 0); \ assert(fpequal((func)(_d), (result))); \ assert(((func), fetestexcept(exceptmask) == (excepts))); \ } while (0) #define testall(prefix, x, result, exceptmask, excepts) do { \ test(prefix, x, (double)result, exceptmask, excepts); \ test(prefix##f, x, (float)result, exceptmask, excepts); \ test(prefix##l, x, result, exceptmask, excepts); \ } while (0) #define testdf(prefix, x, result, exceptmask, excepts) do { \ test(prefix, x, (double)result, exceptmask, excepts); \ test(prefix##f, x, (float)result, exceptmask, excepts); \ } while (0) /* * Determine whether x and y are equal, with two special rules: * +0.0 != -0.0 * NaN == NaN */ int fpequal(long double x, long double y) { return ((x == y && !signbit(x) == !signbit(y)) || isnan(x) && isnan(y)); } /* * Test special cases in sin(), cos(), and tan(). */ static void run_special_tests(void) { /* Values at 0 should be exact. */ testall(tan, 0.0, 0.0, ALL_STD_EXCEPT, 0); testall(tan, -0.0, -0.0, ALL_STD_EXCEPT, 0); testall(cos, 0.0, 1.0, ALL_STD_EXCEPT, 0); testall(cos, -0.0, 1.0, ALL_STD_EXCEPT, 0); testall(sin, 0.0, 0.0, ALL_STD_EXCEPT, 0); testall(sin, -0.0, -0.0, ALL_STD_EXCEPT, 0); /* func(+-Inf) == NaN */ testall(tan, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID); testall(sin, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID); testall(cos, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID); testall(tan, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID); testall(sin, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID); testall(cos, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID); /* func(NaN) == NaN */ testall(tan, NAN, NAN, ALL_STD_EXCEPT, 0); testall(sin, NAN, NAN, ALL_STD_EXCEPT, 0); testall(cos, NAN, NAN, ALL_STD_EXCEPT, 0); } /* * Tests to ensure argument reduction for large arguments is accurate. */ static void run_reduction_tests(void) { /* floats very close to odd multiples of pi */ static const float f_pi_odd[] = { 85563208.0f, 43998769152.0f, 9.2763667655669323e+25f, 1.5458357838905804e+29f, }; /* doubles very close to odd multiples of pi */ static const double d_pi_odd[] = { 3.1415926535897931, 91.106186954104004, 642615.9188844458, 3397346.5699258847, 6134899525417045.0, 3.0213551960457761e+43, 1.2646209897993783e+295, 6.2083625380677099e+307, }; /* long doubles very close to odd multiples of pi */ #if LDBL_MANT_DIG == 64 static const long double ld_pi_odd[] = { 1.1891886960373841596e+101L, 1.07999475322710967206e+2087L, 6.522151627890431836e+2147L, 8.9368974898260328229e+2484L, 9.2961044110572205863e+2555L, 4.90208421886578286e+3189L, 1.5275546401232615884e+3317L, 1.7227465626338900093e+3565L, 2.4160090594000745334e+3808L, 9.8477555741888350649e+4314L, 1.6061597222105160737e+4326L, }; #elif LDBL_MANT_DIG == 113 static const long double ld_pi_odd[] = { /* XXX */ }; #endif int i; for (i = 0; i < LEN(f_pi_odd); i++) { assert(fabs(sinf(f_pi_odd[i])) < FLT_EPSILON); assert(cosf(f_pi_odd[i]) == -1.0); assert(fabs(tan(f_pi_odd[i])) < FLT_EPSILON); assert(fabs(sinf(-f_pi_odd[i])) < FLT_EPSILON); assert(cosf(-f_pi_odd[i]) == -1.0); assert(fabs(tanf(-f_pi_odd[i])) < FLT_EPSILON); assert(fabs(sinf(f_pi_odd[i] * 2)) < FLT_EPSILON); assert(cosf(f_pi_odd[i] * 2) == 1.0); assert(fabs(tanf(f_pi_odd[i] * 2)) < FLT_EPSILON); assert(fabs(sinf(-f_pi_odd[i] * 2)) < FLT_EPSILON); assert(cosf(-f_pi_odd[i] * 2) == 1.0); assert(fabs(tanf(-f_pi_odd[i] * 2)) < FLT_EPSILON); } for (i = 0; i < LEN(d_pi_odd); i++) { assert(fabs(sin(d_pi_odd[i])) < 2 * DBL_EPSILON); assert(cos(d_pi_odd[i]) == -1.0); assert(fabs(tan(d_pi_odd[i])) < 2 * DBL_EPSILON); assert(fabs(sin(-d_pi_odd[i])) < 2 * DBL_EPSILON); assert(cos(-d_pi_odd[i]) == -1.0); assert(fabs(tan(-d_pi_odd[i])) < 2 * DBL_EPSILON); assert(fabs(sin(d_pi_odd[i] * 2)) < 2 * DBL_EPSILON); assert(cos(d_pi_odd[i] * 2) == 1.0); assert(fabs(tan(d_pi_odd[i] * 2)) < 2 * DBL_EPSILON); assert(fabs(sin(-d_pi_odd[i] * 2)) < 2 * DBL_EPSILON); assert(cos(-d_pi_odd[i] * 2) == 1.0); assert(fabs(tan(-d_pi_odd[i] * 2)) < 2 * DBL_EPSILON); } #if LDBL_MANT_DIG > 53 for (i = 0; i < LEN(ld_pi_odd); i++) { assert(fabsl(sinl(ld_pi_odd[i])) < LDBL_EPSILON); assert(cosl(ld_pi_odd[i]) == -1.0); assert(fabsl(tanl(ld_pi_odd[i])) < LDBL_EPSILON); assert(fabsl(sinl(-ld_pi_odd[i])) < LDBL_EPSILON); assert(cosl(-ld_pi_odd[i]) == -1.0); assert(fabsl(tanl(-ld_pi_odd[i])) < LDBL_EPSILON); assert(fabsl(sinl(ld_pi_odd[i] * 2)) < LDBL_EPSILON); assert(cosl(ld_pi_odd[i] * 2) == 1.0); assert(fabsl(tanl(ld_pi_odd[i] * 2)) < LDBL_EPSILON); assert(fabsl(sinl(-ld_pi_odd[i] * 2)) < LDBL_EPSILON); assert(cosl(-ld_pi_odd[i] * 2) == 1.0); assert(fabsl(tanl(-ld_pi_odd[i] * 2)) < LDBL_EPSILON); } #endif } /* * Tests the accuracy of these functions over the primary range. */ static void run_accuracy_tests(void) { /* For small args, sin(x) = tan(x) = x, and cos(x) = 1. */ testall(sin, 0xd.50ee515fe4aea16p-114L, 0xd.50ee515fe4aea16p-114L, ALL_STD_EXCEPT, FE_INEXACT); testall(tan, 0xd.50ee515fe4aea16p-114L, 0xd.50ee515fe4aea16p-114L, ALL_STD_EXCEPT, FE_INEXACT); testall(cos, 0xd.50ee515fe4aea16p-114L, 1.0, ALL_STD_EXCEPT, FE_INEXACT); /* * These tests should pass for f32, d64, and ld80 as long as * the error is <= 0.75 ulp (round to nearest) */ #if LDBL_MANT_DIG <= 64 #define testacc testall #else #define testacc testdf #endif testacc(sin, 0.17255452780841205174L, 0.17169949801444412683L, ALL_STD_EXCEPT, FE_INEXACT); testacc(sin, -0.75431944555904520893L, -0.68479288156557286353L, ALL_STD_EXCEPT, FE_INEXACT); testacc(cos, 0.70556358769838947292L, 0.76124620693117771850L, ALL_STD_EXCEPT, FE_INEXACT); testacc(cos, -0.34061437849088045332L, 0.94254960031831729956L, ALL_STD_EXCEPT, FE_INEXACT); testacc(tan, -0.15862817413325692897L, -0.15997221861309522115L, ALL_STD_EXCEPT, FE_INEXACT); testacc(tan, 0.38374784931303813530L, 0.40376500259976759951L, ALL_STD_EXCEPT, FE_INEXACT); /* * XXX missing: * - tests for ld128 * - tests for other rounding modes (probably won't pass for now) * - tests for large numbers that get reduced to hi+lo with lo!=0 */ } int main(int argc, char *argv[]) { printf("1..3\n"); run_special_tests(); printf("ok 1 - trig\n"); #ifndef __i386__ run_reduction_tests(); #endif printf("ok 2 - trig\n"); #ifndef __i386__ run_accuracy_tests(); #endif printf("ok 3 - trig\n"); return (0); }