Current Path : /usr/src/tools/regression/usr.bin/sed/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/tools/regression/usr.bin/sed/math.sed |
# This is ksb's infamous sed calculator. (ksb@sa.fedex.com) # # $FreeBSD: release/9.1.0/tools/regression/usr.bin/sed/math.sed 167533 2007-03-14 07:40:44Z dds $ # # $Id: math.sed,v 2.5 1998/08/02 13:23:34 ksb Exp ksb $ # expr ::= (expr) | expr! | # expr ^ expr | # -expr | expr * expr | expr / expr | expr % expr | # expr + expr | expr - expr | # [0-9][0-9]* ; # Bugs: some sign combinations don't work, and I got sick of added cases # for unary +. Don't depend on signed math working all the time. -- ksb # # $Compile: echo "4+7*3+2^7/3" | sed -f %f # make sure the expression is well formed s/[ ]//g /[*\/^%+-]$/{ a\ poorly formed expression, dyadic operator on the end q } /^[*\/^%]/{ a\ poorly formed expression, leading dyadic operator q } # fill hold space with done token x s/^.*/done/ x # main loop, process operators ((), !, *, /, %, +, and -) : loop # uncomment the print below to follow the "logic" -- ksb #p /^[+]/{ s/// b loop } /^--/{ s/// b loop } # eval parenthesised sub expressions first /^\(.*\)(\([^)]*\))\(.*\)$/{ H s//\2/ x s/^\(.*\)\n\(.*\)(\([^()]*\))\(.*\)$/()\2@\4@\1/ x b loop } # reduce a^b^c -> a^(b^c) /\([0-9][0-9]*^\)\([0-9][0-9]*^[0-9][0-9^]*\)/{ s//\1(\2)/ b loop } # pull any burried exponents /^\(.*[^0-9]\)\([0-9][0-9]*^[0-9][0-9]*\)$/{ s//\1(\2)/ b loop } /^\(.*[^0-9]\)\([0-9][0-9]*^[0-9][0-9]*\)\([^0-9].*\)$/{ s//\1(\2)\3/ b loop } /^\([0-9][0-9]*^[0-9][0-9]*\)\([^0-9].*\)$/{ s//(\1)\2/ b loop } /^\([-]*[0-9]*\)^0*$/{ s//1/ b loop } /^\([-]*[0-9]*\)^0*1$/{ s//\1/ b loop } /^\([-]*[0-9]*\)^-[0-9]*$/{ s//0/ b loop } /^\([-]*\)\([0-9]*\)^\([0-9][0-9]*[13579]\)$/{ s//\1\2*((\2*\2)^(\3\/2))/ b loop } /^[-]*\([0-9]*\)^\([0-9][0-9]*[02468]\)$/{ s//(\1*\1)^(\2\/2)/ b loop } # single digit powers (2 3,9 4,6,8 5,7 /^[-]*\([0-9]*\)^0*2$/{ s//(\1*\1)/ b loop } /^\([-]*\)\([0-9]*\)^0*\([39]\)$/{ s//\1(\2*(\2*\2))^(\3\/3)/ b loop } /^[-]*\([0-9]*\)^0*\([468]\)$/{ s//(\1*\1)^(\2\/2)/ b loop } # 5 7 /^\([-]*[0-9]*\)^\([0-9]*\)$/{ s//\1*(\1^(\2-1))/ b loop } # reduce all number factorials /^0*[01]!/{ s//1/ b loop } /\([*+-/%^]\)0*[01]!/{ s//\11/ b loop } /\([0-9]*\)!/{ s//(\1-1)!*\1/ b loop } # sign simplifications /^-\([0-9]*\)\([*/%]\)-\([0-9]*\)$/{ s//\1\2\3/ b loop } /^\([0-9]*\)\([*/%]\)-\([0-9]*\)$/{ s//-\1\2\3/ b loop } /^-\([0-9][0-9]*\)[+]*-\([0-9][0-9]*\)$/{ s//\1+\2/ x s/\(.*\)/()-@@\1/ x b loop } /^-\([0-9]*\)[+]\([0-9]\)*$/{ s//\2-\1/ b loop } /^-.*[-+*/%].*/{ H s/^-// x s/^\(.*\)\n-.*$/()-@@\1/ x b loop } # can we simplify multiplications /^\([0-9]*\)\([*][0-9]*[1-9]\)00*$/{ H s//\1\2/ x s/^\(.*\)\n[0-9]*[*][0-9]*[1-9]\(00*\)$/()@\2@\1/ x b loop } /^\([0-9][1-9]*\)00*\([*][0-9]*\)$/{ H s//\1\2/ x s/^\(.*\)\n[0-9][1-9]*\(00*\)[*][0-9]*$/()@\2@\1/ x b loop } # can we simplify division (20/30 -> 2/3) /^\([0-9][0-9]*\)0\([/%]\)\([0-9][0-9]*\)0$/{ s//\1\2\3/ b loop } # n/1 -> n /^0*\([0-9][0-9]*\)0[/]0*1$/{ s//\1/ b loop } # n%2 -> last_digit(n)%2 (same for 1, BTW) N.B. NO LOOP /^[0-9]*\([0-9]\)%0*\([12]\)$/{ s//\1%\2/ } # move any mul/divs to the front via parans /^\([0-9+]*\)\([-+]\)\([0-9]*[*/][0-9*/]*\)/{ s//\1\2(\3)/ b loop } # can we div or mul /^[0-9]*[*][0-9]*$/{ b mul } /^[0-9]*[/%]0*$/{ i\ divide by zero d } /^[0-9]*[/%][0-9]*$/{ H s/\([0-9]\).*[/%]/\1-/ x s/^\(.*\)\n\([0-9]\)\([0-9]*\)\([/%]\)\([0-9]*\).*$/.\4\3q0r\2-\5@\1/ x b loop } /^\([0-9]*[*/%][0-9]*\)\(.*\)/{ H s//\1/ x s/^\(.*\)\n\([0-9]*[*/][0-9]*\)\(.*\)$/()@\3@\1/ x b loop } # can we add or subtract -- note subtract hold expression for underflow /^[0-9]*[+][0-9]*$/{ s/$/=/ b add } /^[0-9][0-9]*-[0-9]*$/{ H s/$/=/ b sub } /^\([0-9][0-9]*[-+][0-9]*\)\(.*\)/{ H s//\1/ x s/^\(.*\)\n\([0-9]*[-+][0-9]*\)\(.*\)$/()@\3@\1/ x b loop } # look in hold space for stack to reduce x /^done$/{ x s/^0*\([0-9][0-9]*\)/\1/ p d } # .[/%] numerator q quotient r remainder-divisor @stack /^\./{ x /^[^-]/{ H x s/.\(.\)\([0-9]*\)q\([^r]*\)r\([0-9]*\)-\([0-9]*\)@\(.*\)\n\(.*\)/.\1\2q\3+1r\7-\5@\6/ h s/..[0-9]*q[^r]*r\([0-9]*-[0-9]*\)@.*/\1/ b loop } /^-/{ g /.\(.\)\([0-9]\)\([0-9]*\)q\([^r]*\)r0*\([0-9]*\)-\([^@]*\)@.*/{ s//\5\2-\6/ x s/.\(.\)\([0-9]\)\([0-9]*\)q\([^r]*\)r0*\([0-9]*\)-\([0-9]*\)@\(.*\)/.\1\3q(\4)*10r\5\2-\6@\7/ x b loop } # no digits to shift on s/^\.[/]q\([^r]*\)r[^@]*@.*/\1/ s/^\.[%]q[^r]*r0*\([0-9][0-9]*\)-[^@]*@.*/\1/ /^\./{ i\ divide error q } x s/^\.[/%]q[^r]*r[^@]*@\(.*\)/\1/ x b loop } } /^()/{ s/// x G s/\(.*\)\n\([^@]*\)@\([^@]*\)@\(.*\)/\2\1\3/ x s/[^@]*@[^@]*@\(.*\)/\1/ x b loop } i\ help, stack problem - the hold space p x i\ and the pat space p i\ quit q # turn mul into add until 1*x -> x, 0*x -> 0 : mul /^00*\*.*/{ s//0/ b loop } /^0*1\*/{ s/// : leading s/^0*\([0-9][0-9]*\)/\1/ b loop } s/^\([0-9]*\)0\*\([0-9]*\)/\1*\20/ s/^\([0-9]*\)1\*\([0-9]*\)/\1*\20+\2/ s/^\([0-9]*\)2\*\([0-9]*\)/\1*\20+(\2+\2)/ s/^\([0-9]*\)3\*\([0-9]*\)/\1*\20+(\2+\2+\2)/ s/^\([0-9]*\)4\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2)/ s/^\([0-9]*\)5\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2)/ s/^\([0-9]*\)6\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2)/ s/^\([0-9]*\)7\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2+\2)/ s/^\([0-9]*\)8\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2+\2+\2)/ s/^\([0-9]*\)9\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2+\2+\2+\2)/ /^0*\*[0-9]*[+]*\(.*\)/{ s//\1/ b loop } b mul # get rid of a plus term until 0+x -> x : add /^[+]\([0-9+*]*\)=/{ s//\1/ b leading } /^\([0-9*]*\)[+]=/{ s//\1/ b loop } /^\([0-9]*\)0[+]\([0-9]*\)\([0-9]\)=/{ s//\1+\2=\3/ b add } /^\([0-9]*\)\([0-9]\)[+]\([0-9]*\)0=/{ s//\1+\3=\2/ b add } s/^\([0-9]*\)1[+]/\10+/ s/^\([0-9]*\)2[+]/\11+/ s/^\([0-9]*\)3[+]/\12+/ s/^\([0-9]*\)4[+]/\13+/ s/^\([0-9]*\)5[+]/\14+/ s/^\([0-9]*\)6[+]/\15+/ s/^\([0-9]*\)7[+]/\16+/ s/^\([0-9]*\)8[+]/\17+/ s/^\([0-9]*\)9[+]/\18+/ s/9=\([0-9]*\)$/_=\1/ s/8=\([0-9]*\)$/9=\1/ s/7=\([0-9]*\)$/8=\1/ s/6=\([0-9]*\)$/7=\1/ s/5=\([0-9]*\)$/6=\1/ s/4=\([0-9]*\)$/5=\1/ s/3=\([0-9]*\)$/4=\1/ s/2=\([0-9]*\)$/3=\1/ s/1=\([0-9]*\)$/2=\1/ /_/{ s//_0/ : inc s/9_/_0/ s/8_/9/ s/7_/8/ s/6_/7/ s/5_/6/ s/4_/5/ s/3_/4/ s/2_/3/ s/1_/2/ s/0_/1/ s/[+]_/+1/ /_/b inc } b add # get rid of a sub term until /-0*=/ or underflow : sub /^\([0-9]*\)-0*=/{ s//\1/ x s/\(.*\)\n.*$/\1/ x b leading } /^-\([0-9].*\)=/{ : under g s/.*\n\([0-9]*\)-\([0-9]*\).*/-(\2-\1)/ x s/\(.*\)\n.*/\1/ x b loop } /^\([0-9]*\)\([0-9]\)-\([0-9]*\)0=/{ s//\1-\3=\2/ b sub } s/1=/0=/ s/2=/1=/ s/3=/2=/ s/4=/3=/ s/5=/4=/ s/6=/5=/ s/7=/6=/ s/8=/7=/ s/9=/8=/ s/^\([0-9]*\)1-/\1_-/ s/^\([0-9]*\)2-/\11-/ s/^\([0-9]*\)3-/\12-/ s/^\([0-9]*\)4-/\13-/ s/^\([0-9]*\)5-/\14-/ s/^\([0-9]*\)6-/\15-/ s/^\([0-9]*\)7-/\16-/ s/^\([0-9]*\)8-/\17-/ s/^\([0-9]*\)9-/\18-/ s/^\([0-9]*\)0-/\1'9-/ s/_/0/ : scarry /0'/{ s//'9/ b scarry } /^'/{ b under } s/1'/0/ s/2'/1/ s/3'/2/ s/4'/3/ s/5'/4/ s/6'/5/ s/7'/6/ s/8'/7/ s/9'/8/ b sub