Current Path : /usr/src/tools/tools/ath/ath_ee_v4k_print/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/tools/tools/ath/ath_ee_v4k_print/v4k.c |
/* * Copyright (c) 2010-2011 Adrian Chadd, Xenion Pty Ltd. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: release/9.1.0/tools/tools/ath/ath_ee_v4k_print/v4k.c 221691 2011-05-09 10:39:15Z adrian $ */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <sys/types.h> #include <err.h> typedef enum { AH_FALSE = 0, /* NB: lots of code assumes false is zero */ AH_TRUE = 1, } HAL_BOOL; typedef enum { HAL_OK = 0, /* No error */ } HAL_STATUS; struct ath_hal; #include "ah_eeprom_v4k.h" void eeprom_v4k_base_print(uint16_t *buf) { HAL_EEPROM_v4k *eep = (HAL_EEPROM_v4k *) buf; BASE_EEP4K_HEADER *eh = &eep->ee_base.baseEepHeader; printf("| Version: 0x%.4x | Length: 0x%.4x | Checksum: 0x%.4x ", eh->version, eh->length, eh->checksum); printf("| CapFlags: 0x%.2x | eepMisc: 0x%.2x | RegDomain: 0x%.4x 0x%.4x | \n", eh->opCapFlags, eh->eepMisc, eh->regDmn[0], eh->regDmn[1]); printf("| MAC: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x ", eh->macAddr[0], eh->macAddr[1], eh->macAddr[2], eh->macAddr[3], eh->macAddr[4], eh->macAddr[5]); printf("| RxMask: 0x%.2x | TxMask: 0x%.2x | RfSilent: 0x%.4x | btOptions: 0x%.4x |\n", eh->rxMask, eh->txMask, eh->rfSilent, eh->blueToothOptions); printf("| DeviceCap: 0x%.4x | binBuildNumber: %.8x | deviceType: 0x%.2x | txGainType 0x%.2x |\n", eh->deviceCap, eh->binBuildNumber, eh->deviceType, eh->txGainType); } void eeprom_v4k_custdata_print(uint16_t *buf) { HAL_EEPROM_v4k *eep = (HAL_EEPROM_v4k *) buf; uint8_t *custdata = (uint8_t *) &eep->ee_base.custData; int i; printf("\n| Custdata: |\n"); for (i = 0; i < 20; i++) { printf("%s0x%.2x %s", i % 16 == 0 ? "| " : "", custdata[i], i % 16 == 15 ? "|\n" : ""); } printf("\n"); } void eeprom_v4k_modal_print(uint16_t *buf) { HAL_EEPROM_v4k *eep = (HAL_EEPROM_v4k *) buf; MODAL_EEP4K_HEADER *mh = &eep->ee_base.modalHeader; int i; printf("| antCtrlCommon: 0x%.8x |\n", mh->antCtrlCommon); printf("| switchSettling: 0x%.2x |\n", mh->switchSettling); printf("| adcDesiredSize: %d |\n| pgaDesiredSize: %.2f dBm |\n", mh->adcDesiredSize, (float) mh->pgaDesiredSize / 2.0); printf("| antCtrlChain: 0:0x%.4x |\n", mh->antCtrlChain[0]); printf("| antennaGainCh: 0:0x%.2x |\n", mh->antennaGainCh[0]); printf("| txRxAttenCh: 0:0x%.2x |\n", mh->txRxAttenCh[0]); printf("| rxTxMarginCh: 0:0x%.2x |\n", mh->rxTxMarginCh[0]); printf("| noiseFloorThresCh: 0:0x%.2x |\n", mh->noiseFloorThreshCh[0]); printf("| xlnaGainCh: 0:0x%.2x |\n", mh->xlnaGainCh[0]); printf("| iqCalICh: 0:0x%.2x |\n", mh->iqCalICh[0]); printf("| iqCalQCh: 0:0x%.2x |\n", mh->iqCalQCh[0]); printf("| bswAtten: 0:0x%.2x |\n", mh->bswAtten[0]); printf("| bswMargin: 0:0x%.2x |\n", mh->bswMargin[0]); printf("| xatten2Db: 0:0x%.2x |\n", mh->xatten2Db[0]); printf("| xatten2Margin: 0:0x%.2x |\n", mh->xatten2Margin[0]); printf("| txEndToXpaOff: 0x%.2x | txEndToRxOn: 0x%.2x | txFrameToXpaOn: 0x%.2x |\n", mh->txEndToXpaOff, mh->txEndToRxOn, mh->txFrameToXpaOn); printf("| thres62: 0x%.2x\n", mh->thresh62); printf("| xpdGain: 0x%.2x | xpd: 0x%.2x |\n", mh->xpdGain, mh->xpd); printf("| pdGainOverlap: 0x%.2x xpaBiasLvl: 0x%.2x |\n", mh->pdGainOverlap, mh->xpaBiasLvl); printf("| txFrameToDataStart: 0x%.2x | txFrameToPaOn: 0x%.2x |\n", mh->txFrameToDataStart, mh->txFrameToPaOn); printf("| ht40PowerIncForPdadc: 0x%.2x |\n", mh->ht40PowerIncForPdadc); printf("| swSettleHt40: 0x%.2x |\n", mh->swSettleHt40); printf("| ob_0: 0x%.2x | ob_1: 0x%.2x | ob_2: 0x%.2x | ob_3: 0x%.2x |\n", mh->ob_0, mh->ob_1, mh->ob_2, mh->ob_3); printf("| db_1_0: 0x%.2x | db_1_1: 0x%.2x | db_1_2: 0x%.2x | db_1_3: 0x%.2x db_1_4: 0x%.2x|\n", mh->db1_0, mh->db1_1, mh->db1_2, mh->db1_3, mh->db1_4); printf("| db_1_0: 0x%.2x | db_1_1: 0x%.2x | db_1_2: 0x%.2x | db_1_3: 0x%.2x db_1_4: 0x%.2x|\n", mh->db2_0, mh->db2_1, mh->db2_2, mh->db2_3, mh->db2_4); printf("| antdiv_ctl1: 0x%.2x antdiv_ctl2: 0x%.2x |\n", mh->antdiv_ctl1, mh->antdiv_ctl2); printf("| Modal Version: %.2x |\n", mh->version); printf("| futureModal: 0x%.2x 0x%.2x 0x%.2x 0x%.2x |\n", mh->futureModal[0], mh->futureModal[1], mh->futureModal[2], mh->futureModal[3] ); /* and now, spur channels */ for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) { printf("| Spur %d: spurChan: 0x%.4x spurRangeLow: 0x%.2x spurRangeHigh: 0x%.2x |\n", i, mh->spurChans[i].spurChan, (int) mh->spurChans[i].spurRangeLow, (int) mh->spurChans[i].spurRangeHigh); } } static void eeprom_v4k_print_caldata_perfreq(CAL_DATA_PER_FREQ_4K *f) { int i, j; for (i = 0; i < AR5416_4K_NUM_PD_GAINS; i++) { printf(" Gain %d: pwr dBm/vpd: ", i); for (j = 0; j < AR5416_PD_GAIN_ICEPTS; j++) { /* These are stored in 0.25dBm increments */ /* XXX is this assumption correct for ar9285? */ /* XXX shouldn't we care about the power table offset, if there is one? */ printf("%d:(%.2f/%d) ", j, (float) f->pwrPdg[i][j] / 4.00, f->vpdPdg[i][j]); } printf("\n"); } } void eeprom_v4k_calfreqpiers_print(uint16_t *buf) { HAL_EEPROM_v4k *eep = (HAL_EEPROM_v4k *) buf; int i, n; /* 2ghz cal piers */ printf("calFreqPier2G: "); for (i = 0; i < AR5416_4K_NUM_2G_CAL_PIERS; i++) { printf(" 0x%.2x ", eep->ee_base.calFreqPier2G[i]); } printf("|\n"); for (i = 0; i < AR5416_4K_NUM_2G_CAL_PIERS; i++) { if (eep->ee_base.calFreqPier2G[i] == 0xff) continue; printf("2Ghz Cal Pier %d\n", i); for (n = 0; n < AR5416_4K_MAX_CHAINS; n++) { printf(" Chain %d:\n", n); eeprom_v4k_print_caldata_perfreq(&eep->ee_base.calPierData2G[n][i]); } } printf("\n"); } /* XXX these should just reference the v14 print routines */ static void eeprom_v14_target_legacy_print(CAL_TARGET_POWER_LEG *l) { int i; if (l->bChannel == 0xff) return; printf(" bChannel: %d;", l->bChannel); for (i = 0; i < 4; i++) { printf(" %.2f", (float) l->tPow2x[i] / 2.0); } printf(" (dBm)\n"); } static void eeprom_v14_target_ht_print(CAL_TARGET_POWER_HT *l) { int i; if (l->bChannel == 0xff) return; printf(" bChannel: %d;", l->bChannel); for (i = 0; i < 8; i++) { printf(" %.2f", (float) l->tPow2x[i] / 2.0); } printf(" (dBm)\n"); } void eeprom_v4k_print_targets(uint16_t *buf) { HAL_EEPROM_v4k *eep = (HAL_EEPROM_v4k *) buf; int i; /* 2ghz rates */ printf("2Ghz CCK:\n"); for (i = 0; i < AR5416_4K_NUM_2G_CCK_TARGET_POWERS; i++) { eeprom_v14_target_legacy_print(&eep->ee_base.calTargetPowerCck[i]); } printf("2Ghz 11g:\n"); for (i = 0; i < AR5416_4K_NUM_2G_20_TARGET_POWERS; i++) { eeprom_v14_target_legacy_print(&eep->ee_base.calTargetPower2G[i]); } printf("2Ghz HT20:\n"); for (i = 0; i < AR5416_4K_NUM_2G_20_TARGET_POWERS; i++) { eeprom_v14_target_ht_print(&eep->ee_base.calTargetPower2GHT20[i]); } printf("2Ghz HT40:\n"); for (i = 0; i < AR5416_4K_NUM_2G_40_TARGET_POWERS; i++) { eeprom_v14_target_ht_print(&eep->ee_base.calTargetPower2GHT40[i]); } } static void eeprom_v4k_ctl_edge_print(CAL_CTL_DATA_4K *ctl) { int i, j; uint8_t pow, flag; for (i = 0; i < AR5416_4K_MAX_CHAINS; i++) { printf(" chain %d: ", i); for (j = 0; j < AR5416_4K_NUM_BAND_EDGES; j++) { pow = ctl->ctlEdges[i][j].tPowerFlag & 0x3f; flag = (ctl->ctlEdges[i][j].tPowerFlag & 0xc0) >> 6; printf(" %d:pow=%d,flag=%.2x", j, pow, flag); } printf("\n"); } } void eeprom_v4k_ctl_print(uint16_t *buf) { HAL_EEPROM_v4k *eep = (HAL_EEPROM_v4k *) buf; int i; for (i = 0; i < AR5416_4K_NUM_CTLS; i++) { if (eep->ee_base.ctlIndex[i] == 0) continue; printf("| ctlIndex: offset %d, value %d\n", i, eep->ee_base.ctlIndex[i]); eeprom_v4k_ctl_edge_print(&eep->ee_base.ctlData[i]); } } void eeprom_v4k_print_edges(uint16_t *buf) { HAL_EEPROM_v4k *eep = (HAL_EEPROM_v4k *) buf; int i; printf("| eeNumCtls: %d\n", eep->ee_numCtls); for (i = 0; i < NUM_EDGES*eep->ee_numCtls; i++) { /* XXX is flag 8 or 32 bits? */ printf("| edge %2d/%2d: rdEdge: %5d EdgePower: %.2f dBm Flag: 0x%.8x\n", i / NUM_EDGES, i % NUM_EDGES, eep->ee_rdEdgesPower[i].rdEdge, (float) eep->ee_rdEdgesPower[i].twice_rdEdgePower / 2.0, eep->ee_rdEdgesPower[i].flag); if (i % NUM_EDGES == (NUM_EDGES -1)) printf("|\n"); } } void eeprom_v4k_print_other(uint16_t *buf) { HAL_EEPROM_v4k *eep = (HAL_EEPROM_v4k *) buf; printf("| ee_antennaGainMax: %.2x\n", eep->ee_antennaGainMax); }