config root man

Current Path : /usr/src/tools/tools/ath/athstats/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //usr/src/tools/tools/ath/athstats/athstats.c

/*-
 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
 *    redistribution must be conditioned upon including a substantially
 *    similar Disclaimer requirement for further binary redistribution.
 *
 * NO WARRANTY
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGES.
 *
 * $FreeBSD: release/9.1.0/tools/tools/ath/athstats/athstats.c 217738 2011-01-22 23:37:42Z adrian $
 */

#include "opt_ah.h"

/*
 * ath statistics class.
 */
#include <sys/types.h>
#include <sys/file.h>
#include <sys/sockio.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_var.h>

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <unistd.h>
#include <err.h>

/* Use the system net80211 headers, rather than the kernel tree */
/*
 * XXX this means that if you build a separate net80211 stack
 * XXX with your kernel and don't install the new/changed headers,
 * XXX this tool may break.
 * XXX -adrian
 */
#include <net80211/ieee80211_ioctl.h>
#include <net80211/ieee80211_radiotap.h>

#include "ah.h"
#include "ah_desc.h"
#include "if_athioctl.h"

#include "athstats.h"

#ifdef ATH_SUPPORT_ANI
#define HAL_EP_RND(x,mul) \
	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
#define HAL_RSSI(x)     HAL_EP_RND(x, HAL_RSSI_EP_MULTIPLIER)
#endif

#define	NOTPRESENT	{ 0, "", "" }

#define	AFTER(prev)	((prev)+1)

static const struct fmt athstats[] = {
#define	S_INPUT		0
	{ 8,	"input",	"input",	"data frames received" },
#define	S_OUTPUT	AFTER(S_INPUT)
	{ 8,	"output",	"output",	"data frames transmit" },
#define	S_TX_ALTRATE	AFTER(S_OUTPUT)
	{ 7,	"altrate",	"altrate",	"tx frames with an alternate rate" },
#define	S_TX_SHORTRETRY	AFTER(S_TX_ALTRATE)
	{ 7,	"short",	"short",	"short on-chip tx retries" },
#define	S_TX_LONGRETRY	AFTER(S_TX_SHORTRETRY)
	{ 7,	"long",		"long",		"long on-chip tx retries" },
#define	S_TX_XRETRIES	AFTER(S_TX_LONGRETRY)
	{ 6,	"xretry",	"xretry",	"tx failed 'cuz too many retries" },
#define	S_MIB		AFTER(S_TX_XRETRIES)
	{ 5,	"mib",		"mib",		"mib overflow interrupts" },
#ifndef __linux__
#define	S_TX_LINEAR	AFTER(S_MIB)
	{ 5,	"txlinear",	"txlinear",	"tx linearized to cluster" },
#define	S_BSTUCK	AFTER(S_TX_LINEAR)
	{ 5,	"bstuck",	"bstuck",	"stuck beacon conditions" },
#define	S_INTRCOAL	AFTER(S_BSTUCK)
	{ 5,	"intrcoal",	"intrcoal",	"interrupts coalesced" },
#define	S_RATE		AFTER(S_INTRCOAL)
#else
#define	S_RATE		AFTER(S_MIB)
#endif
	{ 5,	"rate",		"rate",		"current transmit rate" },
#define	S_WATCHDOG	AFTER(S_RATE)
	{ 5,	"wdog",		"wdog",		"watchdog timeouts" },
#define	S_FATAL		AFTER(S_WATCHDOG)
	{ 5,	"fatal",	"fatal",	"hardware error interrupts" },
#define	S_BMISS		AFTER(S_FATAL)
	{ 5,	"bmiss",	"bmiss",	"beacon miss interrupts" },
#define	S_RXORN		AFTER(S_BMISS)
	{ 5,	"rxorn",	"rxorn",	"recv overrun interrupts" },
#define	S_RXEOL		AFTER(S_RXORN)
	{ 5,	"rxeol",	"rxeol",	"recv eol interrupts" },
#define	S_TXURN		AFTER(S_RXEOL)
	{ 5,	"txurn",	"txurn",	"txmit underrun interrupts" },
#define	S_TX_MGMT	AFTER(S_TXURN)
	{ 5,	"txmgt",	"txmgt",	"tx management frames" },
#define	S_TX_DISCARD	AFTER(S_TX_MGMT)
	{ 5,	"txdisc",	"txdisc",	"tx frames discarded prior to association" },
#define	S_TX_INVALID	AFTER(S_TX_DISCARD)
	{ 5,	"txinv",	"txinv",	"tx invalid (19)" },
#define	S_TX_QSTOP	AFTER(S_TX_INVALID)
	{ 5,	"qstop",	"qstop",	"tx stopped 'cuz no xmit buffer" },
#define	S_TX_ENCAP	AFTER(S_TX_QSTOP)
	{ 5,	"txencode",	"txencode",	"tx encapsulation failed" },
#define	S_TX_NONODE	AFTER(S_TX_ENCAP)
	{ 5,	"txnonode",	"txnonode",	"tx failed 'cuz no node" },
#define	S_TX_NOBUF	AFTER(S_TX_NONODE)
	{ 5,	"txnobuf",	"txnobuf",	"tx failed 'cuz dma buffer allocation failed" },
#define	S_TX_NOFRAG	AFTER(S_TX_NOBUF)
	{ 5,	"txnofrag",	"txnofrag",	"tx failed 'cuz frag buffer allocation(s) failed" },
#define	S_TX_NOMBUF	AFTER(S_TX_NOFRAG)
	{ 5,	"txnombuf",	"txnombuf",	"tx failed 'cuz mbuf allocation failed" },
#ifndef __linux__
#define	S_TX_NOMCL	AFTER(S_TX_NOMBUF)
	{ 5,	"txnomcl",	"txnomcl",	"tx failed 'cuz cluster allocation failed" },
#define	S_TX_FIFOERR	AFTER(S_TX_NOMCL)
#else
#define	S_TX_FIFOERR	AFTER(S_TX_NOMBUF)
#endif
	{ 5,	"efifo",	"efifo",	"tx failed 'cuz FIFO underrun" },
#define	S_TX_FILTERED	AFTER(S_TX_FIFOERR)
	{ 5,	"efilt",	"efilt",	"tx failed 'cuz destination filtered" },
#define	S_TX_BADRATE	AFTER(S_TX_FILTERED)
	{ 5,	"txbadrate",	"txbadrate",	"tx failed 'cuz bogus xmit rate" },
#define	S_TX_NOACK	AFTER(S_TX_BADRATE)
	{ 5,	"noack",	"noack",	"tx frames with no ack marked" },
#define	S_TX_RTS	AFTER(S_TX_NOACK)
	{ 5,	"rts",		"rts",		"tx frames with rts enabled" },
#define	S_TX_CTS	AFTER(S_TX_RTS)
	{ 5,	"cts",		"cts",		"tx frames with cts enabled" },
#define	S_TX_SHORTPRE	AFTER(S_TX_CTS)
	{ 5,	"shpre",	"shpre",	"tx frames with short preamble" },
#define	S_TX_PROTECT	AFTER(S_TX_SHORTPRE)
	{ 5,	"protect",	"protect",	"tx frames with 11g protection" },
#define	S_RX_ORN	AFTER(S_TX_PROTECT)
	{ 5,	"rxorn",	"rxorn",	"rx failed 'cuz of desc overrun" },
#define	S_RX_CRC_ERR	AFTER(S_RX_ORN)
	{ 6,	"crcerr",	"crcerr",	"rx failed 'cuz of bad CRC" },
#define	S_RX_FIFO_ERR	AFTER(S_RX_CRC_ERR)
	{ 5,	"rxfifo",	"rxfifo",	"rx failed 'cuz of FIFO overrun" },
#define	S_RX_CRYPTO_ERR	AFTER(S_RX_FIFO_ERR)
	{ 5,	"crypt",	"crypt",	"rx failed 'cuz decryption" },
#define	S_RX_MIC_ERR	AFTER(S_RX_CRYPTO_ERR)
	{ 4,	"mic",		"mic",		"rx failed 'cuz MIC failure" },
#define	S_RX_TOOSHORT	AFTER(S_RX_MIC_ERR)
	{ 5,	"rxshort",	"rxshort",	"rx failed 'cuz frame too short" },
#define	S_RX_NOMBUF	AFTER(S_RX_TOOSHORT)
	{ 5,	"rxnombuf",	"rxnombuf",	"rx setup failed 'cuz no mbuf" },
#define	S_RX_MGT	AFTER(S_RX_NOMBUF)
	{ 5,	"rxmgt",	"rxmgt",	"rx management frames" },
#define	S_RX_CTL	AFTER(S_RX_MGT)
	{ 5,	"rxctl",	"rxctl",	"rx control frames" },
#define	S_RX_PHY_ERR	AFTER(S_RX_CTL)
	{ 7,	"phyerr",	"phyerr",	"rx failed 'cuz of PHY err" },
#define	S_RX_PHY_UNDERRUN		AFTER(S_RX_PHY_ERR)
	{ 4,	"phyund",	"TUnd",	"transmit underrun" },
#define	S_RX_PHY_TIMING			AFTER(S_RX_PHY_UNDERRUN)
	{ 4,	"phytim",	"Tim",	"timing error" },
#define	S_RX_PHY_PARITY			AFTER(S_RX_PHY_TIMING)
	{ 4,	"phypar",	"IPar",	"illegal parity" },
#define	S_RX_PHY_RATE			AFTER(S_RX_PHY_PARITY)
	{ 4,	"phyrate",	"IRate",	"illegal rate" },
#define	S_RX_PHY_LENGTH			AFTER(S_RX_PHY_RATE)
	{ 4,	"phylen",	"ILen",		"illegal length" },
#define	S_RX_PHY_RADAR			AFTER(S_RX_PHY_LENGTH)
	{ 4,	"phyradar",	"Radar",	"radar detect" },
#define	S_RX_PHY_SERVICE		AFTER(S_RX_PHY_RADAR)
	{ 4,	"physervice",	"Service",	"illegal service" },
#define	S_RX_PHY_TOR			AFTER(S_RX_PHY_SERVICE)
	{ 4,	"phytor",	"TOR",		"transmit override receive" },
#define	S_RX_PHY_OFDM_TIMING		AFTER(S_RX_PHY_TOR)
	{ 6,	"ofdmtim",	"ofdmtim",	"OFDM timing" },
#define	S_RX_PHY_OFDM_SIGNAL_PARITY	AFTER(S_RX_PHY_OFDM_TIMING)
	{ 6,	"ofdmsig",	"ofdmsig",	"OFDM illegal parity" },
#define	S_RX_PHY_OFDM_RATE_ILLEGAL	AFTER(S_RX_PHY_OFDM_SIGNAL_PARITY)
	{ 6,	"ofdmrate",	"ofdmrate",	"OFDM illegal rate" },
#define	S_RX_PHY_OFDM_POWER_DROP	AFTER(S_RX_PHY_OFDM_RATE_ILLEGAL)
	{ 6,	"ofdmpow",	"ofdmpow",	"OFDM power drop" },
#define	S_RX_PHY_OFDM_SERVICE		AFTER(S_RX_PHY_OFDM_POWER_DROP)
	{ 6,	"ofdmservice",	"ofdmservice",	"OFDM illegal service" },
#define	S_RX_PHY_OFDM_RESTART		AFTER(S_RX_PHY_OFDM_SERVICE)
	{ 6,	"ofdmrestart",	"ofdmrestart",	"OFDM restart" },
#define	S_RX_PHY_CCK_TIMING		AFTER(S_RX_PHY_OFDM_RESTART)
	{ 6,	"ccktim",	"ccktim",	"CCK timing" },
#define	S_RX_PHY_CCK_HEADER_CRC		AFTER(S_RX_PHY_CCK_TIMING)
	{ 6,	"cckhead",	"cckhead",	"CCK header crc" },
#define	S_RX_PHY_CCK_RATE_ILLEGAL	AFTER(S_RX_PHY_CCK_HEADER_CRC)
	{ 6,	"cckrate",	"cckrate",	"CCK illegal rate" },
#define	S_RX_PHY_CCK_SERVICE		AFTER(S_RX_PHY_CCK_RATE_ILLEGAL)
	{ 6,	"cckservice",	"cckservice",	"CCK illegal service" },
#define	S_RX_PHY_CCK_RESTART		AFTER(S_RX_PHY_CCK_SERVICE)
	{ 6,	"cckrestar",	"cckrestar",	"CCK restart" },
#define	S_BE_NOMBUF	AFTER(S_RX_PHY_CCK_RESTART)
	{ 4,	"benombuf",	"benombuf",	"beacon setup failed 'cuz no mbuf" },
#define	S_BE_XMIT	AFTER(S_BE_NOMBUF)
	{ 7,	"bexmit",	"bexmit",	"beacons transmitted" },
#define	S_PER_CAL	AFTER(S_BE_XMIT)
	{ 4,	"pcal",		"pcal",		"periodic calibrations" },
#define	S_PER_CALFAIL	AFTER(S_PER_CAL)
	{ 4,	"pcalf",	"pcalf",	"periodic calibration failures" },
#define	S_PER_RFGAIN	AFTER(S_PER_CALFAIL)
	{ 4,	"prfga",	"prfga",	"rfgain value change" },
#if ATH_SUPPORT_TDMA
#define	S_TDMA_UPDATE	AFTER(S_PER_RFGAIN)
	{ 5,	"tdmau",	"tdmau",	"TDMA slot timing updates" },
#define	S_TDMA_TIMERS	AFTER(S_TDMA_UPDATE)
	{ 5,	"tdmab",	"tdmab",	"TDMA slot update set beacon timers" },
#define	S_TDMA_TSF	AFTER(S_TDMA_TIMERS)
	{ 5,	"tdmat",	"tdmat",	"TDMA slot update set TSF" },
#define	S_TDMA_TSFADJ	AFTER(S_TDMA_TSF)
	{ 8,	"tdmadj",	"tdmadj",	"TDMA slot adjust (usecs, smoothed)" },
#define	S_TDMA_ACK	AFTER(S_TDMA_TSFADJ)
	{ 5,	"tdmack",	"tdmack",	"TDMA tx failed 'cuz ACK required" },
#define	S_RATE_CALLS	AFTER(S_TDMA_ACK)
#else
#define	S_RATE_CALLS	AFTER(S_PER_RFGAIN)
#endif
	{ 5,	"ratec",	"ratec",	"rate control checks" },
#define	S_RATE_RAISE	AFTER(S_RATE_CALLS)
	{ 5,	"rate+",	"rate+",	"rate control raised xmit rate" },
#define	S_RATE_DROP	AFTER(S_RATE_RAISE)
	{ 5,	"rate-",	"rate-",	"rate control dropped xmit rate" },
#define	S_TX_RSSI	AFTER(S_RATE_DROP)
	{ 4,	"arssi",	"arssi",	"rssi of last ack" },
#define	S_RX_RSSI	AFTER(S_TX_RSSI)
	{ 4,	"rssi",		"rssi",		"avg recv rssi" },
#define	S_RX_NOISE	AFTER(S_RX_RSSI)
	{ 5,	"noise",	"noise",	"rx noise floor" },
#define	S_BMISS_PHANTOM	AFTER(S_RX_NOISE)
	{ 5,	"bmissphantom",	"bmissphantom",	"phantom beacon misses" },
#define	S_TX_RAW	AFTER(S_BMISS_PHANTOM)
	{ 5,	"txraw",	"txraw",	"tx frames through raw api" },
#define	S_TX_RAW_FAIL	AFTER(S_TX_RAW)
	{ 5,	"txrawfail",	"txrawfail",	"raw tx failed 'cuz interface/hw down" },
#define	S_RX_TOOBIG	AFTER(S_TX_RAW_FAIL)
	{ 5,	"rx2big",	"rx2big",	"rx failed 'cuz frame too large"  },
#ifndef __linux__
#define	S_CABQ_XMIT	AFTER(S_RX_TOOBIG)
	{ 5,	"cabxmit",	"cabxmit",	"cabq frames transmitted" },
#define	S_CABQ_BUSY	AFTER(S_CABQ_XMIT)
	{ 5,	"cabqbusy",	"cabqbusy",	"cabq xmit overflowed beacon interval" },
#define	S_TX_NODATA	AFTER(S_CABQ_BUSY)
	{ 5,	"txnodata",	"txnodata",	"tx discarded empty frame" },
#define	S_TX_BUSDMA	AFTER(S_TX_NODATA)
	{ 5,	"txbusdma",	"txbusdma",	"tx failed for dma resrcs" },
#define	S_RX_BUSDMA	AFTER(S_TX_BUSDMA)
	{ 5,	"rxbusdma",	"rxbusdma",	"rx setup failed for dma resrcs" },
#define	S_FF_TXOK	AFTER(S_RX_BUSDMA)
#else
#define	S_FF_TXOK	AFTER(S_RX_PHY_UNDERRUN)
#endif
	{ 5,	"fftxok",	"fftxok",	"fast frames xmit successfully" },
#define	S_FF_TXERR	AFTER(S_FF_TXOK)
	{ 5,	"fftxerr",	"fftxerr",	"fast frames not xmit due to error" },
#define	S_FF_RX		AFTER(S_FF_TXERR)
	{ 5,	"ffrx",		"ffrx",		"fast frames received" },
#define	S_FF_FLUSH	AFTER(S_FF_RX)
	{ 5,	"ffflush",	"ffflush",	"fast frames flushed from staging q" },
#define	S_TX_QFULL	AFTER(S_FF_FLUSH)
	{ 5,	"txqfull",	"txqfull",	"tx discarded 'cuz queue is full" },
#define	S_ANT_DEFSWITCH	AFTER(S_TX_QFULL)
	{ 5,	"defsw",	"defsw",	"switched default/rx antenna" },
#define	S_ANT_TXSWITCH	AFTER(S_ANT_DEFSWITCH)
	{ 5,	"txsw",		"txsw",		"tx used alternate antenna" },
#ifdef ATH_SUPPORT_ANI
#define	S_ANI_NOISE	AFTER(S_ANT_TXSWITCH)
	{ 2,	"ni",	"NI",		"noise immunity level" },
#define	S_ANI_SPUR	AFTER(S_ANI_NOISE)
	{ 2,	"si",	"SI",		"spur immunity level" },
#define	S_ANI_STEP	AFTER(S_ANI_SPUR)
	{ 2,	"step",	"ST",		"first step level" },
#define	S_ANI_OFDM	AFTER(S_ANI_STEP)
	{ 4,	"owsd",	"OWSD",		"OFDM weak signal detect" },
#define	S_ANI_CCK	AFTER(S_ANI_OFDM)
	{ 4,	"cwst",	"CWST",		"CCK weak signal threshold" },
#define	S_ANI_MAXSPUR	AFTER(S_ANI_CCK)
	{ 3,	"maxsi","MSI",		"max spur immunity level" },
#define	S_ANI_LISTEN	AFTER(S_ANI_MAXSPUR)
	{ 6,	"listen","LISTEN",	"listen time" },
#define	S_ANI_NIUP	AFTER(S_ANI_LISTEN)
	{ 4,	"ni+",	"NI-",		"ANI increased noise immunity" },
#define	S_ANI_NIDOWN	AFTER(S_ANI_NIUP)
	{ 4,	"ni-",	"NI-",		"ANI decrease noise immunity" },
#define	S_ANI_SIUP	AFTER(S_ANI_NIDOWN)
	{ 4,	"si+",	"SI+",		"ANI increased spur immunity" },
#define	S_ANI_SIDOWN	AFTER(S_ANI_SIUP)
	{ 4,	"si-",	"SI-",		"ANI decrease spur immunity" },
#define	S_ANI_OFDMON	AFTER(S_ANI_SIDOWN)
	{ 5,	"ofdm+","OFDM+",	"ANI enabled OFDM weak signal detect" },
#define	S_ANI_OFDMOFF	AFTER(S_ANI_OFDMON)
	{ 5,	"ofdm-","OFDM-",	"ANI disabled OFDM weak signal detect" },
#define	S_ANI_CCKHI	AFTER(S_ANI_OFDMOFF)
	{ 5,	"cck+",	"CCK+",		"ANI enabled CCK weak signal threshold" },
#define	S_ANI_CCKLO	AFTER(S_ANI_CCKHI)
	{ 5,	"cck-",	"CCK-",		"ANI disabled CCK weak signal threshold" },
#define	S_ANI_STEPUP	AFTER(S_ANI_CCKLO)
	{ 5,	"step+","STEP+",	"ANI increased first step level" },
#define	S_ANI_STEPDOWN	AFTER(S_ANI_STEPUP)
	{ 5,	"step-","STEP-",	"ANI decreased first step level" },
#define	S_ANI_OFDMERRS	AFTER(S_ANI_STEPDOWN)
	{ 8,	"ofdm",	"OFDM",		"cumulative OFDM phy error count" },
#define	S_ANI_CCKERRS	AFTER(S_ANI_OFDMERRS)
	{ 8,	"cck",	"CCK",		"cumulative CCK phy error count" },
#define	S_ANI_RESET	AFTER(S_ANI_CCKERRS)
	{ 5,	"reset","RESET",	"ANI parameters zero'd for non-STA operation" },
#define	S_ANI_LZERO	AFTER(S_ANI_RESET)
	{ 5,	"lzero","LZERO",	"ANI forced listen time to zero" },
#define	S_ANI_LNEG	AFTER(S_ANI_LZERO)
	{ 5,	"lneg",	"LNEG",		"ANI calculated listen time < 0" },
#define	S_MIB_ACKBAD	AFTER(S_ANI_LNEG)
	{ 5,	"ackbad","ACKBAD",	"missing ACK's" },
#define	S_MIB_RTSBAD	AFTER(S_MIB_ACKBAD)
	{ 5,	"rtsbad","RTSBAD",	"RTS without CTS" },
#define	S_MIB_RTSGOOD	AFTER(S_MIB_RTSBAD)
	{ 5,	"rtsgood","RTSGOOD",	"successful RTS" },
#define	S_MIB_FCSBAD	AFTER(S_MIB_RTSGOOD)
	{ 5,	"fcsbad","FCSBAD",	"bad FCS" },
#define	S_MIB_BEACONS	AFTER(S_MIB_FCSBAD)
	{ 5,	"beacons","beacons",	"beacons received" },
#define	S_NODE_AVGBRSSI	AFTER(S_MIB_BEACONS)
	{ 3,	"avgbrssi","BSI",	"average rssi (beacons only)" },
#define	S_NODE_AVGRSSI	AFTER(S_NODE_AVGBRSSI)
	{ 3,	"avgrssi","DSI",	"average rssi (all rx'd frames)" },
#define	S_NODE_AVGARSSI	AFTER(S_NODE_AVGRSSI)
	{ 3,	"avgtxrssi","TSI",	"average rssi (ACKs only)" },
#define	S_ANT_TX0	AFTER(S_NODE_AVGARSSI)
#else
#define	S_ANT_TX0	AFTER(S_ANT_TXSWITCH)
#endif /* ATH_SUPPORT_ANI */
	{ 8,	"tx0",	"ant0(tx)",	"frames tx on antenna 0" },
#define	S_ANT_TX1	AFTER(S_ANT_TX0)
	{ 8,	"tx1",	"ant1(tx)",	"frames tx on antenna 1"  },
#define	S_ANT_TX2	AFTER(S_ANT_TX1)
	{ 8,	"tx2",	"ant2(tx)",	"frames tx on antenna 2"  },
#define	S_ANT_TX3	AFTER(S_ANT_TX2)
	{ 8,	"tx3",	"ant3(tx)",	"frames tx on antenna 3"  },
#define	S_ANT_TX4	AFTER(S_ANT_TX3)
	{ 8,	"tx4",	"ant4(tx)",	"frames tx on antenna 4"  },
#define	S_ANT_TX5	AFTER(S_ANT_TX4)
	{ 8,	"tx5",	"ant5(tx)",	"frames tx on antenna 5"  },
#define	S_ANT_TX6	AFTER(S_ANT_TX5)
	{ 8,	"tx6",	"ant6(tx)",	"frames tx on antenna 6"  },
#define	S_ANT_TX7	AFTER(S_ANT_TX6)
	{ 8,	"tx7",	"ant7(tx)",	"frames tx on antenna 7"  },
#define	S_ANT_RX0	AFTER(S_ANT_TX7)
	{ 8,	"rx0",	"ant0(rx)",	"frames rx on antenna 0"  },
#define	S_ANT_RX1	AFTER(S_ANT_RX0)
	{ 8,	"rx1",	"ant1(rx)",	"frames rx on antenna 1"   },
#define	S_ANT_RX2	AFTER(S_ANT_RX1)
	{ 8,	"rx2",	"ant2(rx)",	"frames rx on antenna 2"   },
#define	S_ANT_RX3	AFTER(S_ANT_RX2)
	{ 8,	"rx3",	"ant3(rx)",	"frames rx on antenna 3"   },
#define	S_ANT_RX4	AFTER(S_ANT_RX3)
	{ 8,	"rx4",	"ant4(rx)",	"frames rx on antenna 4"   },
#define	S_ANT_RX5	AFTER(S_ANT_RX4)
	{ 8,	"rx5",	"ant5(rx)",	"frames rx on antenna 5"   },
#define	S_ANT_RX6	AFTER(S_ANT_RX5)
	{ 8,	"rx6",	"ant6(rx)",	"frames rx on antenna 6"   },
#define	S_ANT_RX7	AFTER(S_ANT_RX6)
	{ 8,	"rx7",	"ant7(rx)",	"frames rx on antenna 7"   },
#define	S_TX_SIGNAL	AFTER(S_ANT_RX7)
	{ 4,	"asignal",	"asig",	"signal of last ack (dBm)" },
#define	S_RX_SIGNAL	AFTER(S_TX_SIGNAL)
	{ 4,	"signal",	"sig",	"avg recv signal (dBm)" },
};
#define	S_PHY_MIN	S_RX_PHY_UNDERRUN
#define	S_PHY_MAX	S_RX_PHY_CCK_RESTART
#define	S_LAST		S_ANT_TX0
#define	S_MAX	S_ANT_RX7+1

struct _athstats {
	struct ath_stats ath;
#ifdef ATH_SUPPORT_ANI
	struct {
		uint32_t ast_ani_niup;		/* increased noise immunity */
		uint32_t ast_ani_nidown;	/* decreased noise immunity */
		uint32_t ast_ani_spurup;	/* increased spur immunity */
		uint32_t ast_ani_spurdown;	/* descreased spur immunity */
		uint32_t ast_ani_ofdmon;	/* OFDM weak signal detect on */
		uint32_t ast_ani_ofdmoff;	/* OFDM weak signal detect off*/
		uint32_t ast_ani_cckhigh;	/* CCK weak signal thr high */
		uint32_t ast_ani_ccklow;	/* CCK weak signal thr low */
		uint32_t ast_ani_stepup;	/* increased first step level */
		uint32_t ast_ani_stepdown;	/* decreased first step level */
		uint32_t ast_ani_ofdmerrs;	/* cumulative ofdm phy err cnt*/
		uint32_t ast_ani_cckerrs;	/* cumulative cck phy err cnt */
		uint32_t ast_ani_reset;	/* params zero'd for non-STA */
		uint32_t ast_ani_lzero;	/* listen time forced to zero */
		uint32_t ast_ani_lneg;		/* listen time calculated < 0 */
		HAL_MIB_STATS ast_mibstats;	/* MIB counter stats */
		HAL_NODE_STATS ast_nodestats;	/* latest rssi stats */
	} ani_stats;
	struct {
		uint8_t	noiseImmunityLevel;
		uint8_t	spurImmunityLevel;
		uint8_t	firstepLevel;
		uint8_t	ofdmWeakSigDetectOff;
		uint8_t	cckWeakSigThreshold;
		uint32_t listenTime;
	} ani_state;
#endif
};

struct athstatfoo_p {
	struct athstatfoo base;
	int s;
	int optstats;
#define	ATHSTATS_ANI	0x0001
	struct ifreq ifr;
	struct ath_diag atd;
	struct _athstats cur;
	struct _athstats total;
};

static void
ath_setifname(struct athstatfoo *wf0, const char *ifname)
{
	struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0;

	strncpy(wf->ifr.ifr_name, ifname, sizeof (wf->ifr.ifr_name));
#ifdef ATH_SUPPORT_ANI
	strncpy(wf->atd.ad_name, ifname, sizeof (wf->atd.ad_name));
	wf->optstats |= ATHSTATS_ANI;
#endif
}

static void 
ath_zerostats(struct athstatfoo *wf0)
{
	struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0;

	if (ioctl(wf->s, SIOCZATHSTATS, &wf->ifr) < 0)
		err(-1, wf->ifr.ifr_name);
}

static void
ath_collect(struct athstatfoo_p *wf, struct _athstats *stats)
{
	wf->ifr.ifr_data = (caddr_t) &stats->ath;
	if (ioctl(wf->s, SIOCGATHSTATS, &wf->ifr) < 0)
		err(1, wf->ifr.ifr_name);
#ifdef ATH_SUPPORT_ANI
	if (wf->optstats & ATHSTATS_ANI) {
		wf->atd.ad_id = 5;
		wf->atd.ad_out_data = (caddr_t) &stats->ani_state;
		wf->atd.ad_out_size = sizeof(stats->ani_state);
		if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0) {
			warn(wf->atd.ad_name);
			wf->optstats &= ~ATHSTATS_ANI;
		}
		wf->atd.ad_id = 8;
		wf->atd.ad_out_data = (caddr_t) &stats->ani_stats;
		wf->atd.ad_out_size = sizeof(stats->ani_stats);
		if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0)
			warn(wf->atd.ad_name);
	}
#endif /* ATH_SUPPORT_ANI */
}

static void
ath_collect_cur(struct statfoo *sf)
{
	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;

	ath_collect(wf, &wf->cur);
}

static void
ath_collect_tot(struct statfoo *sf)
{
	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;

	ath_collect(wf, &wf->total);
}

static void
ath_update_tot(struct statfoo *sf)
{
	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;

	wf->total = wf->cur;
}

static void
snprintrate(char b[], size_t bs, int rate)
{
	if (rate & IEEE80211_RATE_MCS)
		snprintf(b, bs, "MCS%u", rate &~ IEEE80211_RATE_MCS);
	else if (rate & 1)
		snprintf(b, bs, "%u.5M", rate / 2);
	else
		snprintf(b, bs, "%uM", rate / 2);
}

static int
ath_get_curstat(struct statfoo *sf, int s, char b[], size_t bs)
{
	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
#define	STAT(x) \
	snprintf(b, bs, "%u", wf->cur.ath.ast_##x - wf->total.ath.ast_##x); return 1
#define	PHY(x) \
	snprintf(b, bs, "%u", wf->cur.ath.ast_rx_phy[x] - wf->total.ath.ast_rx_phy[x]); return 1
#define	ANI(x) \
	snprintf(b, bs, "%u", wf->cur.ani_state.x); return 1
#define	ANISTAT(x) \
	snprintf(b, bs, "%u", wf->cur.ani_stats.ast_ani_##x - wf->total.ani_stats.ast_ani_##x); return 1
#define	MIBSTAT(x) \
	snprintf(b, bs, "%u", wf->cur.ani_stats.ast_mibstats.x - wf->total.ani_stats.ast_mibstats.x); return 1
#define	TXANT(x) \
	snprintf(b, bs, "%u", wf->cur.ath.ast_ant_tx[x] - wf->total.ath.ast_ant_tx[x]); return 1
#define	RXANT(x) \
	snprintf(b, bs, "%u", wf->cur.ath.ast_ant_rx[x] - wf->total.ath.ast_ant_rx[x]); return 1

	switch (s) {
	case S_INPUT:
		snprintf(b, bs, "%lu",
		    (wf->cur.ath.ast_rx_packets - wf->total.ath.ast_rx_packets) -
		    (wf->cur.ath.ast_rx_mgt - wf->total.ath.ast_rx_mgt));
		return 1;
	case S_OUTPUT:
		snprintf(b, bs, "%lu",
		    wf->cur.ath.ast_tx_packets - wf->total.ath.ast_tx_packets);
		return 1;
	case S_RATE:
		snprintrate(b, bs, wf->cur.ath.ast_tx_rate);
		return 1;
	case S_WATCHDOG:	STAT(watchdog);
	case S_FATAL:		STAT(hardware);
	case S_BMISS:		STAT(bmiss);
	case S_BMISS_PHANTOM:	STAT(bmiss_phantom);
#ifdef S_BSTUCK
	case S_BSTUCK:		STAT(bstuck);
#endif
	case S_RXORN:		STAT(rxorn);
	case S_RXEOL:		STAT(rxeol);
	case S_TXURN:		STAT(txurn);
	case S_MIB:		STAT(mib);
#ifdef S_INTRCOAL
	case S_INTRCOAL:	STAT(intrcoal);
#endif
	case S_TX_MGMT:		STAT(tx_mgmt);
	case S_TX_DISCARD:	STAT(tx_discard);
	case S_TX_QSTOP:	STAT(tx_qstop);
	case S_TX_ENCAP:	STAT(tx_encap);
	case S_TX_NONODE:	STAT(tx_nonode);
	case S_TX_NOBUF:	STAT(tx_nobuf);
	case S_TX_NOFRAG:	STAT(tx_nofrag);
	case S_TX_NOMBUF:	STAT(tx_nombuf);
#ifdef S_TX_NOMCL
	case S_TX_NOMCL:	STAT(tx_nomcl);
	case S_TX_LINEAR:	STAT(tx_linear);
	case S_TX_NODATA:	STAT(tx_nodata);
	case S_TX_BUSDMA:	STAT(tx_busdma);
#endif
	case S_TX_XRETRIES:	STAT(tx_xretries);
	case S_TX_FIFOERR:	STAT(tx_fifoerr);
	case S_TX_FILTERED:	STAT(tx_filtered);
	case S_TX_SHORTRETRY:	STAT(tx_shortretry);
	case S_TX_LONGRETRY:	STAT(tx_longretry);
	case S_TX_BADRATE:	STAT(tx_badrate);
	case S_TX_NOACK:	STAT(tx_noack);
	case S_TX_RTS:		STAT(tx_rts);
	case S_TX_CTS:		STAT(tx_cts);
	case S_TX_SHORTPRE:	STAT(tx_shortpre);
	case S_TX_ALTRATE:	STAT(tx_altrate);
	case S_TX_PROTECT:	STAT(tx_protect);
	case S_TX_RAW:		STAT(tx_raw);
	case S_TX_RAW_FAIL:	STAT(tx_raw_fail);
	case S_RX_NOMBUF:	STAT(rx_nombuf);
#ifdef S_RX_BUSDMA
	case S_RX_BUSDMA:	STAT(rx_busdma);
#endif
	case S_RX_ORN:		STAT(rx_orn);
	case S_RX_CRC_ERR:	STAT(rx_crcerr);
	case S_RX_FIFO_ERR: 	STAT(rx_fifoerr);
	case S_RX_CRYPTO_ERR: 	STAT(rx_badcrypt);
	case S_RX_MIC_ERR:	STAT(rx_badmic);
	case S_RX_PHY_ERR:	STAT(rx_phyerr);
	case S_RX_PHY_UNDERRUN:	PHY(HAL_PHYERR_UNDERRUN);
	case S_RX_PHY_TIMING:	PHY(HAL_PHYERR_TIMING);
	case S_RX_PHY_PARITY:	PHY(HAL_PHYERR_PARITY);
	case S_RX_PHY_RATE:	PHY(HAL_PHYERR_RATE);
	case S_RX_PHY_LENGTH:	PHY(HAL_PHYERR_LENGTH);
	case S_RX_PHY_RADAR:	PHY(HAL_PHYERR_RADAR);
	case S_RX_PHY_SERVICE:	PHY(HAL_PHYERR_SERVICE);
	case S_RX_PHY_TOR:	PHY(HAL_PHYERR_TOR);
	case S_RX_PHY_OFDM_TIMING:	  PHY(HAL_PHYERR_OFDM_TIMING);
	case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY);
	case S_RX_PHY_OFDM_RATE_ILLEGAL:  PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL);
	case S_RX_PHY_OFDM_POWER_DROP:	  PHY(HAL_PHYERR_OFDM_POWER_DROP);
	case S_RX_PHY_OFDM_SERVICE:	  PHY(HAL_PHYERR_OFDM_SERVICE);
	case S_RX_PHY_OFDM_RESTART:	  PHY(HAL_PHYERR_OFDM_RESTART);
	case S_RX_PHY_CCK_TIMING:	  PHY(HAL_PHYERR_CCK_TIMING);
	case S_RX_PHY_CCK_HEADER_CRC:	  PHY(HAL_PHYERR_CCK_HEADER_CRC);
	case S_RX_PHY_CCK_RATE_ILLEGAL:	  PHY(HAL_PHYERR_CCK_RATE_ILLEGAL);
	case S_RX_PHY_CCK_SERVICE:	  PHY(HAL_PHYERR_CCK_SERVICE);
	case S_RX_PHY_CCK_RESTART:	  PHY(HAL_PHYERR_CCK_RESTART);
	case S_RX_TOOSHORT:	STAT(rx_tooshort);
	case S_RX_TOOBIG:	STAT(rx_toobig);
	case S_RX_MGT:		STAT(rx_mgt);
	case S_RX_CTL:		STAT(rx_ctl);
	case S_TX_RSSI:
		snprintf(b, bs, "%d", wf->cur.ath.ast_tx_rssi);
		return 1;
	case S_RX_RSSI:
		snprintf(b, bs, "%d", wf->cur.ath.ast_rx_rssi);
		return 1;
	case S_BE_XMIT:		STAT(be_xmit);
	case S_BE_NOMBUF:	STAT(be_nombuf);
	case S_PER_CAL:		STAT(per_cal);
	case S_PER_CALFAIL:	STAT(per_calfail);
	case S_PER_RFGAIN:	STAT(per_rfgain);
#ifdef S_TDMA_UPDATE
	case S_TDMA_UPDATE:	STAT(tdma_update);
	case S_TDMA_TIMERS:	STAT(tdma_timers);
	case S_TDMA_TSF:	STAT(tdma_tsf);
	case S_TDMA_TSFADJ:
		snprintf(b, bs, "-%d/+%d",
		    wf->cur.ath.ast_tdma_tsfadjm, wf->cur.ath.ast_tdma_tsfadjp);
		return 1;
	case S_TDMA_ACK:	STAT(tdma_ack);
#endif
	case S_RATE_CALLS:	STAT(rate_calls);
	case S_RATE_RAISE:	STAT(rate_raise);
	case S_RATE_DROP:	STAT(rate_drop);
	case S_ANT_DEFSWITCH:	STAT(ant_defswitch);
	case S_ANT_TXSWITCH:	STAT(ant_txswitch);
#ifdef S_ANI_NOISE
	case S_ANI_NOISE:	ANI(noiseImmunityLevel);
	case S_ANI_SPUR:	ANI(spurImmunityLevel);
	case S_ANI_STEP:	ANI(firstepLevel);
	case S_ANI_OFDM:	ANI(ofdmWeakSigDetectOff);
	case S_ANI_CCK:		ANI(cckWeakSigThreshold);
	case S_ANI_LISTEN:	ANI(listenTime);
	case S_ANI_NIUP:	ANISTAT(niup);
	case S_ANI_NIDOWN:	ANISTAT(nidown);
	case S_ANI_SIUP:	ANISTAT(spurup);
	case S_ANI_SIDOWN:	ANISTAT(spurdown);
	case S_ANI_OFDMON:	ANISTAT(ofdmon);
	case S_ANI_OFDMOFF:	ANISTAT(ofdmoff);
	case S_ANI_CCKHI:	ANISTAT(cckhigh);
	case S_ANI_CCKLO:	ANISTAT(ccklow);
	case S_ANI_STEPUP:	ANISTAT(stepup);
	case S_ANI_STEPDOWN:	ANISTAT(stepdown);
	case S_ANI_OFDMERRS:	ANISTAT(ofdmerrs);
	case S_ANI_CCKERRS:	ANISTAT(cckerrs);
	case S_ANI_RESET:	ANISTAT(reset);
	case S_ANI_LZERO:	ANISTAT(lzero);
	case S_ANI_LNEG:	ANISTAT(lneg);
	case S_MIB_ACKBAD:	MIBSTAT(ackrcv_bad);
	case S_MIB_RTSBAD:	MIBSTAT(rts_bad);
	case S_MIB_RTSGOOD:	MIBSTAT(rts_good);
	case S_MIB_FCSBAD:	MIBSTAT(fcs_bad);
	case S_MIB_BEACONS:	MIBSTAT(beacons);
	case S_NODE_AVGBRSSI:
		snprintf(b, bs, "%u",
		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgbrssi));
		return 1;
	case S_NODE_AVGRSSI:
		snprintf(b, bs, "%u",
		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgrssi));
		return 1;
	case S_NODE_AVGARSSI:
		snprintf(b, bs, "%u",
		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgtxrssi));
		return 1;
#endif
	case S_ANT_TX0:		TXANT(0);
	case S_ANT_TX1:		TXANT(1);
	case S_ANT_TX2:		TXANT(2);
	case S_ANT_TX3:		TXANT(3);
	case S_ANT_TX4:		TXANT(4);
	case S_ANT_TX5:		TXANT(5);
	case S_ANT_TX6:		TXANT(6);
	case S_ANT_TX7:		TXANT(7);
	case S_ANT_RX0:		RXANT(0);
	case S_ANT_RX1:		RXANT(1);
	case S_ANT_RX2:		RXANT(2);
	case S_ANT_RX3:		RXANT(3);
	case S_ANT_RX4:		RXANT(4);
	case S_ANT_RX5:		RXANT(5);
	case S_ANT_RX6:		RXANT(6);
	case S_ANT_RX7:		RXANT(7);
#ifdef S_CABQ_XMIT
	case S_CABQ_XMIT:	STAT(cabq_xmit);
	case S_CABQ_BUSY:	STAT(cabq_busy);
#endif
	case S_FF_TXOK:		STAT(ff_txok);
	case S_FF_TXERR:	STAT(ff_txerr);
	case S_FF_RX:		STAT(ff_rx);
	case S_FF_FLUSH:	STAT(ff_flush);
	case S_TX_QFULL:	STAT(tx_qfull);
	case S_RX_NOISE:
		snprintf(b, bs, "%d", wf->cur.ath.ast_rx_noise);
		return 1;
	case S_TX_SIGNAL:
		snprintf(b, bs, "%d",
			wf->cur.ath.ast_tx_rssi + wf->cur.ath.ast_rx_noise);
		return 1;
	case S_RX_SIGNAL:
		snprintf(b, bs, "%d",
			wf->cur.ath.ast_rx_rssi + wf->cur.ath.ast_rx_noise);
		return 1;
	}
	b[0] = '\0';
	return 0;
#undef RXANT
#undef TXANT
#undef ANI
#undef ANISTAT
#undef MIBSTAT
#undef PHY
#undef STAT
}

static int
ath_get_totstat(struct statfoo *sf, int s, char b[], size_t bs)
{
	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
#define	STAT(x) \
	snprintf(b, bs, "%u", wf->total.ath.ast_##x); return 1
#define	PHY(x) \
	snprintf(b, bs, "%u", wf->total.ath.ast_rx_phy[x]); return 1
#define	ANI(x) \
	snprintf(b, bs, "%u", wf->total.ani_state.x); return 1
#define	ANISTAT(x) \
	snprintf(b, bs, "%u", wf->total.ani_stats.ast_ani_##x); return 1
#define	MIBSTAT(x) \
	snprintf(b, bs, "%u", wf->total.ani_stats.ast_mibstats.x); return 1
#define	TXANT(x) \
	snprintf(b, bs, "%u", wf->total.ath.ast_ant_tx[x]); return 1
#define	RXANT(x) \
	snprintf(b, bs, "%u", wf->total.ath.ast_ant_rx[x]); return 1

	switch (s) {
	case S_INPUT:
		snprintf(b, bs, "%lu",
		    wf->total.ath.ast_rx_packets - wf->total.ath.ast_rx_mgt);
		return 1;
	case S_OUTPUT:
		snprintf(b, bs, "%lu", wf->total.ath.ast_tx_packets);
		return 1;
	case S_RATE:
		snprintrate(b, bs, wf->total.ath.ast_tx_rate);
		return 1;
	case S_WATCHDOG:	STAT(watchdog);
	case S_FATAL:		STAT(hardware);
	case S_BMISS:		STAT(bmiss);
	case S_BMISS_PHANTOM:	STAT(bmiss_phantom);
#ifdef S_BSTUCK
	case S_BSTUCK:		STAT(bstuck);
#endif
	case S_RXORN:		STAT(rxorn);
	case S_RXEOL:		STAT(rxeol);
	case S_TXURN:		STAT(txurn);
	case S_MIB:		STAT(mib);
#ifdef S_INTRCOAL
	case S_INTRCOAL:	STAT(intrcoal);
#endif
	case S_TX_MGMT:		STAT(tx_mgmt);
	case S_TX_DISCARD:	STAT(tx_discard);
	case S_TX_QSTOP:	STAT(tx_qstop);
	case S_TX_ENCAP:	STAT(tx_encap);
	case S_TX_NONODE:	STAT(tx_nonode);
	case S_TX_NOBUF:	STAT(tx_nobuf);
	case S_TX_NOFRAG:	STAT(tx_nofrag);
	case S_TX_NOMBUF:	STAT(tx_nombuf);
#ifdef S_TX_NOMCL
	case S_TX_NOMCL:	STAT(tx_nomcl);
	case S_TX_LINEAR:	STAT(tx_linear);
	case S_TX_NODATA:	STAT(tx_nodata);
	case S_TX_BUSDMA:	STAT(tx_busdma);
#endif
	case S_TX_XRETRIES:	STAT(tx_xretries);
	case S_TX_FIFOERR:	STAT(tx_fifoerr);
	case S_TX_FILTERED:	STAT(tx_filtered);
	case S_TX_SHORTRETRY:	STAT(tx_shortretry);
	case S_TX_LONGRETRY:	STAT(tx_longretry);
	case S_TX_BADRATE:	STAT(tx_badrate);
	case S_TX_NOACK:	STAT(tx_noack);
	case S_TX_RTS:		STAT(tx_rts);
	case S_TX_CTS:		STAT(tx_cts);
	case S_TX_SHORTPRE:	STAT(tx_shortpre);
	case S_TX_ALTRATE:	STAT(tx_altrate);
	case S_TX_PROTECT:	STAT(tx_protect);
	case S_TX_RAW:		STAT(tx_raw);
	case S_TX_RAW_FAIL:	STAT(tx_raw_fail);
	case S_RX_NOMBUF:	STAT(rx_nombuf);
#ifdef S_RX_BUSDMA
	case S_RX_BUSDMA:	STAT(rx_busdma);
#endif
	case S_RX_ORN:		STAT(rx_orn);
	case S_RX_CRC_ERR:	STAT(rx_crcerr);
	case S_RX_FIFO_ERR: 	STAT(rx_fifoerr);
	case S_RX_CRYPTO_ERR: 	STAT(rx_badcrypt);
	case S_RX_MIC_ERR:	STAT(rx_badmic);
	case S_RX_PHY_ERR:	STAT(rx_phyerr);
	case S_RX_PHY_UNDERRUN:	PHY(HAL_PHYERR_UNDERRUN);
	case S_RX_PHY_TIMING:	PHY(HAL_PHYERR_TIMING);
	case S_RX_PHY_PARITY:	PHY(HAL_PHYERR_PARITY);
	case S_RX_PHY_RATE:	PHY(HAL_PHYERR_RATE);
	case S_RX_PHY_LENGTH:	PHY(HAL_PHYERR_LENGTH);
	case S_RX_PHY_RADAR:	PHY(HAL_PHYERR_RADAR);
	case S_RX_PHY_SERVICE:	PHY(HAL_PHYERR_SERVICE);
	case S_RX_PHY_TOR:	PHY(HAL_PHYERR_TOR);
	case S_RX_PHY_OFDM_TIMING:	  PHY(HAL_PHYERR_OFDM_TIMING);
	case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY);
	case S_RX_PHY_OFDM_RATE_ILLEGAL:  PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL);
	case S_RX_PHY_OFDM_POWER_DROP:	  PHY(HAL_PHYERR_OFDM_POWER_DROP);
	case S_RX_PHY_OFDM_SERVICE:	  PHY(HAL_PHYERR_OFDM_SERVICE);
	case S_RX_PHY_OFDM_RESTART:	  PHY(HAL_PHYERR_OFDM_RESTART);
	case S_RX_PHY_CCK_TIMING:	  PHY(HAL_PHYERR_CCK_TIMING);
	case S_RX_PHY_CCK_HEADER_CRC:	  PHY(HAL_PHYERR_CCK_HEADER_CRC);
	case S_RX_PHY_CCK_RATE_ILLEGAL:	  PHY(HAL_PHYERR_CCK_RATE_ILLEGAL);
	case S_RX_PHY_CCK_SERVICE:	  PHY(HAL_PHYERR_CCK_SERVICE);
	case S_RX_PHY_CCK_RESTART:	  PHY(HAL_PHYERR_CCK_RESTART);
	case S_RX_TOOSHORT:	STAT(rx_tooshort);
	case S_RX_TOOBIG:	STAT(rx_toobig);
	case S_RX_MGT:		STAT(rx_mgt);
	case S_RX_CTL:		STAT(rx_ctl);
	case S_TX_RSSI:
		snprintf(b, bs, "%d", wf->total.ath.ast_tx_rssi);
		return 1;
	case S_RX_RSSI:
		snprintf(b, bs, "%d", wf->total.ath.ast_rx_rssi);
		return 1;
	case S_BE_XMIT:		STAT(be_xmit);
	case S_BE_NOMBUF:	STAT(be_nombuf);
	case S_PER_CAL:		STAT(per_cal);
	case S_PER_CALFAIL:	STAT(per_calfail);
	case S_PER_RFGAIN:	STAT(per_rfgain);
#ifdef S_TDMA_UPDATE
	case S_TDMA_UPDATE:	STAT(tdma_update);
	case S_TDMA_TIMERS:	STAT(tdma_timers);
	case S_TDMA_TSF:	STAT(tdma_tsf);
	case S_TDMA_TSFADJ:
		snprintf(b, bs, "-%d/+%d",
		    wf->total.ath.ast_tdma_tsfadjm,
		    wf->total.ath.ast_tdma_tsfadjp);
		return 1;
	case S_TDMA_ACK:	STAT(tdma_ack);
#endif
	case S_RATE_CALLS:	STAT(rate_calls);
	case S_RATE_RAISE:	STAT(rate_raise);
	case S_RATE_DROP:	STAT(rate_drop);
	case S_ANT_DEFSWITCH:	STAT(ant_defswitch);
	case S_ANT_TXSWITCH:	STAT(ant_txswitch);
#ifdef S_ANI_NOISE
	case S_ANI_NOISE:	ANI(noiseImmunityLevel);
	case S_ANI_SPUR:	ANI(spurImmunityLevel);
	case S_ANI_STEP:	ANI(firstepLevel);
	case S_ANI_OFDM:	ANI(ofdmWeakSigDetectOff);
	case S_ANI_CCK:		ANI(cckWeakSigThreshold);
	case S_ANI_LISTEN:	ANI(listenTime);
	case S_ANI_NIUP:	ANISTAT(niup);
	case S_ANI_NIDOWN:	ANISTAT(nidown);
	case S_ANI_SIUP:	ANISTAT(spurup);
	case S_ANI_SIDOWN:	ANISTAT(spurdown);
	case S_ANI_OFDMON:	ANISTAT(ofdmon);
	case S_ANI_OFDMOFF:	ANISTAT(ofdmoff);
	case S_ANI_CCKHI:	ANISTAT(cckhigh);
	case S_ANI_CCKLO:	ANISTAT(ccklow);
	case S_ANI_STEPUP:	ANISTAT(stepup);
	case S_ANI_STEPDOWN:	ANISTAT(stepdown);
	case S_ANI_OFDMERRS:	ANISTAT(ofdmerrs);
	case S_ANI_CCKERRS:	ANISTAT(cckerrs);
	case S_ANI_RESET:	ANISTAT(reset);
	case S_ANI_LZERO:	ANISTAT(lzero);
	case S_ANI_LNEG:	ANISTAT(lneg);
	case S_MIB_ACKBAD:	MIBSTAT(ackrcv_bad);
	case S_MIB_RTSBAD:	MIBSTAT(rts_bad);
	case S_MIB_RTSGOOD:	MIBSTAT(rts_good);
	case S_MIB_FCSBAD:	MIBSTAT(fcs_bad);
	case S_MIB_BEACONS:	MIBSTAT(beacons);
	case S_NODE_AVGBRSSI:
		snprintf(b, bs, "%u",
		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgbrssi));
		return 1;
	case S_NODE_AVGRSSI:
		snprintf(b, bs, "%u",
		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgrssi));
		return 1;
	case S_NODE_AVGARSSI:
		snprintf(b, bs, "%u",
		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgtxrssi));
		return 1;
#endif
	case S_ANT_TX0:		TXANT(0);
	case S_ANT_TX1:		TXANT(1);
	case S_ANT_TX2:		TXANT(2);
	case S_ANT_TX3:		TXANT(3);
	case S_ANT_TX4:		TXANT(4);
	case S_ANT_TX5:		TXANT(5);
	case S_ANT_TX6:		TXANT(6);
	case S_ANT_TX7:		TXANT(7);
	case S_ANT_RX0:		RXANT(0);
	case S_ANT_RX1:		RXANT(1);
	case S_ANT_RX2:		RXANT(2);
	case S_ANT_RX3:		RXANT(3);
	case S_ANT_RX4:		RXANT(4);
	case S_ANT_RX5:		RXANT(5);
	case S_ANT_RX6:		RXANT(6);
	case S_ANT_RX7:		RXANT(7);
#ifdef S_CABQ_XMIT
	case S_CABQ_XMIT:	STAT(cabq_xmit);
	case S_CABQ_BUSY:	STAT(cabq_busy);
#endif
	case S_FF_TXOK:		STAT(ff_txok);
	case S_FF_TXERR:	STAT(ff_txerr);
	case S_FF_RX:		STAT(ff_rx);
	case S_FF_FLUSH:	STAT(ff_flush);
	case S_TX_QFULL:	STAT(tx_qfull);
	case S_RX_NOISE:
		snprintf(b, bs, "%d", wf->total.ath.ast_rx_noise);
		return 1;
	case S_TX_SIGNAL:
		snprintf(b, bs, "%d",
			wf->total.ath.ast_tx_rssi + wf->total.ath.ast_rx_noise);
		return 1;
	case S_RX_SIGNAL:
		snprintf(b, bs, "%d",
			wf->total.ath.ast_rx_rssi + wf->total.ath.ast_rx_noise);
		return 1;
	}
	b[0] = '\0';
	return 0;
#undef RXANT
#undef TXANT
#undef ANI
#undef ANISTAT
#undef MIBSTAT
#undef PHY
#undef STAT
}

static void
ath_print_verbose(struct statfoo *sf, FILE *fd)
{
	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
#define	isphyerr(i)	(S_PHY_MIN <= i && i <= S_PHY_MAX)
	const struct fmt *f;
	char s[32];
	const char *indent;
	int i, width;

	width = 0;
	for (i = 0; i < S_LAST; i++) {
		f = &sf->stats[i];
		if (!isphyerr(i) && f->width > width)
			width = f->width;
	}
	for (i = 0; i < S_LAST; i++) {
		if (ath_get_totstat(sf, i, s, sizeof(s)) && strcmp(s, "0")) {
			if (isphyerr(i))
				indent = "    ";
			else
				indent = "";
			fprintf(fd, "%s%-*s %s\n", indent, width, s, athstats[i].desc);
		}
	}
	fprintf(fd, "Antenna profile:\n");
	for (i = 0; i < 8; i++)
		if (wf->total.ath.ast_ant_rx[i] || wf->total.ath.ast_ant_tx[i])
			fprintf(fd, "[%u] tx %8u rx %8u\n", i,
				wf->total.ath.ast_ant_tx[i],
				wf->total.ath.ast_ant_rx[i]);
#undef isphyerr
}

STATFOO_DEFINE_BOUNCE(athstatfoo)

struct athstatfoo *
athstats_new(const char *ifname, const char *fmtstring)
{
#define	N(a)	(sizeof(a) / sizeof(a[0]))
	struct athstatfoo_p *wf;

	wf = calloc(1, sizeof(struct athstatfoo_p));
	if (wf != NULL) {
		statfoo_init(&wf->base.base, "athstats", athstats, N(athstats));
		/* override base methods */
		wf->base.base.collect_cur = ath_collect_cur;
		wf->base.base.collect_tot = ath_collect_tot;
		wf->base.base.get_curstat = ath_get_curstat;
		wf->base.base.get_totstat = ath_get_totstat;
		wf->base.base.update_tot = ath_update_tot;
		wf->base.base.print_verbose = ath_print_verbose;

		/* setup bounce functions for public methods */
		STATFOO_BOUNCE(wf, athstatfoo);

		/* setup our public methods */
		wf->base.setifname = ath_setifname;
#if 0
		wf->base.setstamac = wlan_setstamac;
#endif
		wf->base.zerostats = ath_zerostats;
		wf->s = socket(AF_INET, SOCK_DGRAM, 0);
		if (wf->s < 0)
			err(1, "socket");

		ath_setifname(&wf->base, ifname);
		wf->base.setfmt(&wf->base, fmtstring);
	}
	return &wf->base;
#undef N
}

Man Man