Current Path : /usr/src/tools/tools/netrate/juggle/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/tools/tools/netrate/juggle/juggle.c |
/*- * Copyright (c) 2005 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: release/9.1.0/tools/tools/netrate/juggle/juggle.c 213574 2010-10-08 14:31:49Z pluknet $ */ #include <sys/types.h> #include <sys/socket.h> #include <sys/stdint.h> #include <sys/time.h> #include <sys/utsname.h> #include <sys/wait.h> #include <netinet/in.h> #include <err.h> #include <errno.h> #include <pthread.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> /* * juggle is a simple IPC/context switch performance test, which works on * pairs of file descriptors of various types. In various runs, it considers * the cost of bouncing a message synchronously across the descriptor pair, * either in the same thread, two different threads, or two different * processes. Timing measurements for each series of I/O's are reported, but * the first measurement in each series discarded as "warmup" on the IPC * primitive. Variations on the test permit for pipelining, or the insertion * of more than one packet into the stream at a time, intended to permit * greater parallelism, hopefully allowing performance numbers to reflect * use of available parallelism, and/or intelligence in context switching to * avoid premature switching when multiple messages are queued. */ /* * The UDP test uses UDP over the loopback interface. Two arbitrary but * fixed port numbers. */ #define UDP_PORT1 2020 #define UDP_PORT2 2021 /* * Size of each message. Must be smaller than the socket buffer or pipe * buffer maximum size, as we want to send it atomically without blocking. * If pipelining is in use, must be able to fit PIPELINE_MAX of these * messages into the send queue. */ #define MESSAGELEN 128 /* * Number of message cycles -- into fd1, out of fd2, into fd2, and out of * fd1. By counting in cycles, we allow the master thread or process to * perform timing without explicitly synchronizing with the secondary thread * or process. */ #define NUMCYCLES 1024 /* * Number of times to run each test. */ #define LOOPS 10 /* * Number of in-flight messages per cycle. I adjusting this value, be * careful not to exceed the socket/etc buffer depth, or messages may be lost * or result in blocking. */ #define PIPELINE_MAX 4 /* * As in all programs, steal timespecsub() from time.h. */ #define timespecsub(vvp, uvp) \ do { \ (vvp)->tv_sec -= (uvp)->tv_sec; \ (vvp)->tv_nsec -= (uvp)->tv_nsec; \ if ((vvp)->tv_nsec < 0) { \ (vvp)->tv_sec--; \ (vvp)->tv_nsec += 1000000000; \ } \ } while (0) static int udp_create(int *fd1p, int *fd2p) { struct sockaddr_in sin1, sin2; int sock1, sock2; sock1 = socket(PF_INET, SOCK_DGRAM, 0); if (sock1 == -1) return (-1); sock2 = socket(PF_INET, SOCK_DGRAM, 0); if (sock2 == -1) { close(sock1); return (-1); } bzero(&sin1, sizeof(sin1)); sin1.sin_len = sizeof(sin1); sin1.sin_family = AF_INET; sin1.sin_addr.s_addr = htonl(INADDR_LOOPBACK); sin1.sin_port = htons(UDP_PORT1); bzero(&sin2, sizeof(sin2)); sin2.sin_len = sizeof(sin2); sin2.sin_family = AF_INET; sin2.sin_addr.s_addr = htonl(INADDR_LOOPBACK); sin2.sin_port = htons(UDP_PORT2); if (bind(sock1, (struct sockaddr *) &sin1, sizeof(sin1)) < 0) { close(sock1); close(sock2); return (-1); } if (bind(sock2, (struct sockaddr *) &sin2, sizeof(sin2)) < 0) { close(sock1); close(sock2); return (-1); } if (connect(sock1, (struct sockaddr *) &sin2, sizeof(sin2)) < 0) { close(sock1); close(sock2); return (-1); } if (connect(sock2, (struct sockaddr *) &sin1, sizeof(sin1)) < 0) { close(sock1); close(sock2); return (-1); } *fd1p = sock1; *fd2p = sock2; return (0); } static int pipe_create(int *fd1p, int *fd2p) { int fds[2]; if (pipe(fds) < 0) return (-1); *fd1p = fds[0]; *fd2p = fds[1]; return (0); } static int socketpairdgram_create(int *fd1p, int *fd2p) { int fds[2]; if (socketpair(PF_LOCAL, SOCK_DGRAM, 0, fds) < 0) return (-1); *fd1p = fds[0]; *fd2p = fds[1]; return (0); } static int socketpairstream_create(int *fd1p, int *fd2p) { int fds[2]; if (socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) return (-1); *fd1p = fds[0]; *fd2p = fds[1]; return (0); } static int message_send(int s) { u_char buffer[MESSAGELEN]; ssize_t len; bzero(buffer, sizeof(buffer)); len = write(s, buffer, sizeof(buffer)); if (len == -1) return (-1); if (len != sizeof(buffer)) { errno = EMSGSIZE; return (-1); } return (0); } static int message_recv(int s) { u_char buffer[MESSAGELEN]; ssize_t len; len = read(s, buffer, sizeof(buffer)); if (len == -1) return (-1); if (len != sizeof(buffer)) { errno = EMSGSIZE; return (-1); } return (0); } /* * Juggle messages between two file descriptors in a single thread/process, * so simply a measure of IPC performance. */ static struct timespec juggle(int fd1, int fd2, int pipeline) { struct timespec tstart, tfinish; int i, j; if (clock_gettime(CLOCK_REALTIME, &tstart) < 0) err(-1, "juggle: clock_gettime"); for (i = 0; i < NUMCYCLES; i++) { for (j = 0; j < pipeline; j++) { if (message_send(fd1) < 0) err(-1, "message_send fd1"); } for (j = 0; j < pipeline; j++) { if (message_recv(fd2) < 0) err(-1, "message_recv fd2"); if (message_send(fd2) < 0) err(-1, "message_send fd2"); } for (j = 0; j < pipeline; j++) { if (message_recv(fd1) < 0) err(-1, "message_recv fd1"); } } if (clock_gettime(CLOCK_REALTIME, &tfinish) < 0) err(-1, "juggle: clock_gettime"); timespecsub(&tfinish, &tstart); return (tfinish); } /* * Juggle messages between two file descriptors in two threads, so measure * the cost of IPC and the cost of a thread context switch. * * In order to avoid measuring thread creation time, we make use of a * condition variable to decide when both threads are ready to begin * juggling. */ static int threaded_child_ready; static pthread_mutex_t threaded_mtx; static pthread_cond_t threaded_cond; static int threaded_pipeline; static void * juggling_thread(void *arg) { int fd2, i, j; fd2 = *(int *)arg; if (pthread_mutex_lock(&threaded_mtx) != 0) err(-1, "juggling_thread: pthread_mutex_lock"); threaded_child_ready = 1; if (pthread_cond_signal(&threaded_cond) != 0) err(-1, "juggling_thread: pthread_cond_signal"); if (pthread_mutex_unlock(&threaded_mtx) != 0) err(-1, "juggling_thread: pthread_mutex_unlock"); for (i = 0; i < NUMCYCLES; i++) { for (j = 0; j < threaded_pipeline; j++) { if (message_recv(fd2) < 0) err(-1, "message_recv fd2"); if (message_send(fd2) < 0) err(-1, "message_send fd2"); } } return (NULL); } static struct timespec thread_juggle(int fd1, int fd2, int pipeline) { struct timespec tstart, tfinish; pthread_t thread; int i, j; threaded_pipeline = pipeline; if (pthread_mutex_init(&threaded_mtx, NULL) != 0) err(-1, "thread_juggle: pthread_mutex_init"); if (pthread_create(&thread, NULL, juggling_thread, &fd2) != 0) err(-1, "thread_juggle: pthread_create"); if (pthread_mutex_lock(&threaded_mtx) != 0) err(-1, "thread_juggle: pthread_mutex_lock"); while (!threaded_child_ready) { if (pthread_cond_wait(&threaded_cond, &threaded_mtx) != 0) err(-1, "thread_juggle: pthread_cond_wait"); } if (pthread_mutex_unlock(&threaded_mtx) != 0) err(-1, "thread_juggle: pthread_mutex_unlock"); if (clock_gettime(CLOCK_REALTIME, &tstart) < 0) err(-1, "thread_juggle: clock_gettime"); for (i = 0; i < NUMCYCLES; i++) { for (j = 0; j < pipeline; j++) { if (message_send(fd1) < 0) err(-1, "message_send fd1"); } for (j = 0; j < pipeline; j++) { if (message_recv(fd1) < 0) err(-1, "message_recv fd1"); } } if (clock_gettime(CLOCK_REALTIME, &tfinish) < 0) err(-1, "thread_juggle: clock_gettime"); if (pthread_join(thread, NULL) != 0) err(-1, "thread_juggle: pthread_join"); timespecsub(&tfinish, &tstart); return (tfinish); } /* * Juggle messages between two file descriptors in two processes, so measure * the cost of IPC and the cost of a process context switch. * * Since we can't use a mutex between the processes, we simply do an extra * write on the child to let the parent know that it's ready to start. */ static struct timespec process_juggle(int fd1, int fd2, int pipeline) { struct timespec tstart, tfinish; pid_t pid, ppid, wpid; int error, i, j; ppid = getpid(); pid = fork(); if (pid < 0) err(-1, "process_juggle: fork"); if (pid == 0) { if (message_send(fd2) < 0) { error = errno; kill(ppid, SIGTERM); errno = error; err(-1, "process_juggle: child: message_send"); } for (i = 0; i < NUMCYCLES; i++) { for (j = 0; j < pipeline; j++) { if (message_send(fd2) < 0) err(-1, "message_send fd2"); if (message_recv(fd2) < 0) err(-1, "message_recv fd2"); } } exit(0); } else { if (message_recv(fd1) < 0) { error = errno; kill(pid, SIGTERM); errno = error; err(-1, "process_juggle: parent: message_recv"); } if (clock_gettime(CLOCK_REALTIME, &tstart) < 0) err(-1, "process_juggle: clock_gettime"); for (i = 0; i < NUMCYCLES; i++) { for (j = 0; j < pipeline; j++) { if (message_send(fd1) < 0) { error = errno; kill(pid, SIGTERM); errno = error; err(-1, "message_send fd1"); } } for (j = 0; j < pipeline; j++) { if (message_recv(fd1) < 0) { error = errno; kill(pid, SIGTERM); errno = error; err(-1, "message_recv fd1"); } } } if (clock_gettime(CLOCK_REALTIME, &tfinish) < 0) err(-1, "process_juggle: clock_gettime"); } wpid = waitpid(pid, NULL, 0); if (wpid < 0) err(-1, "process_juggle: waitpid"); if (wpid != pid) errx(-1, "process_juggle: waitpid: pid != wpid"); timespecsub(&tfinish, &tstart); return (tfinish); } /* * When we print out results for larger pipeline sizes, we scale back by the * depth of the pipeline. This generally means dividing by the pipeline * depth. Except when it means dividing by zero. */ static void scale_timespec(struct timespec *ts, int p) { if (p == 0) return; ts->tv_sec /= p; ts->tv_nsec /= p; } static const struct ipctype { int (*it_create)(int *fd1p, int *fd2p); const char *it_name; } ipctypes[] = { { pipe_create, "pipe" }, { udp_create, "udp" }, { socketpairdgram_create, "socketpairdgram" }, { socketpairstream_create, "socketpairstream" }, }; static const int ipctypes_len = (sizeof(ipctypes) / sizeof(struct ipctype)); int main(int argc, char *argv[]) { struct timespec juggle_results[LOOPS], process_results[LOOPS]; struct timespec thread_results[LOOPS]; int fd1, fd2, i, j, p; struct utsname uts; printf("version, juggle.c %s\n", "$FreeBSD: release/9.1.0/tools/tools/netrate/juggle/juggle.c 213574 2010-10-08 14:31:49Z pluknet $"); if (uname(&uts) < 0) err(-1, "utsname"); printf("sysname, %s\n", uts.sysname); printf("nodename, %s\n", uts.nodename); printf("release, %s\n", uts.release); printf("version, %s\n", uts.version); printf("machine, %s\n", uts.machine); printf("\n"); printf("MESSAGELEN, %d\n", MESSAGELEN); printf("NUMCYCLES, %d\n", NUMCYCLES); printf("LOOPS, %d\n", LOOPS); printf("PIPELINE_MAX, %d\n", PIPELINE_MAX); printf("\n\n"); printf("ipctype, test, pipeline_depth"); for (j = 0; j < LOOPS; j++) printf(", data%d", j); printf("\n"); fflush(stdout); for (p = 0; p < PIPELINE_MAX + 1; p++) { for (i = 0; i < ipctypes_len; i++) { if (ipctypes[i].it_create(&fd1, &fd2) < 0) err(-1, "main: %s", ipctypes[i].it_name); /* * For each test, do one uncounted warmup, then LOOPS * runs of the actual test. */ juggle(fd1, fd2, p); for (j = 0; j < LOOPS; j++) juggle_results[j] = juggle(fd1, fd2, p); process_juggle(fd1, fd2, p); for (j = 0; j < LOOPS; j++) process_results[j] = process_juggle(fd1, fd2, p); thread_juggle(fd1, fd2, p); for (j = 0; j < LOOPS; j++) thread_results[j] = thread_juggle(fd1, fd2, p); for (j = 0; j < LOOPS; j++) { thread_results[j].tv_sec = 0; thread_results[j].tv_nsec = 0; } close(fd1); close(fd2); } /* * When printing results for the round, normalize the results * with respect to the pipeline depth. We're doing p times * as much work, and are we taking p times as long? */ for (i = 0; i < ipctypes_len; i++) { printf("%s, juggle, %d, ", ipctypes[i].it_name, p); for (j = 0; j < LOOPS; j++) { if (j != 0) printf(", "); scale_timespec(&juggle_results[j], p); printf("%jd.%09lu", (intmax_t)juggle_results[j].tv_sec, juggle_results[j].tv_nsec); } printf("\n"); printf("%s, process_juggle, %d, ", ipctypes[i].it_name, p); for (j = 0; j < LOOPS; j++) { if (j != 0) printf(", "); scale_timespec(&process_results[j], p); printf("%jd.%09lu", (intmax_t)process_results[j].tv_sec, process_results[j].tv_nsec); } printf("\n"); printf("%s, thread_juggle, %d, ", ipctypes[i].it_name, p); for (j = 0; j < LOOPS; j++) { if (j != 0) printf(", "); scale_timespec(&thread_results[j], p); printf("%jd.%09lu", (intmax_t)thread_results[j].tv_sec, thread_results[j].tv_nsec); } printf("\n"); } fflush(stdout); } return (0); }