Current Path : /usr/src/usr.bin/top/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/usr.bin/top/machine.c |
/* * top - a top users display for Unix * * SYNOPSIS: For FreeBSD-2.x and later * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider * Order support hacked in from top-3.5beta6/machine/m_aix41.c * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) * * This is the machine-dependent module for FreeBSD 2.2 * Works for: * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x * * LIBS: -lkvm * * AUTHOR: Christos Zoulas <christos@ee.cornell.edu> * Steven Wallace <swallace@freebsd.org> * Wolfram Schneider <wosch@FreeBSD.org> * Thomas Moestl <tmoestl@gmx.net> * * $FreeBSD: release/9.1.0/usr.bin/top/machine.c 234667 2012-04-25 04:53:04Z kib $ */ #include <sys/param.h> #include <sys/errno.h> #include <sys/file.h> #include <sys/proc.h> #include <sys/resource.h> #include <sys/rtprio.h> #include <sys/signal.h> #include <sys/sysctl.h> #include <sys/time.h> #include <sys/user.h> #include <sys/vmmeter.h> #include <err.h> #include <kvm.h> #include <math.h> #include <nlist.h> #include <paths.h> #include <pwd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <strings.h> #include <unistd.h> #include <vis.h> #include "top.h" #include "machine.h" #include "screen.h" #include "utils.h" #include "layout.h" #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) #define SMPUNAMELEN 13 #define UPUNAMELEN 15 extern struct process_select ps; extern char* printable(char *); static int smpmode; enum displaymodes displaymode; #ifdef TOP_USERNAME_LEN static int namelength = TOP_USERNAME_LEN; #else static int namelength = 8; #endif static int cmdlengthdelta; /* Prototypes for top internals */ void quit(int); /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* declarations for load_avg */ #include "loadavg.h" /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) /* what we consider to be process size: */ #define PROCSIZE(pp) ((pp)->ki_size / 1024) #define RU(pp) (&(pp)->ki_rusage) #define RUTOT(pp) \ (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt) /* definitions for indices in the nlist array */ /* * These definitions control the format of the per-process area */ static char io_header[] = " PID%s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"; #define io_Proc_format \ "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s" static char smp_header_thr[] = " PID%s %-*.*s THR PRI NICE SIZE RES STATE C TIME %6s COMMAND"; static char smp_header[] = " PID%s %-*.*s " "PRI NICE SIZE RES STATE C TIME %6s COMMAND"; #define smp_Proc_format \ "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %2d%7s %5.2f%% %.*s" static char up_header_thr[] = " PID%s %-*.*s THR PRI NICE SIZE RES STATE TIME %6s COMMAND"; static char up_header[] = " PID%s %-*.*s " "PRI NICE SIZE RES STATE TIME %6s COMMAND"; #define up_Proc_format \ "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s" /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ char *state_abbrev[] = { "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" }; static kvm_t *kd; /* values that we stash away in _init and use in later routines */ static double logcpu; /* these are retrieved from the kernel in _init */ static load_avg ccpu; /* these are used in the get_ functions */ static int lastpid; /* these are for calculating cpu state percentages */ static long cp_time[CPUSTATES]; static long cp_old[CPUSTATES]; static long cp_diff[CPUSTATES]; /* these are for detailing the process states */ int process_states[8]; char *procstatenames[] = { "", " starting, ", " running, ", " sleeping, ", " stopped, ", " zombie, ", " waiting, ", " lock, ", NULL }; /* these are for detailing the cpu states */ int cpu_states[CPUSTATES]; char *cpustatenames[] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ int memory_stats[7]; char *memorynames[] = { "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", NULL }; int swap_stats[7]; char *swapnames[] = { "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", NULL }; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; static struct kinfo_proc *previous_procs; static struct kinfo_proc **previous_pref; static int previous_proc_count = 0; static int previous_proc_count_max = 0; /* total number of io operations */ static long total_inblock; static long total_oublock; static long total_majflt; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) /* useful externals */ long percentages(); #ifdef ORDER /* * Sorting orders. The first element is the default. */ char *ordernames[] = { "cpu", "size", "res", "time", "pri", "threads", "total", "read", "write", "fault", "vcsw", "ivcsw", "jid", NULL }; #endif /* Per-cpu time states */ static int maxcpu; static int maxid; static int ncpus; static u_long cpumask; static long *times; static long *pcpu_cp_time; static long *pcpu_cp_old; static long *pcpu_cp_diff; static int *pcpu_cpu_states; static int compare_jid(const void *a, const void *b); static int compare_pid(const void *a, const void *b); static int compare_tid(const void *a, const void *b); static const char *format_nice(const struct kinfo_proc *pp); static void getsysctl(const char *name, void *ptr, size_t len); static int swapmode(int *retavail, int *retfree); void toggle_pcpustats(void) { if (ncpus == 1) return; /* Adjust display based on ncpus */ if (pcpu_stats) { y_mem += ncpus - 1; /* 3 */ y_swap += ncpus - 1; /* 4 */ y_idlecursor += ncpus - 1; /* 5 */ y_message += ncpus - 1; /* 5 */ y_header += ncpus - 1; /* 6 */ y_procs += ncpus - 1; /* 7 */ Header_lines += ncpus - 1; /* 7 */ } else { y_mem = 3; y_swap = 4; y_idlecursor = 5; y_message = 5; y_header = 6; y_procs = 7; Header_lines = 7; } } int machine_init(struct statics *statics, char do_unames) { int i, j, empty, pagesize; size_t size; struct passwd *pw; size = sizeof(smpmode); if ((sysctlbyname("machdep.smp_active", &smpmode, &size, NULL, 0) != 0 && sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0) || size != sizeof(smpmode)) smpmode = 0; if (do_unames) { while ((pw = getpwent()) != NULL) { if (strlen(pw->pw_name) > namelength) namelength = strlen(pw->pw_name); } } if (smpmode && namelength > SMPUNAMELEN) namelength = SMPUNAMELEN; else if (namelength > UPUNAMELEN) namelength = UPUNAMELEN; kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); if (kd == NULL) return (-1); GETSYSCTL("kern.ccpu", ccpu); /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; nproc = 0; onproc = -1; /* get the page size and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; statics->swap_names = swapnames; #ifdef ORDER statics->order_names = ordernames; #endif /* Allocate state for per-CPU stats. */ cpumask = 0; ncpus = 0; GETSYSCTL("kern.smp.maxcpus", maxcpu); size = sizeof(long) * maxcpu * CPUSTATES; times = malloc(size); if (times == NULL) err(1, "malloc %zd bytes", size); if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) err(1, "sysctlbyname kern.cp_times"); pcpu_cp_time = calloc(1, size); maxid = (size / CPUSTATES / sizeof(long)) - 1; for (i = 0; i <= maxid; i++) { empty = 1; for (j = 0; empty && j < CPUSTATES; j++) { if (times[i * CPUSTATES + j] != 0) empty = 0; } if (!empty) { cpumask |= (1ul << i); ncpus++; } } size = sizeof(long) * ncpus * CPUSTATES; pcpu_cp_old = calloc(1, size); pcpu_cp_diff = calloc(1, size); pcpu_cpu_states = calloc(1, size); statics->ncpus = ncpus; if (pcpu_stats) toggle_pcpustats(); /* all done! */ return (0); } char * format_header(char *uname_field) { static char Header[128]; const char *prehead; switch (displaymode) { case DISP_CPU: /* * The logic of picking the right header format seems reverse * here because we only want to display a THR column when * "thread mode" is off (and threads are not listed as * separate lines). */ prehead = smpmode ? (ps.thread ? smp_header : smp_header_thr) : (ps.thread ? up_header : up_header_thr); snprintf(Header, sizeof(Header), prehead, ps.jail ? " JID" : "", namelength, namelength, uname_field, ps.wcpu ? "WCPU" : "CPU"); break; case DISP_IO: prehead = io_header; snprintf(Header, sizeof(Header), prehead, ps.jail ? " JID" : "", namelength, namelength, uname_field); break; } cmdlengthdelta = strlen(Header) - 7; return (Header); } static int swappgsin = -1; static int swappgsout = -1; extern struct timeval timeout; void get_system_info(struct system_info *si) { long total; struct loadavg sysload; int mib[2]; struct timeval boottime; size_t bt_size; int i, j; size_t size; /* get the CPU stats */ size = (maxid + 1) * CPUSTATES * sizeof(long); if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) err(1, "sysctlbyname kern.cp_times"); GETSYSCTL("kern.cp_time", cp_time); GETSYSCTL("vm.loadavg", sysload); GETSYSCTL("kern.lastpid", lastpid); /* convert load averages to doubles */ for (i = 0; i < 3; i++) si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; /* convert cp_time counts to percentages */ for (i = j = 0; i <= maxid; i++) { if ((cpumask & (1ul << i)) == 0) continue; percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], &pcpu_cp_time[j * CPUSTATES], &pcpu_cp_old[j * CPUSTATES], &pcpu_cp_diff[j * CPUSTATES]); j++; } percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); /* sum memory & swap statistics */ { static unsigned int swap_delay = 0; static int swapavail = 0; static int swapfree = 0; static long bufspace = 0; static int nspgsin, nspgsout; GETSYSCTL("vfs.bufspace", bufspace); GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]); GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]); GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(memory_stats[0]); memory_stats[1] = pagetok(memory_stats[1]); memory_stats[2] = pagetok(memory_stats[2]); memory_stats[3] = pagetok(memory_stats[3]); memory_stats[4] = bufspace / 1024; memory_stats[5] = pagetok(memory_stats[5]); memory_stats[6] = -1; /* first interval */ if (swappgsin < 0) { swap_stats[4] = 0; swap_stats[5] = 0; } /* compute differences between old and new swap statistic */ else { swap_stats[4] = pagetok(((nspgsin - swappgsin))); swap_stats[5] = pagetok(((nspgsout - swappgsout))); } swappgsin = nspgsin; swappgsout = nspgsout; /* call CPU heavy swapmode() only for changes */ if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { swap_stats[3] = swapmode(&swapavail, &swapfree); swap_stats[0] = swapavail; swap_stats[1] = swapavail - swapfree; swap_stats[2] = swapfree; } swap_delay = 1; swap_stats[6] = -1; } /* set arrays and strings */ if (pcpu_stats) { si->cpustates = pcpu_cpu_states; si->ncpus = ncpus; } else { si->cpustates = cpu_states; si->ncpus = 1; } si->memory = memory_stats; si->swap = swap_stats; if (lastpid > 0) { si->last_pid = lastpid; } else { si->last_pid = -1; } /* * Print how long system has been up. * (Found by looking getting "boottime" from the kernel) */ mib[0] = CTL_KERN; mib[1] = KERN_BOOTTIME; bt_size = sizeof(boottime); if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 && boottime.tv_sec != 0) { si->boottime = boottime; } else { si->boottime.tv_sec = -1; } } #define NOPROC ((void *)-1) /* * We need to compare data from the old process entry with the new * process entry. * To facilitate doing this quickly we stash a pointer in the kinfo_proc * structure to cache the mapping. We also use a negative cache pointer * of NOPROC to avoid duplicate lookups. * XXX: this could be done when the actual processes are fetched, we do * it here out of laziness. */ const struct kinfo_proc * get_old_proc(struct kinfo_proc *pp) { struct kinfo_proc **oldpp, *oldp; /* * If this is the first fetch of the kinfo_procs then we don't have * any previous entries. */ if (previous_proc_count == 0) return (NULL); /* negative cache? */ if (pp->ki_udata == NOPROC) return (NULL); /* cached? */ if (pp->ki_udata != NULL) return (pp->ki_udata); /* * Not cached, * 1) look up based on pid. * 2) compare process start. * If we fail here, then setup a negative cache entry, otherwise * cache it. */ oldpp = bsearch(&pp, previous_pref, previous_proc_count, sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); if (oldpp == NULL) { pp->ki_udata = NOPROC; return (NULL); } oldp = *oldpp; if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { pp->ki_udata = NOPROC; return (NULL); } pp->ki_udata = oldp; return (oldp); } /* * Return the total amount of IO done in blocks in/out and faults. * store the values individually in the pointers passed in. */ long get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, long *vcsw, long *ivcsw) { const struct kinfo_proc *oldp; static struct kinfo_proc dummy; long ret; oldp = get_old_proc(pp); if (oldp == NULL) { bzero(&dummy, sizeof(dummy)); oldp = &dummy; } *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; ret = (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); return (ret); } /* * Return the total number of block in/out and faults by a process. */ long get_io_total(struct kinfo_proc *pp) { long dummy; return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); } static struct handle handle; caddr_t get_process_info(struct system_info *si, struct process_select *sel, int (*compare)(const void *, const void *)) { int i; int total_procs; long p_io; long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; int active_procs; struct kinfo_proc **prefp; struct kinfo_proc *pp; /* these are copied out of sel for speed */ int show_idle; int show_self; int show_system; int show_uid; int show_command; int show_kidle; /* * Save the previous process info. */ if (previous_proc_count_max < nproc) { free(previous_procs); previous_procs = malloc(nproc * sizeof(*previous_procs)); free(previous_pref); previous_pref = malloc(nproc * sizeof(*previous_pref)); if (previous_procs == NULL || previous_pref == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } previous_proc_count_max = nproc; } if (nproc) { for (i = 0; i < nproc; i++) previous_pref[i] = &previous_procs[i]; bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs)); qsort(previous_pref, nproc, sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); } previous_proc_count = nproc; pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 0, &nproc); if (nproc > onproc) pref = realloc(pref, sizeof(*pref) * (onproc = nproc)); if (pref == NULL || pbase == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_self = sel->self == -1; show_system = sel->system; show_uid = sel->uid != -1; show_command = sel->command != NULL; show_kidle = sel->kidle; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; total_inblock = 0; total_oublock = 0; total_majflt = 0; memset((char *)process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { if (pp->ki_stat == 0) /* not in use */ continue; if (!show_self && pp->ki_pid == sel->self) /* skip self */ continue; if (!show_system && (pp->ki_flag & P_SYSTEM)) /* skip system process */ continue; p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, &p_vcsw, &p_ivcsw); total_inblock += p_inblock; total_oublock += p_oublock; total_majflt += p_majflt; total_procs++; process_states[pp->ki_stat]++; if (pp->ki_stat == SZOMB) /* skip zombies */ continue; if (!show_kidle && pp->ki_tdflags & TDF_IDLETD) /* skip kernel idle process */ continue; if (displaymode == DISP_CPU && !show_idle && (pp->ki_pctcpu == 0 || pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) /* skip idle or non-running processes */ continue; if (displaymode == DISP_IO && !show_idle && p_io == 0) /* skip processes that aren't doing I/O */ continue; if (show_uid && pp->ki_ruid != (uid_t)sel->uid) /* skip proc. that don't belong to the selected UID */ continue; *prefp++ = pp; active_procs++; } /* if requested, sort the "interesting" processes */ if (compare != NULL) qsort(pref, active_procs, sizeof(*pref), compare); /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return ((caddr_t)&handle); } static char fmt[128]; /* static area where result is built */ char * format_next_process(caddr_t handle, char *(*get_userid)(int), int flags) { struct kinfo_proc *pp; const struct kinfo_proc *oldp; long cputime; double pct; struct handle *hp; char status[16]; int state; struct rusage ru, *rup; long p_tot, s_tot; char *proc_fmt, thr_buf[6], jid_buf[6]; char *cmdbuf = NULL; char **args; /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's command name */ if ((pp->ki_flag & P_INMEM) == 0) { /* * Print swapped processes as <pname> */ size_t len; len = strlen(pp->ki_comm); if (len > sizeof(pp->ki_comm) - 3) len = sizeof(pp->ki_comm) - 3; memmove(pp->ki_comm + 1, pp->ki_comm, len); pp->ki_comm[0] = '<'; pp->ki_comm[len + 1] = '>'; pp->ki_comm[len + 2] = '\0'; } /* * Convert the process's runtime from microseconds to seconds. This * time includes the interrupt time although that is not wanted here. * ps(1) is similarly sloppy. */ cputime = (pp->ki_runtime + 500000) / 1000000; /* calculate the base for cpu percentages */ pct = pctdouble(pp->ki_pctcpu); /* generate "STATE" field */ switch (state = pp->ki_stat) { case SRUN: if (smpmode && pp->ki_oncpu != 0xff) sprintf(status, "CPU%d", pp->ki_oncpu); else strcpy(status, "RUN"); break; case SLOCK: if (pp->ki_kiflag & KI_LOCKBLOCK) { sprintf(status, "*%.6s", pp->ki_lockname); break; } /* fall through */ case SSLEEP: if (pp->ki_wmesg != NULL) { sprintf(status, "%.6s", pp->ki_wmesg); break; } /* FALLTHROUGH */ default: if (state >= 0 && state < sizeof(state_abbrev) / sizeof(*state_abbrev)) sprintf(status, "%.6s", state_abbrev[state]); else sprintf(status, "?%5d", state); break; } cmdbuf = (char *)malloc(cmdlengthdelta + 1); if (cmdbuf == NULL) { warn("malloc(%d)", cmdlengthdelta + 1); return NULL; } if (!(flags & FMT_SHOWARGS)) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) { snprintf(cmdbuf, cmdlengthdelta, "%s{%s}", pp->ki_comm, pp->ki_tdname); } else { snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm); } } else { if (pp->ki_flag & P_SYSTEM || pp->ki_args == NULL || (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL || !(*args)) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) { snprintf(cmdbuf, cmdlengthdelta, "[%s{%s}]", pp->ki_comm, pp->ki_tdname); } else { snprintf(cmdbuf, cmdlengthdelta, "[%s]", pp->ki_comm); } } else { char *src, *dst, *argbuf; char *cmd; size_t argbuflen; size_t len; argbuflen = cmdlengthdelta * 4; argbuf = (char *)malloc(argbuflen + 1); if (argbuf == NULL) { warn("malloc(%d)", argbuflen + 1); free(cmdbuf); return NULL; } dst = argbuf; /* Extract cmd name from argv */ cmd = strrchr(*args, '/'); if (cmd == NULL) cmd = *args; else cmd++; for (; (src = *args++) != NULL; ) { if (*src == '\0') continue; len = (argbuflen - (dst - argbuf) - 1) / 4; strvisx(dst, src, strlen(src) < len ? strlen(src) : len, VIS_NL | VIS_CSTYLE); while (*dst != '\0') dst++; if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) *dst++ = ' '; /* add delimiting space */ } if (dst != argbuf && dst[-1] == ' ') dst--; *dst = '\0'; if (strcmp(cmd, pp->ki_comm) != 0 ) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) snprintf(cmdbuf, cmdlengthdelta, "%s (%s){%s}", argbuf, pp->ki_comm, pp->ki_tdname); else snprintf(cmdbuf, cmdlengthdelta, "%s (%s)", argbuf, pp->ki_comm); } else { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) snprintf(cmdbuf, cmdlengthdelta, "%s{%s}", argbuf, pp->ki_tdname); else strlcpy(cmdbuf, argbuf, cmdlengthdelta); } free(argbuf); } } if (ps.jail == 0) jid_buf[0] = '\0'; else snprintf(jid_buf, sizeof(jid_buf), " %*d", sizeof(jid_buf) - 3, pp->ki_jid); if (displaymode == DISP_IO) { oldp = get_old_proc(pp); if (oldp != NULL) { ru.ru_inblock = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; ru.ru_oublock = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; rup = &ru; } else { rup = RU(pp); } p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; s_tot = total_inblock + total_oublock + total_majflt; snprintf(fmt, sizeof(fmt), io_Proc_format, pp->ki_pid, jid_buf, namelength, namelength, (*get_userid)(pp->ki_ruid), rup->ru_nvcsw, rup->ru_nivcsw, rup->ru_inblock, rup->ru_oublock, rup->ru_majflt, p_tot, s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot), screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, printable(cmdbuf)); free(cmdbuf); return (fmt); } /* format this entry */ proc_fmt = smpmode ? smp_Proc_format : up_Proc_format; if (ps.thread != 0) thr_buf[0] = '\0'; else snprintf(thr_buf, sizeof(thr_buf), "%*d ", sizeof(thr_buf) - 2, pp->ki_numthreads); snprintf(fmt, sizeof(fmt), proc_fmt, pp->ki_pid, jid_buf, namelength, namelength, (*get_userid)(pp->ki_ruid), thr_buf, pp->ki_pri.pri_level - PZERO, format_nice(pp), format_k2(PROCSIZE(pp)), format_k2(pagetok(pp->ki_rssize)), status, smpmode ? pp->ki_lastcpu : 0, format_time(cputime), ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct, screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0, printable(cmdbuf)); free(cmdbuf); /* return the result */ return (fmt); } static void getsysctl(const char *name, void *ptr, size_t len) { size_t nlen = len; if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, strerror(errno)); quit(23); } if (nlen != len) { fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", name, (unsigned long)len, (unsigned long)nlen); quit(23); } } static const char * format_nice(const struct kinfo_proc *pp) { const char *fifo, *kthread; int rtpri; static char nicebuf[4 + 1]; fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; kthread = (pp->ki_flag & P_KTHREAD) ? "k" : ""; switch (PRI_BASE(pp->ki_pri.pri_class)) { case PRI_ITHD: return ("-"); case PRI_REALTIME: /* * XXX: the kernel doesn't tell us the original rtprio and * doesn't really know what it was, so to recover it we * must be more chummy with the implementation than the * implementation is with itself. pri_user gives a * constant "base" priority, but is only initialized * properly for user threads. pri_native gives what the * kernel calls the "base" priority, but it isn't constant * since it is changed by priority propagation. pri_native * also isn't properly initialized for all threads, but it * is properly initialized for kernel realtime and idletime * threads. Thus we use pri_user for the base priority of * user threads (it is always correct) and pri_native for * the base priority of kernel realtime and idletime threads * (there is nothing better, and it is usually correct). * * The field width and thus the buffer are too small for * values like "kr31F", but such values shouldn't occur, * and if they do then the tailing "F" is not displayed. */ rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : pp->ki_pri.pri_user) - PRI_MIN_REALTIME; snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", kthread, rtpri, fifo); break; case PRI_TIMESHARE: if (pp->ki_flag & P_KTHREAD) return ("-"); snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); break; case PRI_IDLE: /* XXX: as above. */ rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native : pp->ki_pri.pri_user) - PRI_MIN_IDLE; snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", kthread, rtpri, fifo); break; default: return ("?"); } return (nicebuf); } /* comparison routines for qsort */ static int compare_pid(const void *p1, const void *p2) { const struct kinfo_proc * const *pp1 = p1; const struct kinfo_proc * const *pp2 = p2; if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0) abort(); return ((*pp1)->ki_pid - (*pp2)->ki_pid); } static int compare_tid(const void *p1, const void *p2) { const struct kinfo_proc * const *pp1 = p1; const struct kinfo_proc * const *pp2 = p2; if ((*pp2)->ki_tid < 0 || (*pp1)->ki_tid < 0) abort(); return ((*pp1)->ki_tid - (*pp2)->ki_tid); } /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static int sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; #define ORDERKEY_PCTCPU(a, b) do { \ long diff; \ if (ps.wcpu) \ diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \ (b))) - \ floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \ (a))); \ else \ diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_CPTICKS(a, b) do { \ int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_STATE(a, b) do { \ int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_PRIO(a, b) do { \ int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_THREADS(a, b) do { \ int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_RSSIZE(a, b) do { \ long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_MEM(a, b) do { \ long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_JID(a, b) do { \ int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) /* compare_cpu - the comparison function for sorting by cpu percentage */ int #ifdef ORDER compare_cpu(void *arg1, void *arg2) #else proc_compare(void *arg1, void *arg2) #endif { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } #ifdef ORDER /* "cpu" compare routines */ int compare_size(), compare_res(), compare_time(), compare_prio(), compare_threads(); /* * "io" compare routines. Context switches aren't i/o, but are displayed * on the "io" display. */ int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), compare_vcsw(), compare_ivcsw(); int (*compares[])() = { compare_cpu, compare_size, compare_res, compare_time, compare_prio, compare_threads, compare_iototal, compare_ioread, compare_iowrite, compare_iofault, compare_vcsw, compare_ivcsw, compare_jid, NULL }; /* compare_size - the comparison function for sorting by total memory usage */ int compare_size(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_MEM(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); return (0); } /* compare_res - the comparison function for sorting by resident set size */ int compare_res(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); return (0); } /* compare_time - the comparison function for sorting by total cpu time */ int compare_time(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_CPTICKS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_prio - the comparison function for sorting by priority */ int compare_prio(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_PRIO(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_threads - the comparison function for sorting by threads */ int compare_threads(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_THREADS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_jid - the comparison function for sorting by jid */ static int compare_jid(const void *arg1, const void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; ORDERKEY_JID(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } #endif /* ORDER */ /* assorted comparison functions for sorting by i/o */ int #ifdef ORDER compare_iototal(void *arg1, void *arg2) #else io_compare(void *arg1, void *arg2) #endif { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; return (get_io_total(p2) - get_io_total(p1)); } #ifdef ORDER int compare_ioread(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; long dummy, inp1, inp2; (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); return (inp2 - inp1); } int compare_iowrite(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; long dummy, oup1, oup2; (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); return (oup2 - oup1); } int compare_iofault(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); return (flp2 - flp1); } int compare_vcsw(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); return (flp2 - flp1); } int compare_ivcsw(void *arg1, void *arg2) { struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1; struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); return (flp2 - flp1); } #endif /* ORDER */ /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(int pid) { int cnt; struct kinfo_proc **prefp; struct kinfo_proc *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (pp->ki_pid == (pid_t)pid) return ((int)pp->ki_ruid); } return (-1); } static int swapmode(int *retavail, int *retfree) { int n; int pagesize = getpagesize(); struct kvm_swap swapary[1]; *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) return (0); *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); return (n); }