Current Path : /usr/src/usr.sbin/ppp/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/usr.sbin/ppp/lqr.c |
/*- * Copyright (c) 1996 - 2001 Brian Somers <brian@Awfulhak.org> * based on work by Toshiharu OHNO <tony-o@iij.ad.jp> * Internet Initiative Japan, Inc (IIJ) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: release/9.1.0/usr.sbin/ppp/lqr.c 233588 2012-03-28 02:33:50Z eadler $ */ #include <sys/param.h> #ifdef __FreeBSD__ #include <netinet/in.h> #endif #include <sys/un.h> #include <string.h> #include <termios.h> #include "layer.h" #include "mbuf.h" #include "log.h" #include "defs.h" #include "timer.h" #include "fsm.h" #include "acf.h" #include "proto.h" #include "lqr.h" #include "hdlc.h" #include "lcp.h" #include "async.h" #include "throughput.h" #include "ccp.h" #include "link.h" #include "descriptor.h" #include "physical.h" #include "mp.h" #include "chat.h" #include "auth.h" #include "chap.h" #include "command.h" #include "cbcp.h" #include "datalink.h" struct echolqr { u_int32_t magic; u_int32_t signature; u_int32_t sequence; }; #define SIGNATURE 0x594e4f54 static void SendEchoReq(struct lcp *lcp) { struct hdlc *hdlc = &link2physical(lcp->fsm.link)->hdlc; struct echolqr echo; echo.magic = htonl(lcp->want_magic); echo.signature = htonl(SIGNATURE); echo.sequence = htonl(hdlc->lqm.echo.seq_sent); fsm_Output(&lcp->fsm, CODE_ECHOREQ, hdlc->lqm.echo.seq_sent++, (u_char *)&echo, sizeof echo, MB_ECHOOUT); } struct mbuf * lqr_RecvEcho(struct fsm *fp, struct mbuf *bp) { struct hdlc *hdlc = &link2physical(fp->link)->hdlc; struct lcp *lcp = fsm2lcp(fp); struct echolqr lqr; if (m_length(bp) >= sizeof lqr) { m_freem(mbuf_Read(bp, &lqr, sizeof lqr)); bp = NULL; lqr.magic = ntohl(lqr.magic); lqr.signature = ntohl(lqr.signature); lqr.sequence = ntohl(lqr.sequence); /* Tolerate echo replies with either magic number */ if (lqr.magic != 0 && lqr.magic != lcp->his_magic && lqr.magic != lcp->want_magic) { log_Printf(LogWARN, "%s: lqr_RecvEcho: Bad magic: expected 0x%08x," " got 0x%08x\n", fp->link->name, lcp->his_magic, lqr.magic); /* * XXX: We should send a terminate request. But poor implementations may * die as a result. */ } if (lqr.signature == SIGNATURE) { /* careful not to update lqm.echo.seq_recv with older values */ if ((hdlc->lqm.echo.seq_recv > (u_int32_t)0 - 5 && lqr.sequence < 5) || (hdlc->lqm.echo.seq_recv <= (u_int32_t)0 - 5 && lqr.sequence > hdlc->lqm.echo.seq_recv)) hdlc->lqm.echo.seq_recv = lqr.sequence; } else log_Printf(LogWARN, "lqr_RecvEcho: Got sig 0x%08lx, not 0x%08lx !\n", (u_long)lqr.signature, (u_long)SIGNATURE); } else log_Printf(LogWARN, "lqr_RecvEcho: Got packet size %zd, expecting %ld !\n", m_length(bp), (long)sizeof(struct echolqr)); return bp; } void lqr_ChangeOrder(struct lqrdata *src, struct lqrdata *dst) { u_int32_t *sp, *dp; unsigned n; sp = (u_int32_t *) src; dp = (u_int32_t *) dst; for (n = 0; n < sizeof(struct lqrdata) / sizeof(u_int32_t); n++, sp++, dp++) *dp = ntohl(*sp); } static void SendLqrData(struct lcp *lcp) { struct mbuf *bp; int extra; extra = proto_WrapperOctets(lcp, PROTO_LQR) + acf_WrapperOctets(lcp, PROTO_LQR); bp = m_get(sizeof(struct lqrdata) + extra, MB_LQROUT); bp->m_len -= extra; bp->m_offset += extra; /* * Send on the highest priority queue. We send garbage - the real data * is written by lqr_LayerPush() where we know how to fill in all the * fields. Note, lqr_LayerPush() ``knows'' that we're pushing onto the * highest priority queue, and factors out packet & octet values from * other queues! */ link_PushPacket(lcp->fsm.link, bp, lcp->fsm.bundle, LINK_QUEUES(lcp->fsm.link) - 1, PROTO_LQR); } static void SendLqrReport(void *v) { struct lcp *lcp = (struct lcp *)v; struct physical *p = link2physical(lcp->fsm.link); timer_Stop(&p->hdlc.lqm.timer); if (p->hdlc.lqm.method & LQM_LQR) { if (p->hdlc.lqm.lqr.resent > 5) { /* XXX: Should implement LQM strategy */ log_Printf(LogPHASE, "%s: ** Too many LQR packets lost **\n", lcp->fsm.link->name); log_Printf(LogLQM, "%s: Too many LQR packets lost\n", lcp->fsm.link->name); p->hdlc.lqm.method = 0; datalink_Down(p->dl, CLOSE_NORMAL); } else { SendLqrData(lcp); p->hdlc.lqm.lqr.resent++; } } else if (p->hdlc.lqm.method & LQM_ECHO) { if ((p->hdlc.lqm.echo.seq_sent > 5 && p->hdlc.lqm.echo.seq_sent - 5 > p->hdlc.lqm.echo.seq_recv) || (p->hdlc.lqm.echo.seq_sent <= 5 && p->hdlc.lqm.echo.seq_sent > p->hdlc.lqm.echo.seq_recv + 5)) { log_Printf(LogPHASE, "%s: ** Too many LCP ECHO packets lost **\n", lcp->fsm.link->name); log_Printf(LogLQM, "%s: Too many LCP ECHO packets lost\n", lcp->fsm.link->name); p->hdlc.lqm.method = 0; datalink_Down(p->dl, CLOSE_NORMAL); } else SendEchoReq(lcp); } if (p->hdlc.lqm.method && p->hdlc.lqm.timer.load) timer_Start(&p->hdlc.lqm.timer); } struct mbuf * lqr_Input(struct bundle *bundle __unused, struct link *l, struct mbuf *bp) { struct physical *p = link2physical(l); struct lcp *lcp = p->hdlc.lqm.owner; int len; if (p == NULL) { log_Printf(LogERROR, "lqr_Input: Not a physical link - dropped\n"); m_freem(bp); return NULL; } len = m_length(bp); if (len != sizeof(struct lqrdata)) log_Printf(LogWARN, "lqr_Input: Got packet size %d, expecting %ld !\n", len, (long)sizeof(struct lqrdata)); else if (!IsAccepted(l->lcp.cfg.lqr) && !(p->hdlc.lqm.method & LQM_LQR)) { bp = m_pullup(proto_Prepend(bp, PROTO_LQR, 0, 0)); lcp_SendProtoRej(lcp, MBUF_CTOP(bp), bp->m_len); } else { struct lqrdata *lqr; bp = m_pullup(bp); lqr = (struct lqrdata *)MBUF_CTOP(bp); if (ntohl(lqr->MagicNumber) != lcp->his_magic) log_Printf(LogWARN, "lqr_Input: magic 0x%08lx is wrong," " expecting 0x%08lx\n", (u_long)ntohl(lqr->MagicNumber), (u_long)lcp->his_magic); else { struct lqrdata lastlqr; memcpy(&lastlqr, &p->hdlc.lqm.lqr.peer, sizeof lastlqr); lqr_ChangeOrder(lqr, &p->hdlc.lqm.lqr.peer); lqr_Dump(l->name, "Input", &p->hdlc.lqm.lqr.peer); /* we have received an LQR from our peer */ p->hdlc.lqm.lqr.resent = 0; /* Snapshot our state when the LQR packet was received */ memcpy(&p->hdlc.lqm.lqr.prevSave, &p->hdlc.lqm.lqr.Save, sizeof p->hdlc.lqm.lqr.prevSave); p->hdlc.lqm.lqr.Save.InLQRs = ++p->hdlc.lqm.lqr.InLQRs; p->hdlc.lqm.lqr.Save.InPackets = p->hdlc.lqm.ifInUniPackets; p->hdlc.lqm.lqr.Save.InDiscards = p->hdlc.lqm.ifInDiscards; p->hdlc.lqm.lqr.Save.InErrors = p->hdlc.lqm.ifInErrors; p->hdlc.lqm.lqr.Save.InOctets = p->hdlc.lqm.lqr.InGoodOctets; lqr_Analyse(&p->hdlc, &lastlqr, &p->hdlc.lqm.lqr.peer); /* * Generate an LQR response if we're not running an LQR timer OR * two successive LQR's PeerInLQRs are the same. */ if (p->hdlc.lqm.timer.load == 0 || !(p->hdlc.lqm.method & LQM_LQR) || (lastlqr.PeerInLQRs && lastlqr.PeerInLQRs == p->hdlc.lqm.lqr.peer.PeerInLQRs)) SendLqrData(lcp); } } m_freem(bp); return NULL; } /* * When LCP is reached to opened state, We'll start LQM activity. */ static void lqr_Setup(struct lcp *lcp) { struct physical *physical = link2physical(lcp->fsm.link); int period; physical->hdlc.lqm.lqr.resent = 0; physical->hdlc.lqm.echo.seq_sent = 0; physical->hdlc.lqm.echo.seq_recv = 0; memset(&physical->hdlc.lqm.lqr.peer, '\0', sizeof physical->hdlc.lqm.lqr.peer); physical->hdlc.lqm.method = lcp->cfg.echo ? LQM_ECHO : 0; if (IsEnabled(lcp->cfg.lqr) && !REJECTED(lcp, TY_QUALPROTO)) physical->hdlc.lqm.method |= LQM_LQR; timer_Stop(&physical->hdlc.lqm.timer); physical->hdlc.lqm.lqr.peer_timeout = lcp->his_lqrperiod; if (lcp->his_lqrperiod) log_Printf(LogLQM, "%s: Expecting LQR every %d.%02d secs\n", physical->link.name, lcp->his_lqrperiod / 100, lcp->his_lqrperiod % 100); period = lcp->want_lqrperiod ? lcp->want_lqrperiod : lcp->cfg.lqrperiod * 100; physical->hdlc.lqm.timer.func = SendLqrReport; physical->hdlc.lqm.timer.name = "lqm"; physical->hdlc.lqm.timer.arg = lcp; if (lcp->want_lqrperiod || physical->hdlc.lqm.method & LQM_ECHO) { log_Printf(LogLQM, "%s: Will send %s every %d.%02d secs\n", physical->link.name, lcp->want_lqrperiod ? "LQR" : "LCP ECHO", period / 100, period % 100); physical->hdlc.lqm.timer.load = period * SECTICKS / 100; } else { physical->hdlc.lqm.timer.load = 0; if (!lcp->his_lqrperiod) log_Printf(LogLQM, "%s: LQR/LCP ECHO not negotiated\n", physical->link.name); } } void lqr_Start(struct lcp *lcp) { struct physical *p = link2physical(lcp->fsm.link); lqr_Setup(lcp); if (p->hdlc.lqm.timer.load) SendLqrReport(lcp); } void lqr_reStart(struct lcp *lcp) { struct physical *p = link2physical(lcp->fsm.link); lqr_Setup(lcp); if (p->hdlc.lqm.timer.load) timer_Start(&p->hdlc.lqm.timer); } void lqr_StopTimer(struct physical *physical) { timer_Stop(&physical->hdlc.lqm.timer); } void lqr_Stop(struct physical *physical, int method) { if (method == LQM_LQR) log_Printf(LogLQM, "%s: Stop sending LQR, Use LCP ECHO instead.\n", physical->link.name); if (method == LQM_ECHO) log_Printf(LogLQM, "%s: Stop sending LCP ECHO.\n", physical->link.name); physical->hdlc.lqm.method &= ~method; if (physical->hdlc.lqm.method) SendLqrReport(physical->hdlc.lqm.owner); else timer_Stop(&physical->hdlc.lqm.timer); } void lqr_Dump(const char *link, const char *message, const struct lqrdata *lqr) { if (log_IsKept(LogLQM)) { log_Printf(LogLQM, "%s: %s:\n", link, message); log_Printf(LogLQM, " Magic: %08x LastOutLQRs: %08x\n", lqr->MagicNumber, lqr->LastOutLQRs); log_Printf(LogLQM, " LastOutPackets: %08x LastOutOctets: %08x\n", lqr->LastOutPackets, lqr->LastOutOctets); log_Printf(LogLQM, " PeerInLQRs: %08x PeerInPackets: %08x\n", lqr->PeerInLQRs, lqr->PeerInPackets); log_Printf(LogLQM, " PeerInDiscards: %08x PeerInErrors: %08x\n", lqr->PeerInDiscards, lqr->PeerInErrors); log_Printf(LogLQM, " PeerInOctets: %08x PeerOutLQRs: %08x\n", lqr->PeerInOctets, lqr->PeerOutLQRs); log_Printf(LogLQM, " PeerOutPackets: %08x PeerOutOctets: %08x\n", lqr->PeerOutPackets, lqr->PeerOutOctets); } } void lqr_Analyse(const struct hdlc *hdlc, const struct lqrdata *oldlqr, const struct lqrdata *newlqr) { u_int32_t LQRs, transitLQRs, pkts, octets, disc, err; if (!newlqr->PeerInLQRs) /* No analysis possible yet! */ return; log_Printf(LogLQM, "Analysis:\n"); LQRs = (newlqr->LastOutLQRs - oldlqr->LastOutLQRs) - (newlqr->PeerInLQRs - oldlqr->PeerInLQRs); transitLQRs = hdlc->lqm.lqr.OutLQRs - newlqr->LastOutLQRs; pkts = (newlqr->LastOutPackets - oldlqr->LastOutPackets) - (newlqr->PeerInPackets - oldlqr->PeerInPackets); octets = (newlqr->LastOutOctets - oldlqr->LastOutOctets) - (newlqr->PeerInOctets - oldlqr->PeerInOctets); log_Printf(LogLQM, " Outbound lossage: %d LQR%s (%d en route), %d packet%s," " %d octet%s\n", (int)LQRs, LQRs == 1 ? "" : "s", (int)transitLQRs, (int)pkts, pkts == 1 ? "" : "s", (int)octets, octets == 1 ? "" : "s"); pkts = (newlqr->PeerOutPackets - oldlqr->PeerOutPackets) - (hdlc->lqm.lqr.Save.InPackets - hdlc->lqm.lqr.prevSave.InPackets); octets = (newlqr->PeerOutOctets - oldlqr->PeerOutOctets) - (hdlc->lqm.lqr.Save.InOctets - hdlc->lqm.lqr.prevSave.InOctets); log_Printf(LogLQM, " Inbound lossage: %d packet%s, %d octet%s\n", (int)pkts, pkts == 1 ? "" : "s", (int)octets, octets == 1 ? "" : "s"); disc = newlqr->PeerInDiscards - oldlqr->PeerInDiscards; err = newlqr->PeerInErrors - oldlqr->PeerInErrors; if (disc && err) log_Printf(LogLQM, " Likely due to both peer congestion" " and physical errors\n"); else if (disc) log_Printf(LogLQM, " Likely due to peer congestion\n"); else if (err) log_Printf(LogLQM, " Likely due to physical errors\n"); else if (pkts) log_Printf(LogLQM, " Likely due to transport " "congestion\n"); } static struct mbuf * lqr_LayerPush(struct bundle *b __unused, struct link *l, struct mbuf *bp, int pri __unused, u_short *proto) { struct physical *p = link2physical(l); int len, layer; if (!p) { /* Oops - can't happen :-] */ m_freem(bp); return NULL; } bp = m_pullup(bp); len = m_length(bp); /*- * From rfc1989: * * All octets which are included in the FCS calculation MUST be counted, * including the packet header, the information field, and any padding. * The FCS octets MUST also be counted, and one flag octet per frame * MUST be counted. All other octets (such as additional flag * sequences, and escape bits or octets) MUST NOT be counted. * * As we're stacked higher than the HDLC layer (otherwise HDLC wouldn't be * able to calculate the FCS), we must not forget about these additional * bytes when we're asynchronous. * * We're also expecting to be stacked *before* the likes of the proto and * acf layers (to avoid alignment issues), so deal with this too. */ p->hdlc.lqm.ifOutUniPackets++; p->hdlc.lqm.ifOutOctets += len + 1; /* plus 1 flag octet! */ for (layer = 0; layer < l->nlayers; layer++) switch (l->layer[layer]->type) { case LAYER_ACF: p->hdlc.lqm.ifOutOctets += acf_WrapperOctets(&l->lcp, *proto); break; case LAYER_ASYNC: /* Not included - see rfc1989 */ break; case LAYER_HDLC: p->hdlc.lqm.ifOutOctets += hdlc_WrapperOctets(); break; case LAYER_LQR: layer = l->nlayers; break; case LAYER_PROTO: p->hdlc.lqm.ifOutOctets += proto_WrapperOctets(&l->lcp, *proto); break; case LAYER_SYNC: /* Nothing to add on */ break; default: log_Printf(LogWARN, "Oops, don't know how to do octets for %s layer\n", l->layer[layer]->name); break; } if (*proto == PROTO_LQR) { /* Overwrite the entire packet (created in SendLqrData()) */ struct lqrdata lqr; size_t pending_pkts, pending_octets; p->hdlc.lqm.lqr.OutLQRs++; /* * We need to compensate for the fact that we're pushing our data * onto the highest priority queue by factoring out packet & octet * values from other queues! */ link_PendingLowPriorityData(l, &pending_pkts, &pending_octets); memset(&lqr, '\0', sizeof lqr); lqr.MagicNumber = p->link.lcp.want_magic; lqr.LastOutLQRs = p->hdlc.lqm.lqr.peer.PeerOutLQRs; lqr.LastOutPackets = p->hdlc.lqm.lqr.peer.PeerOutPackets; lqr.LastOutOctets = p->hdlc.lqm.lqr.peer.PeerOutOctets; lqr.PeerInLQRs = p->hdlc.lqm.lqr.Save.InLQRs; lqr.PeerInPackets = p->hdlc.lqm.lqr.Save.InPackets; lqr.PeerInDiscards = p->hdlc.lqm.lqr.Save.InDiscards; lqr.PeerInErrors = p->hdlc.lqm.lqr.Save.InErrors; lqr.PeerInOctets = p->hdlc.lqm.lqr.Save.InOctets; lqr.PeerOutLQRs = p->hdlc.lqm.lqr.OutLQRs; lqr.PeerOutPackets = p->hdlc.lqm.ifOutUniPackets - pending_pkts; /* Don't forget our ``flag'' octets.... */ lqr.PeerOutOctets = p->hdlc.lqm.ifOutOctets - pending_octets - pending_pkts; lqr_Dump(l->name, "Output", &lqr); lqr_ChangeOrder(&lqr, (struct lqrdata *)MBUF_CTOP(bp)); } return bp; } static struct mbuf * lqr_LayerPull(struct bundle *b __unused, struct link *l __unused, struct mbuf *bp, u_short *proto) { /* * This is the ``Rx'' process from rfc1989, although a part of it is * actually performed by sync_LayerPull() & hdlc_LayerPull() so that * our octet counts are correct. */ if (*proto == PROTO_LQR) m_settype(bp, MB_LQRIN); return bp; } /* * Statistics for pulled packets are recorded either in hdlc_PullPacket() * or sync_PullPacket() */ struct layer lqrlayer = { LAYER_LQR, "lqr", lqr_LayerPush, lqr_LayerPull };